National Bureau of Standards Workshop on Performance Evaluation of Parallel Computers
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Annual Reports of FCCSET Subcommittee Annual Trip Reports To
Annual Reports of FCCSET Subcommittee Annual trip reports to supercomputer manufacturers trace the changes in technology and in the industry, 1985-1989. FY 1986 Annual Report of the Federal Coordinating Council on Science, Engineering and Technology (FCCSET). by the FCCSET Ocnmittee. n High Performance Computing Summary During the past year, the Committee met on a regular basis to review government and industry supported programs in research, development, and application of new supercomputer technology. The Committee maintains an overview of commercial developments in the U.S. and abroad. It regularly receives briefings from Government agency sponsored R&D efforts and makes such information available, where feasible, to industry and universities. In addition, the committee coordinates agency supercomputer access programs and promotes cooperation with particular emphasis on aiding the establish- ment of new centers and new communications networks. The Committee made its annual visit to supercomputer manufacturers in August and found that substantial progress had been made by Cray Research and ETA Systems toward developing their next generations of machines. The Cray II and expanded Cray XMP series supercomputers are now being marketed commercially; the Committee was briefed on plans for the next generation of Cray machines. ETA Systems is beyond the prototype stage for the ETA-10 and planning to ship one machine this year. A ^-0 A 1^'Tr 2 The supercomputer vendors continue to have difficulty in obtaining high performance IC's from U.S. chip makers, leaving them dependent on Japanese suppliers. In some cases, the Japanese chip suppliers are the same companies, e.g., Fujitsu, that provide the strongest foreign competition in the supercomputer market. -
(52) Cont~Ol Data
C) (52) CONT~OL DATA literature and Distribution Services ~~.) 308 North Dale Street I st. Paul. Minnesota 55103 rJ 1 August 29, 1983 "r--"-....." (I ~ __ ,I Dear Customer: Attached is the third (3) catalog supplement since the 1938 catalog was published . .. .·Af ~ ~>J if-?/t~--62--- G. F. Moore, Manager Literature & Distribution Services ,~-" l)""... ...... I _._---------_._----_._----_._-------- - _......... __ ._.- - LOS CATALOG SUPPLEPtENT -- AUGUST 1988 Pub No. Rev [Page] TITLE' [ extracted from catalog entry] Bind Price + = New Publication r = Revision - = Obsolete r 15190060 [4-07] FULL SCREEN EDITOR (FSEDIT) RM (NOS 1 & 2) .......•...•.•...•••........... 12.00 r 15190118 K [4-07] NETWORK JOB ENTRY FACILITY (NJEF) IH8 (NOS 2) ........................... 5.00 r 15190129 F [4-07] NETWORK JOB ENTRY FACILITY (NJEF) RM (NOS 2) .........•.......•........... + 15190150 C [4-07] NETWORK TRANSFER FACILITY (NTF) USAGE (NOS/VE) .......................... 15.00 r 15190762 [4-07] TIELINE/NP V2 IHB (L642) (NOS 2) ........................................ 12.00 r 20489200 o [4-29] WREN II HALF-HEIGHT 5-114" DISK DRIVE ................................... + 20493400 [4-20] CDCNET DEVICE INTERFACE UNITS ........................................... + 20493600 [4-20] CDCNET ETHERNET EQUIPMENT ............................................... r 20523200 B [4-14] COMPUTER MAINTENANCE SERVICES - DEC ..................................... r 20535300 A [4-29] WREN II 5-1/4" RLL CERTIFIED ............................................ r 20537300 A [4-18] SOFTWARE -
Proposal for a Ph.D. Degree in Informatics
Proposal for a Ph.D. Degree in Informatics Contacts Judith S. Olson Bren Professor of Information and Computer Sciences Department of Informatics Donald Bren School of Information and Computer Sciences 949-824-0080 [email protected] Gillian R. Hayes Assistant Professor Department of Informatics Donald Bren School of Information and Computer Sciences 949-824-1483 [email protected] November 19, 2012 1 Introduction 1.1 Aims and Objectives This proposal represents a natural evolution in the field of Informatics (elsewhere called Information or Information Science), a broad term covering a host of subspecialties, including human-computer interaction, social informatics, information economics, information policy, and library and archival science. Complementing our existing offerings, we propose to offer a Ph.D. in Informatics in the Department of Informatics to signify the recognizable “flavor” of the field of study we offer. Until recently, the department offered four tracks within the Informatics concentration of the ICS Ph.D.: • Informatics – General • Informatics – Track in Interactive and Collaborative Technology • Informatics – Track in Ubiquitous Computing • Informatics – Track in Software Engineering A Ph.D. degree in Software Engineering has now been added, replacing the degree currently called Informatics—Track in Software Engineering. This proposal specifies the Ph.D. in Informatics, replacing the three remaining tracks (Informatics- General, Informatics-ICT and Informatics-Ubiquitous Computing). The new arrangement (two PhDs, one in Software Engineering and one in Informatics) mirrors our undergraduate offerings (two B.S. degrees, one in Software Engineering and one in Informatics.) In contrast to our current Ph.D. offering in Information and Computer Science, we believe that the naming of the Ph.D. -
Software Inspections at Nasa Ames
N86-.. 30363 Oualitv Assurance Software Insoections at NASA Ames Metrics for Feedback and Modification Greg Wenneson, Informatics General Corporation Software Inspections are a set of formal technical review procedures held at selected key points during software development for the purpose of finding defects in software documents. Inspections are a Quality Assurance tool and a Management tool. Their primary purposes are to improve overall software system quality while reducing lifecycle costs and to improve management control over the software development cycle. The Inspections process can be customized to specific project and development type requirements and are specialized for each stage of the development cycle. For each type of Inspection, materials to be inspected are prepared to predefined levels. The Inspection team follows defined roles and procedures and uses a specialized checklist of common problems in reviewing the materials. The materials and results from the Inspection have to meet explicit completion criteria before the Inspection is finished and the next stage of development proceeds. Statistics, primarily time and error data, from each Inspection are captured and maintained in a historical database. These statistics provide feedback and feedforward to the developer and manager and longer term feedback for modification and control of the development process for most effective application of design and quality assurance efforts. HISTORY Software Inspections were developed in the early mid-1970s at IBM by Dr. Mike Fagan, who was subsequently named software innovator of the year. Fagan also credits IBM members O.R.Kohli, R.A.Radice and R.R.Larson for their contributions to the development of Inspections. -
Frontiers of Supercomputing
by B. L. Buzbee, N. Metropolis, and D. H. Sharp scientists two years to do may be reduced to needed for rapid progress. two months of effort. When this happens. Before presenting highlights of the con- practice in many fields of science and tech- ference we will review in more depth the nology will be revolutionized. importance of supercomputing and the These radical changes would also have a trends in computer performance that form needs. Electronic computers were developed, large and rapid impact on the nation’s econ- the background for the conference dis- in fact, during and after World War 11 to omy and security. The skill and effectiveness cussions. meet the need for numerical simulation in the with which supercomputers can be used to design of nuclear weapons, aircraft, and design new and more economical civilian The Importance of Supercomputers conventional ordnance. Today. the avail- aircraft will determine whether there is em.. ability of supercomputers ten thousand times ployrnent in Seattle or in a foreign city. The term “supercomputer” refers to the faster than the first electronic devices is Computer-aided design of automobiles is most powerful scientific computer available having a profound impact on all branches of already playing an important role in De- at a given time. The power of a computer is science and engineering—from astrophysics troit’s effort to recapture its position in the measured by its speed, storage capacity to elementary particle physics. from fusion automobile market. The speed and accuracy (memory). and precision. Today’s com- energy research to automobile design. -
An Important Note
TUGboat, Volume 3, No. 2 Conference fees will be set to recover both direct conference costs and other TUG indirect costs. General Delivery - TUG membership for 1983 will cost $20 includ- ing a subscription to TUGboat; two issues of TUGboat are planned for 1983. THE l@C LOGO: - For 1983 we will off' an institutional member AN l[MPORTANT NOTE ship for $200. Inetitutional membership entitles an organbation to name up to 5 individuals At the July TUG meeting, Don Knuth made the to receive mbscriptione to TUGboat and to following request concerning the QjX logo. Because be listed by name in the membership list. A many devices are unable to render the ld'%" separate listing of institutional members will in the original logo, an alternate form has been appear in each iasue of TUGboat. deviaed, using a lower-case "e" to retain the spirit SfeeFing Commiftee me%ting of the original: TeX Whenever anyone refers to It was decided that the Winter 1983 meeting will in print in a context which may ultimrrtdy be be held at Stanford sometime during the epring unable to render the old-style logo properly (e.g. a break, March 18-27. news release), the alternate form, TeX, should be The following issues were addressed at the used, and, if appropriate, eome mention should be Steering Committee meetings: made that this is the logo for Don Knuth's "Tau 1) It was decided that up to $1,000 wiU be con- wonChi". Thia is neceaeary to distinguish TjjX tributed to the coet of sending a representative from an operating eyetern called TEX that has been to the next ANSI standards meeting on typemtr developed (and registered) by Honeywell. -
VHSIC and ETA10
VHSIC and The First CMOS and Only Cryogenically Cooled Super Computer David Bondurant Former Honeywell Solid State Electronics Division VHSIC System Applications Manager ETA10 Supercomputer at MET Office - UK’s National Weather Forecasting Service Sources • “Very High Speed Integrated Circuits (VHSIC) Final Program Report 1980-1990, VHSIC Program Office”, Office of the Under Secretary of Defense for Acquisition, Deputy Director, Defense Research and Engineering for Research and Advanced Technology, September 30, 1990 • Carlson, Sullivan, Bach, and Resnick, “The ETA10 Liquid-Nitrogen-Cooled Supercomputer System”, IEEE Transactions on Electron Devices, Vol. 36, No. 8, August 1989. • Cummings and Chase, “High Density Packaging for Supercomputers” • Tony Vacca, “First Hand: The First CMOS And The Only Cryogenically Cooled Supercomputer”, ethw.org • Robert Peglar, “The ETA Era or How to (Mis-)Manage a Company According to Control Data Corp.”, April 17, 1990 Background • I graduated from Missouri S&T in May 1971 • My first job was at Control Data Corporation, the leading Supercomputer Company • I worked in Memory Development • CDC 7600 was in production, 8600 (Cray 1) was in development by Seymour Cray in Chippewa Falls, WI • Star 100 Vector Processor was in Development in Arden Hills • I was assigned to the development of the first DRAM Memory Module for a CDC Supercomputer • I designed the DRAM Module Tester Using ECL Logic Control Data Corporation Arden Hills • First DRAM Module was 4Kx32 using 128 1K DRAM Development Center - June 1971 Chips -
Sales and Reference Guide to Synchronous Communications Products
Sales and Reference Guide to Synchronous Communications Products •••••••••••••••••••••••• •••••••• •••••••• ••••••••••••• ••• •• ••• :s Acknowledgments The following people at Apple Computer were principal contributors to this guide: Jim Armstrong, Dennis Demos, Peter Hirshberg, Jane Silverstein, and Dave Susarret. Some of the information contained in this guide is from communications hardware and software manufacturers' literature and industry trade publications, and is therefore subject to updating. This Guide is informational in content, and products mentioned do not constitute endorsement by Apple Computer, Inc. Apple Computer cannot be responsible for changes in information given here regarding pricing, rates, availability, or suitability of products for any purpose. If you find incorrect information in this guide, please let us know, and we will attempt to correct it in future updates. This guide was prepared on a Macintosh™, using MacWrite™, and printed with an Apple LaserWriter™ printer. Revised 9/85 Table of Contents Sales and Reference Guide to the AppleLine and Apple Cluster Controller Synchronous Communications Products Introduction .............................................................. Page 1 Chapter 1 Communications Market Overview........................ Page 2 The Three Worlds of Communications - Figure 1 Micro-to-Mainframe Marketplace - Figure 2 Chapter 2 Introduction to Data Communications ..................... Page 4 The IBM Big Picture - Figure 3 A Brief Introduction to the IBM® 3270 World Protocols and Protocol -
Mathematics 18.337, Computer Science 6.338, SMA 5505 Applied Parallel Computing Spring 2004
Mathematics 18.337, Computer Science 6.338, SMA 5505 Applied Parallel Computing Spring 2004 Lecturer: Alan Edelman1 MIT 1Department of Mathematics and Laboratory for Computer Science. Room 2-388, Massachusetts Institute of Technology, Cambridge, MA 02139, Email: [email protected], http://math.mit.edu/~edelman ii Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004 Contents 1 Introduction 1 1.1 The machines . 1 1.2 The software . 2 1.3 The Reality of High Performance Computing . 3 1.4 Modern Algorithms . 3 1.5 Compilers . 3 1.6 Scientific Algorithms . 4 1.7 History, State-of-Art, and Perspective . 4 1.7.1 Things that are not traditional supercomputers . 4 1.8 Analyzing the top500 List Using Excel . 5 1.8.1 Importing the XML file . 5 1.8.2 Filtering . 7 1.8.3 Pivot Tables . 9 1.9 Parallel Computing: An Example . 14 1.10 Exercises . 16 2 MPI, OpenMP, MATLAB*P 17 2.1 Programming style . 17 2.2 Message Passing . 18 2.2.1 Who am I? . 19 2.2.2 Sending and receiving . 20 2.2.3 Tags and communicators . 22 2.2.4 Performance, and tolerance . 23 2.2.5 Who's got the floor? . 24 2.3 More on Message Passing . 26 2.3.1 Nomenclature . 26 2.3.2 The Development of Message Passing . 26 2.3.3 Machine Characteristics . 27 2.3.4 Active Messages . 27 2.4 OpenMP for Shared Memory Parallel Programming . 27 2.5 STARP . 30 3 Parallel Prefix 33 3.1 Parallel Prefix . -
Trends in HPC Architectures and Parallel Programmming
Trends in HPC Architectures and Parallel Programmming Giovanni Erbacci - [email protected] Supercomputing, Applications & Innovation Department - CINECA Agenda - Computational Sciences - Trends in Parallel Architectures - Trends in Parallel Programming - PRACE G. Erbacci 1 Computational Sciences Computational science (with theory and experimentation ), is the “third pillar” of scientific inquiry, enabling researchers to build and test models of complex phenomena Quick evolution of innovation : • Instantaneous communication • Geographically distributed work • Increased productivity • More data everywhere • Increasing problem complexity • Innovation happens worldwide G. Erbacci 2 Technology Evolution More data everywhere : Radar, satellites, CAT scans, weather models, the human genome. The size and resolution of the problems scientists address today are limited only by the size of the data they can reasonably work with. There is a constantly increasing demand for faster processing on bigger data. Increasing problem complexity : Partly driven by the ability to handle bigger data, but also by the requirements and opportunities brought by new technologies. For example, new kinds of medical scans create new computational challenges. HPC Evolution As technology allows scientists to handle bigger datasets and faster computations, they push to solve harder problems. In turn, the new class of problems drives the next cycle of technology innovation . G. Erbacci 3 Computational Sciences today Multidisciplinary problems Coupled applicatitions - -
Introduction to Parallel Processing : Algorithms and Architectures
Introduction to Parallel Processing Algorithms and Architectures PLENUM SERIES IN COMPUTER SCIENCE Series Editor: Rami G. Melhem University of Pittsburgh Pittsburgh, Pennsylvania FUNDAMENTALS OF X PROGRAMMING Graphical User Interfaces and Beyond Theo Pavlidis INTRODUCTION TO PARALLEL PROCESSING Algorithms and Architectures Behrooz Parhami Introduction to Parallel Processing Algorithms and Architectures Behrooz Parhami University of California at Santa Barbara Santa Barbara, California KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON , DORDRECHT, LONDON , MOSCOW eBook ISBN 0-306-46964-2 Print ISBN 0-306-45970-1 ©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://www.kluweronline.com and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com To the four parallel joys in my life, for their love and support. This page intentionally left blank. Preface THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. -
Roger A. Philips
ROGER A. PHILIPS INDUSTRY EXPERIENCE Philips Associates Scottsdale, AZ 2002 - present President Work with a variety of companies in setting up strategic plans, defining infrastructure, obtaining financing, and marketing and sales. Director and partner of Bell Systems Inc. working with clients to set up outsourced contact management services at Bell Systems’ India call center. Involved marketing and planning process definition, software migration, scripting, agent training, and performance metrics. Cyclone Commerce Corporation Scottsdale, AZ 2000 - 2001 Vice President, Sales Managed direct sales and customer service for Cyclone Commerce, a B2B Internet infrastructure software company with marquis international customers including Unilever, Carrefour (world’s second largest retailer), and Toshiba. Cyclone is a venture-funded firm which develops and markets software products to facilitate rapid, secure and auditable e- commerce over the Internet. Employed 130 with offices in AZ, OH, MA, London and Tokyo. Landmark Systems Corporation Reston, Virginia 1994 - 1999 Vice President, International Sales Directed all operations outside the US and Canada for this $52 million software company. Responsible for gross sales exceeding $20 million annually. Landmark developed and marketed software performance monitoring suites for UNIX, Windows NT, and S/390 environments covering operating systems, RDBMS’s, web servers and middleware including IBM CICS and MQ Series. Responsibilities included determining distribution strategies for various geographies and establishing and expanding two and three-tier distribution networks in various countries. Created budgets and sales targets, hired local country managers, coordinated worldwide marketing. Set up subsidiaries in Germany, the UK, France, the Netherlands, Spain, Scandinavia, Italy, Australia, and Hong Kong. The subs performed direct sales, local marketing and provide customer service.