Science of Cane Toad Invasion and Control. Proceedings of the Invasive Animals CRC/ CSIRO/Qld NRM&W Cane Toad Workshop

Total Page:16

File Type:pdf, Size:1020Kb

Science of Cane Toad Invasion and Control. Proceedings of the Invasive Animals CRC/ CSIRO/Qld NRM&W Cane Toad Workshop Science of Cane Toad Invasion and Control. Proceedings of the Invasive Animals CRC/ CSIRO/Qld NRM&W Cane Toad Workshop 5-6 June 2006, Brisbane Edited by Kerryn Molloy & Wendy HendersonInvasive Animals Cooperative Research Centre Disclaimer: The views and opinions expressed in this report reflect those of the authors and do not necessarily reflect those of the Australian Government or the Invasive Animals Cooperative Research Centre. The material presented in this report is based on sources that are believed to be reliable. Whilst every care has been taken in the preparation of the report, the authors give no warranty that the said sources are correct and accept no responsibility for any resultant errors contained herein, any damages or loss, whatsoever, caused or suffered by any individual or corporation. Published by the Invasive Animals Cooperative Research Centre, University of Canberra, Canberra http://www.invasiveanimals.com http://www.feral.org.au © Invasive Animals Cooperative Research Centre This work is copyright. The Copyright Act 1968 permits fair dealing for study, research, information or educational purposes. Selected passages, tables or diagrams may be reproduced for such purposes, provided acknowledgement of the source is included. Major extracts of the entire document may not be reproduced by any process. Further copies may be requested from the Invasive Animals Cooperative Research Centre, University of Canberra, ACT 2601. Phone: +61 2 6201 2890 The publication should be cited as: Molloy, K.L. and Henderson, W.R. (Eds) (2006). Science of Cane Toad Invasion and Control. Proceedings of the Invasive Animals CRC/CSIRO/Qld NRM&W Cane Toad Workshop, June 2006, Brisbane. Invasive Animals Cooperative Research Centre, Canberra. Proceedings of the IA CRC/CSIRO/QLD NRM&W Cane Toad Workshop June 2006 Brisbane ISBN 0-9775707-2-X August 2006 Invasive Animals CRC Animals Invasive Cane Toad Workshop Contents Introduction ________________________________________________________________1 Presentations: Session 1: Setting the Scene Cane toad control research: The first decade M.Tyler, University of Adelaide. ___________________________________________ 3 Outcomes from the CSIRO Cane Toad Workshop held in Queensland during February 2004 A. Hyatt, J. Pallister, V. Olsen and R. Voysey, CSIRO Livestock Industries, Australian Animal Health Laboratory. ________________ 7 Recommendations arising from the VPC Cane Toad Task Force, June 2005 T. Robinson, CSIRO Entomology. ________________________________________ 12 Session 2: Biology and Impacts The biology, impact and control of cane toads: an overview of the University of Sydney’s research program R. Shine, G. P. Brown, B. L. Phillips, J. K. Webb, and M. Hagman, University of Sydney. __________________________________________________ 18 Initial impacts of invasive cane toads (Bufo marinus) on predatory lizards and crocodiles J. Sean Doody, B. Green, R. Sims, and D. Rhind. ____________________________ 33 Characteristics of Bufo marinus in old and recently established populations R.A. Alford1, L. Schwarzkopf1, G. Brown2, B. Phillips2 and R. Shine2, 1James Cook University, 2University of Sydney. _____________________ 42 Monitoring the impact of cane toads (Bufo marinus) on Northern Territory frogs - a progress report G. Grigg1, A. Taylor2, H. McCallum1 and L. Fletcher1 1 University of Queensland, 2University of New South Wales. ___________________ 47 Session 3: Current Control Frogwatch report on the Community Cane Toad Control project G. Sawyer, Frogwatch. ________________________________________________ 55 Frogwatch trapping report G. Sawyer, Frogwatch. ________________________________________________ 61 The field results of nine months of volunteer toad busting by the Kimberley Toad Busters 300 km east of the Northern Territory/ Western Australian border S. Boulter, D. Goodgame and L. Scott-Virtue, Kimberley Toadbusters. ________________________________________________ 73 Maximising coordination of on-ground cane toad control effort D. Beros, Stop the Toad Foundation Inc. ___________________________________ 83 Session 4: Biocontrol – Current & Prospective CSIRO biocontrol project: concept and progress. T. Robinson, N. Siddon, S. Tarmo, D. Halliday, T. Shanmuganathan and D. Venables. CSIRO Entomology, Canberra._____________________________ 86 Invasive Animals Cooperative Research Centre Viral delivery of cane toad biological control J. Pallister, R. Voysey, V. Olsen and A. Hyatt, CSIRO Livestock Industries, Australian Animal Health Laboratory. ____________________________ 89 Spin-offs: What have been the direct and indirect outcomes from research into biocontrol of cane toads? A. Hyatt, J. Pallister, V. Olsen and R. Voysey, CSIRO Livestock Industries, Australian Animal Health Laboratory _______________ 94 Investigation of a pathogen for Bufo marinus in northern Argentina: could it be a trypanosome? D. Peacock, Department of Water, Land and Biodiversity Conservation. ______________________________________________ 98 Session 5: Current and Prospective Biocontrol Continued Cane toads in decline due to disease? D. Pergolotti, Frog Decline Reversal Project. _______________________________ 106 Daughterless cane toads P. Koopman, University of Queensland. ___________________________________ 111 Comparative analysis of genetic options for controlling invasive populations of the cane toad, Bufo marinus R. E. Thresher and N. Bax, CSIRO Marine & Atmospheric Research. ______________________________________________ 117 Modelling potential control strategies for cane toads H. McCallum, University of Queensland. __________________________________ 123 Control of cane toads by sterile male release and inherited sterility M. Mahony and J. Clulow, Newcastle University. ____________________________ 134 The planned eradication of cane toads off Viwa Island, Fiji C. Morley1, J. Kuruyawa1 & C. Denny2, 1University of the South Pacific and 2University of Auckland. ___________________________________________ 151 Session 6: Toxins, Attractants and Repellants Cane toad toxin - an Achilles heel? T. Robinson, CSIRO Entomology. _______________________________________ 159 Cane Toad Pheromones M. Tyler, University of Adelaide. ________________________________________ 163 Increasing the effectiveness of toad traps: olfactory and acoustic attractants L. Schwarzkopf, R. A. Alford School of Tropical Biology, James Cook University. __________________________ 165 Cane toad chemical ecology: getting to know your enemy R. A. Hayes, G. C. Grigg & R. J. Capon, University of Queensland. _____________________________________________ 171 Session 7: Adaptation Cane toads and northern quolls: can quolls persist in the face of an invasive toxic onslaught? K. Firestone1 and T. Robinson2, 1University of Sydney, Zoological Parks Board, 2CSIRO Entomology. _________________________________________________ 176 Intra- and interspecfic variation in squamate toad toxin resistance B. Ujvari and T. Madsen, University of Wollongong. _________________________ 185 Cane Toad Workshop Introduction Approximately 100 cane toads (Bufo Marinus) were introduced from Hawaii to Gordonvale, north Queensland in 1935 to control the greyback cane beetle. They are the only member of the family Bufonidae in Australia (we have no native toads of this group). Toads soon established as a pest and have expanded their range across the north of Australia at a rate of 27-50 km/year. Larger male toads have been measured moving up to several kilometres in a single night. Toads are now estimated to occupy more than 500,000 km2 of Australia and have reached densities of 2,000 toads per hectare in some newly-colonised areas of the Northern Territory. Cane toads breed in summer – preferring it hot and wet. Females can lay 5,000 to 10,000 eggs per clutch. Tadpoles emerge from water bodies as toadlets (metamorphs) after 6-8 weeks. There is a high mortality rate at this stage. The cane toad is poisonous in all its life stages, from egg to adult. Almost anything that eats the toad dies rapidly from heart failure. The poison is absorbed through body tissues such as those of the eyes, mouth and nose, so that even mouthing the toad may cause death. Cane toads have also been known to transmit diseases such as salmonella. The cane toad has been nominated for listing as a key threatening process under the Environment Protection and Biodiversity Conservation Act 1999. The northern quoll (Dasyurus hallucatus), monitor lizards (Varanus spp.), freshwater crocodile (Crocodylus johnstoni), and some snake species have been severely impacted because of predation on toads. At the moment the ‘front line’ is believed to be near the Victoria River in the Northern Territory. Large dominant male toads (warriors) have been observed to move ahead of the main group, and have been spotted up to 50 kilometres further west. The invasion front is therefore estimated to be between 250 and 300 kilometres east of the Western Australian border. The Invasive Animals Cooperative Research Centre (IA CRC) has as one of its 13 operational targets to “deliver innovative, practical control measures against cane toads”. The Terrestrial Products and Strategies Program of the IA CRC has several projects to develop short, mid and long-term solutions for cane toad control. These projects are being supported by funding of more than $500,000 over the next two years through the University of Sydney and University of Queensland. The IA CRC’s motto is “together create and apply solutions”. This workshop is a further
Recommended publications
  • Animals from the Outback ANIMALS from the OUTBACK Introduction
    Animals From The Outback ANIMALS FROM THE OUTBACK Introduction • Australia is a big country with many different animal habitats. Australia’s deserts, rainforests, reefs, swamps, bushlands and mountains provide homes for many different types of animals. • Many of Australia’s animals are ‘endemic’ to the country. This means that they are only found in Australia, and nowhere else on Earth. • The main reason is because Australia is surrounded by sea, and isolated from the rest of the world. Many Australian animals have evolved on their own, and haven’t been able to spread to other countries or continents. Bandicoot Bandicoot • Bandicoots are marsupials that are endemic to Australia and New Guinea. (As we saw above, if an animal is ‘endemic’ to an area, then it isn’t found anywhere else.) • There are over 20 species of bandicoot – most are rabbit-sized, and all have long legs, thin tails and pointed noses. Bandicoots are omnivores that forage for food in their bushland habitat. Black Swan Black Swan • Black swans are elegant birds with black feathers and bright red bills. Black swans inhabit wetlands across Australia. They eat plants and algae, and use their long necks to find food. Cane Toad Cane Toad • Many Australians would rather the cane toad was not on a list of Australian animals! Cane toads secrete poison from behind their ears as a defense against predators. • The cane toad is an invasive species in Australia and has spread rapidly across the country since its introduction in the 1940s. Cane toads are a threat to many native Australian animals, who fall ill after eating the toads.
    [Show full text]
  • Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands
    Micronesica 29(1): 37-48 , 1996 Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands DONALD W. BUDEN Division Mathematics of and Science, College of Micronesia, P. 0 . Box 159 Kolonia, Polmpei, Federated States of Micronesia 96941. Abstract-Fifteen species of reptiles, 18 birds, and five mammals are recorded from Pakin Atoll. None is endemic to Pakin and all of the residents tend to be widely distributed throughout Micronesia. Intro­ duced species include four mammals (Rattus exulans, Canis fami/iaris, Fe/is catus, Sus scrofa), the Red Junglefowl (Gallus gal/us) among birds, and at least one lizard (Varanus indicus). Of the 17 indigenous birds, ten are presumed or documented breeding residents, including four land birds, a heron, and five terns. The Micronesian Honeyeater (My=omela rubratra) is the most common land bird, followed closely by the Micro­ nesian Starling (Aplonis opaca). The vegetation is mainly Cocos forest, considerably modified by periodic cutting of the undergrowth, deliber­ ately set fires, and the rooting of pigs. Most of the present vertebrate species do not appear to be seriously endangered by present levels of human activity. But the Micronesian Pigeon (Ducula oceanica) is less numerous on the settled islands, probably reflecting increased hunting pressure, and sea turtles (especially Chelonia mydas) and their eggs are harvested indiscriminately . Introduction Terrestrial vertebrates have been poorly studied on many of the remote atolls of Micronesia, and distributional records are lacking or scanty for many islands. The present study documents the occurrence and relative abundance of reptiles, birds, and mammals on Pakin Atoll for the first time.
    [Show full text]
  • Articles Migration for the Second Time
    ffi- ct1 E o r+ |+ c = I - s) 2 gq F Fl c) U| CD (D I |a - o O v, - o :a rt I c) o O- o J $iFgiFFgEst = 3 ,B.3FH.F=E*gs (D .+ !l CD 0f $E;rtf;F$Fs = o o s, - - I g3rF*gggiss - J CD r+ *cE$;'gE$5 hs F$HEF F3s F E 0r { o o !, $FEggggg$FE= - ig"$;e*Erq gE iEi $alcUil Ha ;E€ 3SFg*g $E .8I" :EF" 5;H !g *il9g;T 'dF$FEH ?f r $; flFg EF TE =6 ig FE EF gggggigggg Frz =r B6 5fi e69,8, I birdlife.org http://w w w .birdlife.org/community/2011/05/keeping-islands-rat-free-for-pacific-birds-and-people-%e2%80%93-w ith-elenoa-seniloli/ Keeping islands rat-free for pacific birds and people – with Elenoa Seniloli Elenoa Seniloli is a Conservation Officer in the BirdLife International Fiji Programme. “Lying in my tent at night, I could hear rat-traps snapping shut all around me”, said Elenoa Seniloli – Conservation Officer BirdLife International Fiji Programme. Many Pacific islands are alive with rats which are thriving on seabird eggs and chicks, driving many species towards extinction. BirdLife in the Pacific is undertaking a ground-breaking programme with local communities to rid the islands of these invasive predators for the benefit of birds, biodiversity and people. The Pacific region spreads over more than 38 million square kilometres of ocean – an area three times larger than mainland China or the United States of America. Less than 2% of this vast region is dry land; land holding a rather sobering biodiversity record.
    [Show full text]
  • Protecting Threatened Quolls and Other Biodiversity on Kimberley Islands from Cane Toads
    Protecting threatened quolls and other biodiversity on Kimberley islands from cane toads Project Summary Project 4.2.5 Kimberley islands. Photo: Mark Cowan Research in Brief Why is the research impacts when they reach islands and in relatively short time periods. This research will use existing needed? In combination, these factors mean data to predict future invasion Cane toads (Rhinella marina) have that keeping cane toads off currently by cane toads of Australian caused extensive declines and local uninvaded Australian islands is a high islands, particularly the Kimberley extinctions of many species on priority for conservation managers. islands. This information is mainland Australia. Both aquatic and important for prioritizing The endangered Northern Quoll terrestrial species that eat frogs or (Dasyurus hallucatus) was once surveillance action on these toads are highly at risk. islands in order to conserve widespread across Northern Australia toad-sensitive species such as Australia’s islands are important but many local declines have been the endangered Northern Quoll. conservation refuges which are rich observed following the invasion of in unique endemic species. Islands cane toads. Northern Quolls occur that are free from invasive species, on several islands across the northern particularly feral animals, have also Australian coast. Many islands in enabled some species to persist that Queensland and the Northern have become extinct on the mainland. Territory have already been invaded The value of islands as refuges from by cane toads. The more than invasive species has led conservation 2,500 islands off Western Australia’s managers to use them as arks to Kimberley coast are thought to be host insurance populations of highly cane toad free, although cane toads vulnerable mainland species.
    [Show full text]
  • Cane Toads on Sanibel and Captiva
    April 2020 SCCF Member Update Cane Toads on Sanibel and Captiva By Chris Lechowicz, Herpetologist and Wildlife & Habitat Management Director It is that time of year again when it is slowly starting to warm up and any out-of-season rainstorms can trigger Parotoid gland amphibian breeding. On Sanibel, this is limited to frogs and toads as we do not have any salamander species on the island. Besides the southern leopard frog (Lithobates sphenocephalus) which is our sole true winter breeder, the southern toad (Anaxyrus terrrestris) and the giant toad aka cane toad (Rhinella marina) are the usual suspects for late winter/early spring breeding, especially after a heavy rain. The southern toad is native and too often confused for the invasive exotic giant toad — the cane toad — in our area. Giant toads go by several local names, depending on where you are located. In Florida, the most common The first cane toad (Rhinella marina) documented on Sanibel names are cane toad, faux toad, or Bufo toad. Outside right before it was captured while attempting to breed. Female Florida, many people call them marine toads. The local cane toads can lay up to 35,000 eggs at a time (average 8,000 name “Bufo toad” comes from the former scientific name - 25,000). Inset: Cane toad eggs are laid in long strings that (Bufo marinus). In 2008, the cane toad was split off into resemble black beads. These were collected the night they were a new group of South American beaked toads (Rhinella). first documented by SCCF on July 17, 2013.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp
    Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play.
    [Show full text]
  • Demansia Papuensis)
    Clinical and Experimental Pharmacology and Physiology (2006) 33, 364–368 Blackwell Publishing Ltd NeuromuscularSOriginal Kuruppu ArticleIN et al. effects of D. papuensisVITRO venom NEUROTOXIC AND MYOTOXIC EFFECTS OF THE VENOM FROM THE BLACK WHIP SNAKE (DEMANSIA PAPUENSIS) S Kuruppu,* Bryan G Fry† and Wayne C Hodgson* *Monash Venom Group, Department of Pharmacology, Monash University and †Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia SUMMARY of Australian snakes whose venoms have not been pharmacologically characterized. Whip snakes (D. papuensis and D. atra, also called 1. Black whip snakes belong to the family elapidae and are D. vestigata) belong to the family elapidae and are found throughout found throughout the northern coastal region of Australia. The the northern coastal region of Australia.3 The black whip snake black whip snake (Demansia papuensis) is considered to be poten- (D. papuensis) is considered to be potentially dangerous due to its tially dangerous due to its size and phylogenetic distinctiveness. size (up to 2 m) and phylogenetic distinctiveness which may suggest Previous liquid chromatography–mass spectrometry analysis of the presence of unique venom components.2 LC-MS analysis of D. papuensis venom indicated a number of components within D. papuensis venom indicated a number of components within the the molecular mass ranges compatible with neurotoxins. For the molecular mass ranges of 6–7 and 13–14 kDa.4 This may indicate the first time, this study examines the in vitro neurotoxic and myotoxic presence of short and long chain a-neurotoxins or PLA2 components, effects of the venom from D.
    [Show full text]
  • Polyploidy and Sex Chromosome Evolution in Amphibians
    Chapter 18 Polyploidization and Sex Chromosome Evolution in Amphibians Ben J. Evans, R. Alexander Pyron and John J. Wiens Abstract Genome duplication, including polyploid speciation and spontaneous polyploidy in diploid species, occurs more frequently in amphibians than mammals. One possible explanation is that some amphibians, unlike almost all mammals, have young sex chromosomes that carry a similar suite of genes (apart from the genetic trigger for sex determination). These species potentially can experience genome duplication without disrupting dosage stoichiometry between interacting proteins encoded by genes on the sex chromosomes and autosomalPROOF chromosomes. To explore this possibility, we performed a permutation aimed at testing whether amphibian species that experienced polyploid speciation or spontaneous polyploidy have younger sex chromosomes than other amphibians. While the most conservative permutation was not significant, the frog genera Xenopus and Leiopelma provide anecdotal support for a negative correlation between the age of sex chromosomes and a species’ propensity to undergo genome duplication. This study also points to more frequent turnover of sex chromosomes than previously proposed, and suggests a lack of statistical support for male versus female heterogamy in the most recent common ancestors of frogs, salamanders, and amphibians in general. Future advances in genomics undoubtedly will further illuminate the relationship between amphibian sex chromosome degeneration and genome duplication. B. J. Evans (CORRECTED&) Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail: [email protected] R. Alexander Pyron Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA J.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Nicotine Induces Polyspermy in Sea Urchin Eggs Through a Non-Cholinergic Pathway Modulating Actin Dynamics
    cells Article Nicotine Induces Polyspermy in Sea Urchin Eggs through a Non-Cholinergic Pathway Modulating Actin Dynamics 1,2 1, 2 1, Nunzia Limatola , Filip Vasilev y, Luigia Santella and Jong Tai Chun * 1 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] (N.L.); [email protected] (F.V.) 2 Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] * Correspondence: [email protected] Current address: Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CRCHUM) y Montreal, QC H2X 0A9, Canada. Received: 8 November 2019; Accepted: 21 December 2019; Published: 25 December 2019 Abstract: While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin.
    [Show full text]
  • Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases
    Mar. Drugs 2014, 12, 2539-2589; doi:10.3390/md12052539 OPEN ACCESS marine drugs ISSN 1660–3397 www.mdpi.com/journal/marinedrugs Review Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases Clara Grosso 1, Patrícia Valentão 1, Federico Ferreres 2 and Paula B. Andrade 1,* 1 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (C.G.); [email protected] (P.V.) 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-22042-8654; Fax: +351-22609-3390. Received: 30 January 2014; in revised form: 10 April 2014 / Accepted: 16 April 2014 / Published: 2 May 2014 Abstract: Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted. Keywords: aragonite; conotoxins; neurodegeneration; neuroinflammation; Aβ peptide; tau hyperphosphorylation; protein kinases; receptors; voltage-dependent ion channels; cyclooxygenases Mar.
    [Show full text]