Dynamic Linkage Between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Linkage Between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation 3214 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 72 Dynamic Linkage between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation YUEYUE YU State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China RONGCAI REN State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory of Meteorological Disaster (KLME), Nanjing University of Information Science and Technology, Nanjing, China MING CAI Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida (Manuscript received 29 December 2014, in final form 24 April 2015) ABSTRACT This study investigates the dynamical linkage between the meridional mass circulation and cold air out- breaks using the ERA-Interim data covering the period 1979–2011. It is found that the onset date of continental-scale cold air outbreaks coincides well with the peak time of stronger meridional mass circulation 2 events, when the net mass transport across 608N in the warm or cold air branch exceeds ;88 3 109 kg s 1. 2 During weaker mass circulation events when the net mass transport across 608N is below ;71.6 3 109 kg s 1, most areas of the midlatitudes are generally in mild conditions except the northern part of western Europe. Composite patterns of circulation anomalies during stronger mass circulation events greatly resemble that of the winter mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air: namely, via East Asia and North America. The Siberian high shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through eastern Europe, where lies the poleward warm air route in the winter-mean condition. The strengthening of the Icelandic low and Azores high during stronger mass circulation events acts to close off the climatological-mean cold air route via western Europe; this is responsible for the comparatively normal temperature there. The composite pattern for weaker mass circulation events is generally reversed, where the weakening of the Icelandic low and Azores high, corresponding to the negative phase of the North Atlantic Oscillation (NAO), leads to the reopening and strengthening of the equatorward cold air route through western Europe, which is responsible for the cold anomalies there. 1. Introduction Konrad 1996). For instance, cold air outbreaks over North America have been found to be closely related Various anomalous synoptic- and planetary-scale to positive sea level pressure anomalies along the patterns have been identified as precursor signals for Alaska–Yukon border (Walsh et al. 2001)ortheco- cold air outbreaks over different regions (e.g., Wexler existence of a ridge over the Arctic and a trough over 1951; Colucci and Davenport 1987; Walsh et al. 2001; the Great Lakes region (Konrad 1996). Elsewhere, in East Asia, the intensification and expansion of the Siberian high are known to be the triggering mecha- Corresponding author address: Dr. Rongcai Ren, LASG, In- stitute of Atmospheric Physics, CAS, P.O. Box 9804, Beijing nism for cold air surges (Ding 1990; Zhang et al. 1997; 100029, China. Gong and Ho 2004; Takaya and Nakamura 2005). E-mail: [email protected] Palmer (2014) pointed out that intensifying Rossby DOI: 10.1175/JAS-D-14-0390.1 Ó 2015 American Meteorological Society Unauthenticated | Downloaded 09/30/21 11:46 PM UTC AUGUST 2015 Y U E T A L . 3215 waves within the jet stream, excited by the latent heat the tropical heating source to the polar heating sink via a release over the warming tropical west Pacific may poleward warm air branch in the upper troposphere have contributed to the extremely cold 2013–14 winter (and also the stratosphere in the winter hemisphere) and in the United States. an equatorward cold branch in the lower troposphere.1 There is also ample evidence indicating a robust re- Cold air outbreaks can be directly related to an anom- lationship between continental-scale cold air outbreaks alous strong meridional mass circulation, with more cold and the leading oscillation modes in the winter extra- air discharged from the northern polar region into tropics. It is well recognized that the negative phase of the lower latitudes within the cold air branch. The the North Atlantic Oscillation (NAO) coincides with strengthening of the cold air branch is connected with cold anomalies over Europe and warming in the north- the strengthening of the warm air branch in the upper west Atlantic (Rogers and van Loon 1979; Hurrell and atmosphere and is driven by the amplification of large- van Loon 1997). The studies by Walsh et al. (2001) and scale waves in the midlatitudes. Therefore, the meridi- Cellitti et al. (2006) show that the NAO tends to be in its onal mass circulation perspective not only allows us to negative phase 3–6 days prior to cold air outbreaks over capture the preferred routes of cold air outbreaks di- different regions of the United States and Europe. Luo rectly but also can help us to investigate the precursory et al. (2014) related the cold air outbreak event in changes in various circulation fields for cold air January–February 2012 to a positive-to-negative phase outbreaks. transition of NAO. As a broader anomaly pattern than Iwasaki and Mochizuki (2012) and Iwasaki et al. the NAO, the Arctic Oscillation (AO), or the tropo- (2014) identified two major routes of cold air from the spheric northern annular mode (NAM), also tends to be northern polar region to lower latitudes: namely, the in its negative phase when there are more frequent ‘‘East Asian stream’’ and the ‘‘North American strong cold air outbreaks in the midlatitudes of Eurasia stream.’’ Shoji et al. (2014) conducted a comprehensive and North America (Thompson and Wallace 1998, 2001; isentropic diagnosis of East Asian cold air outbreaks Wettstein and Mearns 2002; Cohen et al. 2010). Ac- within the cold air branch of the meridional mass cir- companying these leading modes is the oscillation of culation. Yu et al. (2015) constructed a mass circulation extratropical zonal mean zonal wind in the troposphere, index (denoted as WB60N) to measure the intensity of which was termed the ‘‘index cycle’’ to link variations of the warm air branch of the meridional mass circulation the westerly jet to cold air outbreaks in the pioneering and showed that changes of the index can be a precursor work of Namias (1950). for the cold air outbreaks in midlatitudes. They also Several promising precursors to winter cold air out- showed that there exist two dominant geographical breaks have also been found in the stratosphere. The patterns of temperature anomalies during the cold air works of Baldwin and Dunkerton (1999), Wallace discharge period (or 1–10 days after a stronger mass (2000), and Thompson et al. (2002) indicate that cold air circulation across 608N). One represents cold anomalies outbreaks tend to occur more frequently over the mid- mainly in the midlatitudes of both North America and latitudes in the period of 1–2 months after a weak Eurasia, and the other represents cold anomalies mainly stratospheric polar vortex event. Cai (2003) found that over only one of the two continents accompanied with cold surface temperature anomalies tend to take place abnormal warmth over the other continent. Yu et al. underneath the intrusion zone of high isentropic po- (2015) mainly focus on statistical evidence of the robust tential vorticity (IPV) into the troposphere from the relation between the strengthening of meridional mass stratosphere. Kolstad et al. (2010) found that cold tem- circulation across 608N and cold air outbreaks in the perature anomalies over the southeastern United States midlatitudes but do not examine the spatiotemporal tend to appear within 1–2 weeks after the peak dates of patterns of anomalous meridional mass circulation and weak vortex events, whereas the cold anomalies over Eurasia seem to appear at the inception of weak vortex events. In addition, continental-scale cold temperature 1 The poleward and equatorward branches of the meridional anomalies are correlated with the easterly phase of the mass circulation are defined in terms of the zonally integrated mass equatorial stratospheric quasi-biannual oscillation (e.g., fluxes. Since the zonally integrated mass fluxes are poleward in the Thompson et al. 2002; Cai 2003). upper isentropic layers and equatorward in lower isentropic layers, The pioneering work of Johnson (1989) and many they are also referred to as the warm and cold air branches in the subsequent studies [e.g., Cai and Shin (2014) and ref- literature (e.g., Cai and Shin 2014). Within each of the two branches, there exist both poleward warm airmass fluxes in some erences therein] established a hemisphere-wide single- longitudinal sectors and equatorward cold airmass fluxes in others. cell model for meridional mass circulation. The mass This is particularly true in the extratropics, where the meridional circulation is a thermally direct circulation that connects mass circulation is mainly driven by baroclinically amplifying waves. Unauthenticated | Downloaded 09/30/21 11:46 PM UTC 3216 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 72 TABLE 1. A list of the derived indices and variables. Derived indices and variables Variables needed for calculation Reference Isentropic mass u; us, Ps Pauluis et al. (2008) MF* y, u; ys, us, Ps Cai and Shin (2014) u_ u u_ u VF , ; s, s, Ps Yu et al. (2014) CMI y, u; ys, us, Ps Iwasaki et al. (2014) WB60N index MF at 608N Yu et al.
Recommended publications
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • Index of Authors Cited
    Index of Authors Cited Aagard, K. 641 Alford, J.J. 308 Apostolov, E.M. 665 Abbe, C. 226 Alissow, B.P. 226 Apps, M.J. 459 Abbs, D.J. 153 Aliu, Y.O. 164 Arakawa, H. 21, 114, 125, 260 Aber, J.D. 523 Allaby, M. 657 Arendt, A.A. 643 Abercromby, R. 703 Allan, R. 587 Arens, E. 164 Aberson, S.D. 243 Alldredge, L.R. 699 Arimoto, R. 6 Acevedo, O.C. 685 Allen, C.D. 177 Arkin, G.F. 804 Ackerman, B.S. 777 Allen, J. 625, 665 Arkin, P.A. 120, 266 Ackerman, T.P. 794 Allen, J.C. 318 Arking, A. 667 Ackley, S.F. 52 Allen, M.R. 163, 266, 546, 552 Armstrong, R.L. 662, 663, 804 Adams, G.A. 390 Allen, R.G. 16, 94, 373 Arnell, N. 242 Adams, J. 571, 679 Allen, R.J. 153 Arnfield, A.J. 177, 777 Adams, J.B. 793 Alley, R.B. 53, 427, 546, 571 Arnold, M. 643 Adams, M. 323 Allison, I. 54 Aron, R.H. 500 Adams, R. 323 Alvarado, L. 188 Aronson, R.B. 306 Adamson, R.S. 787 Alvarez, W. 793 Arrhenius, S. 508 Adger, W.N. 269 Amador, J. 188 Arrhenius, S.A. 460 Adler, P. 266 Amador, J.A. 189 Arritt, R.W. 164, 242 Adler, R.F. 266 Jamason, P.F. 242 Arya, S. Pal, 282 Adolphs, U. 52, 54 Ambrizzi, T 53 Arya, S.P. 31, 761 Agaponov, S.V. 699 Ambrose, S.H. 793, 794 Asami, O. 164 Agassiz, L. 387, 412 Ames, M. 740 Asaro, F.
    [Show full text]
  • Sensitivity to Resolution and Topography
    1DECEMBER 2019 V A R U O L O - C L A R K E E T A L . 8355 Characterizing the North American Monsoon in the Community Atmosphere Model: Sensitivity to Resolution and Topography ARIANNA M. VARUOLO-CLARKE School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, and Lamont-Doherty Earth Observatory, and Department of Earth and Environmental Sciences, Columbia University, New York, New York KEVIN A. REED Downloaded from http://journals.ametsoc.org/jcli/article-pdf/32/23/8355/4940054/jcli-d-18-0567_1.pdf by guest on 27 July 2020 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York BRIAN MEDEIROS National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 29 August 2018, in final form 25 August 2019) ABSTRACT This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.08 grid spacing and a high-resolution 0.258 grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.08 grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.258 grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon com- pared to the 1.08 counterpart.
    [Show full text]
  • Seasonal Climatology and Dynamical Mechanisms of Rainfall in the Caribbean
    Climate Dynamics (2019) 53:825–846 https://doi.org/10.1007/s00382-019-04616-4 Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean Carlos Martinez1,2 · Lisa Goddard2 · Yochanan Kushnir1 · Mingfang Ting1 Received: 22 October 2018 / Accepted: 4 January 2019 / Published online: 14 January 2019 © The Author(s) 2019 Abstract The Caribbean is a complex region that heavily relies on its rainfall cycle for its economic and societal needs. This makes the Caribbean especially susceptible to hydro-meteorological disasters (i.e. droughts and floods). Previous studies have investigated the seasonal cycle of rainfall in the Caribbean with monthly or longer resolutions that often mask the seasonal transitions and regional differences of rainfall. This has resulted in inconsistent findings on the seasonal cycle. In addition, the mechanisms that shape the climatological rainfall cycle in the region are not fully understood. To address these problems, this study conducts: (i) a principal component analysis of the annual cycle of precipitation across 38 Caribbean stations using daily observed precipitation data; and, (ii) a moisture budget analysis for the Caribbean, using the ERA-Interim Reanalysis. This study finds that the seasonal cycle of rainfall in the Caribbean hinges on three main facilitators of moisture convergence: the Eastern Pacific ITCZ, the Atlantic ITCZ, and the western flank of the North Atlantic Subtropical High (NASH). The Atlantic Warm Pool and Caribbean Low-Level Jet modify the extent of moisture provided by these main facilitators. The expansion and contraction of the western flank of NASH generate the bimodal pattern of the precipitation annual cycle in the northwestern Caribbean, central Caribbean, and with the Eastern Pacific ITCZ the western Caribbean.
    [Show full text]
  • Changes and Variability in Centres of Action of the Atmosphere in the Northern Hemisphere in January and July
    IGU Regional Conference, Kraków, Poland 18-22 August 2014 IGU 2014 Book of Abstracts IGU2014 – 1175 Changes and variability in centres of action of the atmosphere in the Northern Hemisphere in January and July Falarz M. Department of Climatology, Faculty of Earth Sciences, University of Silesia There were analysed long-term changes and variability of centres of action of the atmosphere (CAA) in the Northern Hemisphere in January and July in the second half of the 20th century. The geographical coordinates, baric extent and the atmospheric pressure value in the centre of each baric system (Icelandic Low (IL), Azores High (AH), Siberian High (SH), North American High (NAH), Aleutian Low (AL) and Hawaii High (HH) in January, IL, AH, Siberian Low (SL), HH in July) were read in maps of mean monthly sea level pressure basing on gridded 2,5°x 2,5 data of Reanalysis Project of the National Centre for Atmospheric Research for the period 1948-2003. The baric extent of the CAA was defined as the absolute value of the difference between the sea level pressure value in the centre of baric system and the value of pressure of the last closed isobar not including the other CAA. There were investigated trends of each CAA features and these of differences of sea level pressure values in the centres of AH and IL (D1), SH or SL and AH (D2), SH or SL and IL (D3), AH and HH (D4), HH and AL (D5), IL and AL (D6). Moreover indices of location changing of CAA centres in 4 directions (E-W/W-E, N-S/S-N, SW-NE/NE-SW, NW-SE/SE-NW) were created and analysed in the investigated period.
    [Show full text]
  • Note to Users
    NOTE TO USERS Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was scanned as received. 61,81 , & 82 This reproduction is the best copy available. UMI UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE INTRASEASONAL VARIABILITY OF THE NORTH AMERICAN MONSOON OVER ARIZONA A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Pamela Lynn Heinselman Norman, Oklahoma 2004 UMI Number: 3117196 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3117196 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 © Copyright by Pamela Lynn Heinselman 2004 All Rights Reserved INTRASEASONAL VARIABILITY IN THE NORTH AMERICAN MONSOON OVER ARIZONA A Dissertation APPROVED FOR THE SCHOOL OF METEOROLOGY BY Dr. Frederick Carr . ^ r. David Sch Dr. Michael Richman D^. Alan Sfiapiro . David S î^s fu d /I Dr. May Yuan Acknowledgments This dissertation arose from personal perseverance and support and encouragement from my Ph.D.
    [Show full text]
  • Middle School Round 17 Page 1 ROUND 17 TOSS-UP 1) PHYSICAL SCIENCE Multiple Choice J. J. Thomson Primarily Used What Instru
    ROUND 17 TOSS-UP 1) PHYSICAL SCIENCE Multiple Choice J. J. Thomson primarily used what instrument to discover electrons: W) cathode ray tube X) torsion balance Y) interferometer Z) mass spectrometer ANSWER: W) CATHODE RAY TUBE BONUS 1) PHYSICAL SCIENCE Multiple Choice In the early 20th century, physicists were unknowingly fissioning uranium by which of the following methods: W) bombardment with neutrons X) combining heavy isotopes of plutonium Y) exposing uranium to high temperatures Z) exposing heavy elements to immense pressure using explosive devices in heavy-walled containment vessels ANSWER: W) BOMBARDMENT WITH NEUTRONS TOSS-UP 2) EARTH SCIENCE Multiple Choice It is the fate of all lakes and ponds on Earth to eventually become dry lands, bogs, marshes, or fens, through a process called: W) fossilization X) eutrophication Y) mineralization Z) oligotrophy ANSWER: X) EUTROPHICATION BONUS 2) EARTH SCIENCE Short Answer Which one of the following 4 terms does not belong with the others: zone of accumulation; zone of wastage; snow line; frontal wedging ANSWER: FRONTAL WEDGING (Solution: frontal wedging is a meteorological term, others are glacial terms) Middle School Round 17 Page 1 TOSS-UP 3) MATH Multiple Choice The formula, SA = s2 + 2sl, where s is one side of the base and l is the slant height, is used to calculate the surface area of which of the following: W) right circular cone X) right pentagonal prism Y) rectangular solid Z) right square pyramid ANSWER: Z) RIGHT SQUARE PYRAMID BONUS 3) MATH Short Answer Giving your answer rounded
    [Show full text]
  • Classification and Description of World Formation Types
    United States Department of Agriculture Classification and Description of World Formation Types Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, David Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Gene Fults, Eileen Helmer Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-346 August 2016 Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. 2016. Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. Abstract An ecological vegetation classification approach has been developed in which a combi- nation of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classifica- tion efforts. The classification structure was largely developed by the Hierarchy Revisions Working Group (HRWG), which contained members from across the Americas. The HRWG was authorized by the U.S. Federal Geographic Data Committee (FGDC) to devel- op a revised global vegetation classification to replace the earlier versions of the structure that guided the U.S. National Vegetation Classification and International Vegetation Classification, which formerly relied on the UNESCO (1973) global classification (see FGDC 1997; Grossman and others 1998). This document summarizes the develop- ment of the upper formation levels. We first describe the history of the Hierarchy Revisions Working Group and discuss the three main parameters that guide the clas- sification—it focuses on vegetated parts of the globe, on existing vegetation, and includes (but distinguishes) both cultural and natural vegetation for which parallel hierarchies are provided.
    [Show full text]
  • The Changing Relationship Between ENSO and Its Extratropical
    www.nature.com/scientificreports OPEN The changing relationship between ENSO and its extratropical response patterns Received: 14 November 2018 Nicholas Soulard 1, Hai Lin 2 & Bin Yu 3 Accepted: 8 April 2019 El Niño-Southern Oscillation (ENSO) can infuence Northern Hemisphere seasonal conditions through Published: xx xx xxxx its interaction with the Pacifc-North American pattern (PNA) and the Tropical Northern Hemisphere pattern (TNH). Possibly due to Earth’s changing climate, the variability of ENSO, as well as the zonal location of its sea-surface temperature (SST) anomaly, is changing. Along with this, the strength and location of the jet, in which these atmospheric patterns are embedded, are changing. Using a simple tracking algorithm we create a continuous time series for the zonal location of ENSO’s SST anomaly, and show that the relationship between ENSO and the PNA is linearly sensitive to this location, while its relationship with the TNH is not. ENSO’s relationship with both the TNH and PNA is shown to be strongly infuenced by the position of the Pacifc jet stream. The ENSO-TNH relationship is found to be linked to phase changes of the Atlantic Multidecadal Oscillation, and the resulting changes in SST and jet speed. El Niño-Southern Oscillation (ENSO) is a major driver for extratropical Northern Hemisphere interannual vari- ability, especially during the winter months. By inducing convection anomalies in the tropics, it can force atmos- pheric circulation patterns similar to the Pacifc North American pattern (PNA)1, and to the Tropical Northern Hemisphere pattern (TNH)2,3. Te ENSO related sea surface temperature (SST) anomaly in the tropical Pacifc sets up Rossby waves that propagate into the mid-latitudes, the structure of which is dependent on the location of ENSO’s SST anomaly, as well as the mean zonal fow4–7.
    [Show full text]
  • Toronto Conference Workshop November 17-22, 1975
    Living With Climatic Change: Proceedings, Toronto Conference Workshop, November 17-22, 1975 Authors Beltzner, Klaus P. Publisher Science Council of Canada (Ottawa, Canada) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 24/09/2021 17:26:03 Link to Item http://hdl.handle.net/10150/303430 Ab Vea PROCEEDINGS TORONTO CONFERENCE WORKSHOP NOVEMBER 17-22, 1975. SCIENCE COUNCIL SU OF CANADA ADDITIONAL COPIES OF THIS PUBLICATION AVAILABLE ON REQUEST FROM SCIENCE COUNCIL OF CANADA 150 KENT STREET OTTAWA, ONTARIO KIP 5P4 CANADA Cover photo of Western Hemisphere reproduced courtesy of NASA. LIVING WITH CLIMATIC CHANGE The Conference and Proceedings were financed by the Science Council of Canada 150 Kent Street Ottawa, K1P 5P4, Canada Chairman Dr. Patrick D. McTaggar t -Cowan Canadian Meteorological Society and past Executive Director, Science Council of Canada Co- Sponsors American Meteorological Society, Canadian Meteorological Society, Geophysical Institute of the National Autonomous University of Mexico, Mexican Geophysical Union, Science Council of Canada. Edited by Klaus Beltzner March 1976 1 LIVING WITH CLIMATIC CHANGE PROCEEDINGS Toronto, Canada, Conference held November 17 -22, 1975. TABLE OF CONTENTS FIGURES AND TABLES 5 FOREWORD 7 PREFACE 9 ACKNOWLEDGEMENTS 13 CHAPTER 1 - PAST CLIMATE CHANGES IN NORTH AMERICA 15 1.1 - Climatic variability 16 1.2 - Short Period Variations 16 1..3 - Annual and Decadal Variations 18 1.4 - Changes over Centuries and Millenia 20 1.5 - Historical and Geophysical Evidence
    [Show full text]
  • Classification and Description of World Formation Types
    United States Department of Agriculture Classification and Description of World Formation Types Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, David Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Gene Fults, Eileen Helmer Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-346 August 2016 Faber-Langendoen, D.; Keeler, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. 2016. Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. Abstract An ecological vegetation classification approach has been developed in which a combi- nation of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classifica- tion efforts. The classification structure was largely developed by the Hierarchy Revisions Working Group (HRWG), which contained members from across the Americas. The HRWG was authorized by the U.S. Federal Geographic Data Committee (FGDC) to devel- op a revised global vegetation classification to replace the earlier versions of the structure that guided the U.S. National Vegetation Classification and International Vegetation Classification, which formerly relied on the UNESCO (1973) global classification (see FGDC 1997; Grossman and others 1998). This document summarizes the develop- ment of the upper formation levels. We first describe the history of the Hierarchy Revisions Working Group and discuss the three main parameters that guide the clas- sification—it focuses on vegetated parts of the globe, on existing vegetation, and includes (but distinguishes) both cultural and natural vegetation for which parallel hierarchies are provided.
    [Show full text]
  • Abstract Introduction
    Downloaded from SAE International by Kristopher Bedka, Monday, June 10, 2019 2019-01-1953 Published 10 Jun 2019 Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements Kristopher Bedka NASA Langley Research Center Christopher Yost Science Systems and Applications, Inc. Louis Nguyen NASA Langley Research Center J. Walter Strapp Met Analytics, Inc. Thomas Ratvasky NASA John Glenn Research Center Konstantin Khlopenkov, Benjamin Scarino, Rajendra Bhatt, Douglas Spangenberg, and Rabindra Palikonda Science Systems and Applications, Inc. Citation: Bedka, K., Yost, C., Nguyen, L., Strapp, J.W. et al., “Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements,” SAE Technical Paper 2019-01-1953, 2019, doi:10.4271/2019-01-1953. Abstract proximity (≤ 40 km) to convective updrafts were most likely ecent studies have found that high mass concentra- to contain high TWC (TWC ≥ 1 g m-3). These parameters are tions of ice particles in regions of deep convective detected using automated algorithms and combined to Rstorms can adversely impact aircraft engine and air generate a HIWC probability (PHIWC) product at the NASA probe (e.g. pitot tube and air temperature) performance. Radar Langley Research Center (LaRC). Seven NASA DC-8 aircraft reflectivity in these regions suggests that they are safe for flights were conducted in August 2018 over the Gulf of Mexico aircraft penetration, yet high ice water content (HIWC) is still and the tropical Pacific Ocean during the HIWC Radar II field encountered. The aviation weather community seeks addi- campaign.
    [Show full text]