Investigating the North American Monsoon in Arizona and Teaching Climate Science on the Tohono O'odham Nation

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the North American Monsoon in Arizona and Teaching Climate Science on the Tohono O'odham Nation Southwest Climate Research and Education: Investigating the North American Monsoon in Arizona and Teaching Climate Science on the Tohono O'odham Nation Item Type text; Electronic Dissertation Authors Kahn-Thornbrugh, Casey Curtiss Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 18:44:36 Link to Item http://hdl.handle.net/10150/301701 SOUTHWEST CLIMATE RESEARCH AND EDUCATION: INVESTIGATING THE NORTH AMERICAN MONSOON IN ARIZONA AND TEACHING CLIMATE SCIENCE ON THE TOHONO O’ODHAM NATION By Casey Curtiss Kahn-Thornbrugh ________________________ Copyright © Casey Curtiss Thornbrugh 2013 A Dissertation Submitted to the Faculty of the SCHOOL OF GEOGRAPHY AND DEVELOPMENT In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2013 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Casey C. Kahn-Thornbrugh entitled Southwest Climate Research and Education: Investigating the North American Monsoon in Arizona and Teaching Climate Science on the Tohono O’odham Nation and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________ Date: 3/29/2013 Dr. Andrew C. Comrie _______________________________________________________ Date: 3/29/2013 Dr. Joseph G. Hiller _______________________________________________________ Date: 3/29/2013 Dr. Stuart E. Marsh _______________________________________________________ Date: 3/29/2013 Dr. Nancy J. Parezo _______________________________________________________ Date: 3/29/2013 Dr. Stephen R. Yool Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. _______________________________________________________ Date: 3/29/2013 Dissertation Director: Dr. Andrew C. Comrie 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: Casey Curtiss Kahn-Thornbrugh 4 ACKNOWLEDGEMENTS There are many who deserve a proper acknowledgement for their assistance and support as I have completed this journey through my doctoral program and in the completion of this dissertation. I would first and foremost, like to extend a special gratitude to my advisor Dr. Andrew Comrie for his support, advice, and guidance along the way. Dr. Comrie has supported me through the dissertation process and a project that deals with somewhat disparate topics. Although the human and societal aspects have been considered for quite some time in climate science, bringing in the historical experiences of Indigenous peoples with education, academic research, and considering their unique epistemologies while doing the climate science is a formidable challenge. Dr. Comrie has stood by my side along the path less traveled. I would also like to thank Dr. Selso Villegas (Tohono O’odham Nation Water Resources Department), a Tohono O’odham mentor of mine and a role model for myself and other Native students in science who must balance our tribal values, epistemologies, and Indigenous knowledge with our training, expertise, and knowledge in Western science. I am also grateful to the other members of my committee – Dr. Joseph Hiller (American Indian Studies) for his support and for keeping me grounded while at the same time challenging me to make a positive impact in Native communities and in the tribal colleges, Dr. Steve Yool and Dr. Stuart Marsh (School of Geography & Development) for their enthusiasm for the curriculum project in this dissertation, and for being role models to me as they are both very thoughtful and dynamic instructors of physical geography, and to Dr. Nancy Parezo (American Indian Studies) for sharing her knowledge of American Indian history and education as well as her perspectives and all her recommedations for strengthening this dissertation. For the North American Monsoon System aspect of this dissertation I am grateful to Dr. Stephen Bieda and the other co-authors on the North American Monsoon paper – Dr. Andrew Comrie, Dr. David Adams, Dr. Michael Crimmins, Lee Byerle, and John “JJ” Brost. I am especially grateful to Dr. Bieda for keeping me intellectually active in the monsoon research world: working with you has been both a privilege and a pleasure. 5 I must thank the community advisory board members, other community members, and educators who have guided me along in the curriculum development aspect of this dissertation. Special thanks go to Eugene Enis, Felicia Nuñez, and Tony Burrell from the San Xavier District, Andrea Ahmed and Teresa Vavages from the Sells District, Derrick Patten and Francisco Jose from the Schuk Toak District, Jana Montana from the San Lucy District, and Carol Lyons from the San Lucy District Education Center. I am grateful to all of you for your enthusiasm for the project, volunteering your time to meet with me, and your constant support and encouragement of the Tohono O’odham college students who also participated in the curriculum development project. A special thank you to the Tohono O’odham Community College (TOCC) faculty and students who also assisted with the curriculum and its activities: TOCC Tohono O’odham history, culture and language instructors Phillip Miguel, Ron Geronimo, and the late Danny Lopez; TOCC student interns Duran Andrews, Sara Francisco, Hilario Pio-Martinez, and Matthew Saraficio. Also, a special thanks to Dr. Ofelia Zepeda for welcoming me in her Tohono O’odham language class, and for assisting me with O’odham language terms. Finally I must thank all those who contributed resources for the “activities” integrated into this dissertation research – a TOCC student internship and weather and climate workshops offered on the Tohono O’odham Nation. I would like to give special thanks to Susan Brew, Dr. Barron Orr, Chandra Holifield Collins, and the University of Arizona NASA Space Grant Office staff for supporting a University of Arizona and TOCC partnership and supporting the TOCC student internship. I would also like to thank Dr. Rajul Pandya and the Sparks program staff at the University Corporation for Atmospheric Research (UCAR) for their support of the TOCC student internship and their recognition of the need for more educational opportunities for Native students. I would like to thank Dr. Katy Garmany and the Kitt Peak National Observatory (KPNO) staff for always welcoming my students and me, and her effort to remind those visiting the observatory that they are on a mountain held sacred by the Tohono O’odham. I also want to thank Dr. Maria Teresa Velez, Donna Treloar, and the Alfred P. Sloan Foundation Indigenous Graduate Partnership students for supporting me throughout my doctoral program. 6 DEDICATIONS To my wife Carmella Kahn-Thornbrugh for keeping my life in balance throughout my doctoral program: You are my best friend and partner in science and keeping our tribal traditions and knowledge alive. I would not have completed this journey without you. To my parents, Cheryl and Curtiss, and my sisters Shawna and Lisa, for supporting my scientific interests as a child and teaching me the values of patience and respect. To my Dad and Uncle Thomas for grilling me with practice questions on my dissertation. To my Uncle Chuckie (Mashpee Wampanoag Tribe Natural Resources Department) in Mashpee for sharing his wisdom on our Wampanoag history and stories, and for keeping me connected to “home.” To my late Uncle Laurie, you will always be remembered. To my other family, my in-laws: thank you to my mother-in-law, Lorraine for supporting me with wisdom, laughter, and happiness these past few years. To Belin and Leona Tsinnajinnie: thank you for many years of friendship, intellectual growth, and joy. And lastly, thank you to the members of the Pumpkin Vyne Singers drum group who have given me much peace of mind and friendship while I have lived in Tucson during my program. No matter where life should lead me, know I will always be a part of your family. 7 TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………………...12 ABSTRACT……………………………………………………...……….…………...…13 CHAPTER 1 – INTRODUCTION………………...…………………….………………15 Explanation of the Issue……...………………………………………..……..……….15 Approach……………………………...………………………………………………29 Organization of the Dissertation…….……………………………………..…………34 CHAPTER 2 – PRESENT STUDY……………………………………………………...38 Interannual Variability of the NAMS and Climate Change………………...……...…38 Climate-based Research in Indigenous Communities………….…….………...…….40
Recommended publications
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • 4.2 Overview of the North American Monsoon Experiment (Name)
    4.2 OVERVIEW OF THE NORTH AMERICAN MONSOON EXPERIMENT (NAME) Wayne Higgins* Climate Prediction Center, Camp Springs, MD ABSTRACT 1. OBJECTIVES AND RELEVANCE Recent progress on the North American The North American Monsoon Experiment Monsoon Experiment (NAME) is reviewed, with (NAME) is an internationally coordinated, joint emphasis on plans for a NAME Field Campaign CLIVAR-GEWEX process study aimed at during the NH summer of 2004. NAME is an determining the sources and limits of predictability of internationally coordinated, joint CLIVAR-GEWEX warm season precipitation over North America. It process study aimed at determining the sources and focuses on observing and understanding the key limits of predictability of warm season precipitation components of the North American Monsoon over North America. It hypothesizes that the North System (NAMS) and their variability within the American Monsoon System (NAMS) provides a context of the evolving land surface-atmosphere- physical basis for determining the degree of ocean annual cycle. It seeks improved understanding predictability of warm season precipitation over the of the key physical processes that must be region. NAME employs a multi-scale (tiered) parameterized for improved simulations and approach with focused activities in the core monsoon predictions with coupled models. NAME employs a region (Tier 1), on the regional-scale (Tier 2) and on multi-scale (tiered) approach (Fig. 1) with focused the continental-scale (Tier 3). NAME’s objectives monitoring, diagnostic and modeling activities in the are to promote a better understanding and more core monsoon region, on the regional-scale and on realistic simulation of: warm season convective the continental-scale.
    [Show full text]
  • Chapter 7: Circulation and the Atmosphere
    1/27/2016 Chapter 7: Circulation And The Atmosphere Highly integrated wind system Main Circulation Currents: series of deep rivers of air encircling the planet Various perturbations or vortices (hurricanes, tornados, cyclones) Scales of Atmospheric Motion: -based on time and space -Macorscale: encompass global wind patterns (westerlies, trades) through hurricanes (hours on up) -Mesoscale: Tornados, thunder storms, local winds (minutes-hours) -Microscale: wind gusts, dust devils (seconds – minutes) 1 1/27/2016 Macorscale Planetary-scale: global winds stable for weeks to months Synoptic-scale: weather map scale migrating cyclones/anticyclones, hurricanes days-weeks, 100s – 1000s km Mesoscale: Small disturbances < 100 km, minutes-hours Travel embedded within the larger macroscale circulation ex. ((thunderstorm) hurricane) westerlies) 2 1/27/2016 Microscale: wind gusts, dust devils (seconds – minutes) Mesoscale All Winds: arise from pressure gradients resulting from unequal heating of the surface Local Winds: arise from local pressure gradients Sea & Land Breeze Mountain & Valley Breeze Chinook Winds Katabatic Winds Country Breeze The Haboob 3 1/27/2016 Mesoscale Sea Breeze: air over land expands as heated during day, develop L temperature can decrease 5-10 deg. C 30 – 60 miles inland Mesoscale Land Breeze: air over land cools quicker during the evening, develop H result in reverse circulation offshore wind 4 1/27/2016 Mesoscale Valley Breeze: Slopes warm faster than air at same elevation over the valley Flow from the valley to the mountains Most common in summer, intense heating Mesoscale Mountain Breeze: Slopes cool faster after sundown Flow from the mountains to the valley Most common in winter, radiation cooling 5 1/27/2016 Mesoscale Chinook Winds: Warm dry winds on the leeward slopes of mountains Adiabatic warming Eastward slopes of Rockies Santa-Ana Winds, Southern California Mesoscale Katabatic (Fall) Winds: Cold dense air over highland area Descends, displacing less dense air Attain velocities capable of destruction ex.
    [Show full text]
  • Index of Authors Cited
    Index of Authors Cited Aagard, K. 641 Alford, J.J. 308 Apostolov, E.M. 665 Abbe, C. 226 Alissow, B.P. 226 Apps, M.J. 459 Abbs, D.J. 153 Aliu, Y.O. 164 Arakawa, H. 21, 114, 125, 260 Aber, J.D. 523 Allaby, M. 657 Arendt, A.A. 643 Abercromby, R. 703 Allan, R. 587 Arens, E. 164 Aberson, S.D. 243 Alldredge, L.R. 699 Arimoto, R. 6 Acevedo, O.C. 685 Allen, C.D. 177 Arkin, G.F. 804 Ackerman, B.S. 777 Allen, J. 625, 665 Arkin, P.A. 120, 266 Ackerman, T.P. 794 Allen, J.C. 318 Arking, A. 667 Ackley, S.F. 52 Allen, M.R. 163, 266, 546, 552 Armstrong, R.L. 662, 663, 804 Adams, G.A. 390 Allen, R.G. 16, 94, 373 Arnell, N. 242 Adams, J. 571, 679 Allen, R.J. 153 Arnfield, A.J. 177, 777 Adams, J.B. 793 Alley, R.B. 53, 427, 546, 571 Arnold, M. 643 Adams, M. 323 Allison, I. 54 Aron, R.H. 500 Adams, R. 323 Alvarado, L. 188 Aronson, R.B. 306 Adamson, R.S. 787 Alvarez, W. 793 Arrhenius, S. 508 Adger, W.N. 269 Amador, J. 188 Arrhenius, S.A. 460 Adler, P. 266 Amador, J.A. 189 Arritt, R.W. 164, 242 Adler, R.F. 266 Jamason, P.F. 242 Arya, S. Pal, 282 Adolphs, U. 52, 54 Ambrizzi, T 53 Arya, S.P. 31, 761 Agaponov, S.V. 699 Ambrose, S.H. 793, 794 Asami, O. 164 Agassiz, L. 387, 412 Ames, M. 740 Asaro, F.
    [Show full text]
  • Sensitivity to Resolution and Topography
    1DECEMBER 2019 V A R U O L O - C L A R K E E T A L . 8355 Characterizing the North American Monsoon in the Community Atmosphere Model: Sensitivity to Resolution and Topography ARIANNA M. VARUOLO-CLARKE School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, and Lamont-Doherty Earth Observatory, and Department of Earth and Environmental Sciences, Columbia University, New York, New York KEVIN A. REED Downloaded from http://journals.ametsoc.org/jcli/article-pdf/32/23/8355/4940054/jcli-d-18-0567_1.pdf by guest on 27 July 2020 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York BRIAN MEDEIROS National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 29 August 2018, in final form 25 August 2019) ABSTRACT This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.08 grid spacing and a high-resolution 0.258 grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.08 grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.258 grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon com- pared to the 1.08 counterpart.
    [Show full text]
  • Seasonal Climatology and Dynamical Mechanisms of Rainfall in the Caribbean
    Climate Dynamics (2019) 53:825–846 https://doi.org/10.1007/s00382-019-04616-4 Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean Carlos Martinez1,2 · Lisa Goddard2 · Yochanan Kushnir1 · Mingfang Ting1 Received: 22 October 2018 / Accepted: 4 January 2019 / Published online: 14 January 2019 © The Author(s) 2019 Abstract The Caribbean is a complex region that heavily relies on its rainfall cycle for its economic and societal needs. This makes the Caribbean especially susceptible to hydro-meteorological disasters (i.e. droughts and floods). Previous studies have investigated the seasonal cycle of rainfall in the Caribbean with monthly or longer resolutions that often mask the seasonal transitions and regional differences of rainfall. This has resulted in inconsistent findings on the seasonal cycle. In addition, the mechanisms that shape the climatological rainfall cycle in the region are not fully understood. To address these problems, this study conducts: (i) a principal component analysis of the annual cycle of precipitation across 38 Caribbean stations using daily observed precipitation data; and, (ii) a moisture budget analysis for the Caribbean, using the ERA-Interim Reanalysis. This study finds that the seasonal cycle of rainfall in the Caribbean hinges on three main facilitators of moisture convergence: the Eastern Pacific ITCZ, the Atlantic ITCZ, and the western flank of the North Atlantic Subtropical High (NASH). The Atlantic Warm Pool and Caribbean Low-Level Jet modify the extent of moisture provided by these main facilitators. The expansion and contraction of the western flank of NASH generate the bimodal pattern of the precipitation annual cycle in the northwestern Caribbean, central Caribbean, and with the Eastern Pacific ITCZ the western Caribbean.
    [Show full text]
  • Changes and Variability in Centres of Action of the Atmosphere in the Northern Hemisphere in January and July
    IGU Regional Conference, Kraków, Poland 18-22 August 2014 IGU 2014 Book of Abstracts IGU2014 – 1175 Changes and variability in centres of action of the atmosphere in the Northern Hemisphere in January and July Falarz M. Department of Climatology, Faculty of Earth Sciences, University of Silesia There were analysed long-term changes and variability of centres of action of the atmosphere (CAA) in the Northern Hemisphere in January and July in the second half of the 20th century. The geographical coordinates, baric extent and the atmospheric pressure value in the centre of each baric system (Icelandic Low (IL), Azores High (AH), Siberian High (SH), North American High (NAH), Aleutian Low (AL) and Hawaii High (HH) in January, IL, AH, Siberian Low (SL), HH in July) were read in maps of mean monthly sea level pressure basing on gridded 2,5°x 2,5 data of Reanalysis Project of the National Centre for Atmospheric Research for the period 1948-2003. The baric extent of the CAA was defined as the absolute value of the difference between the sea level pressure value in the centre of baric system and the value of pressure of the last closed isobar not including the other CAA. There were investigated trends of each CAA features and these of differences of sea level pressure values in the centres of AH and IL (D1), SH or SL and AH (D2), SH or SL and IL (D3), AH and HH (D4), HH and AL (D5), IL and AL (D6). Moreover indices of location changing of CAA centres in 4 directions (E-W/W-E, N-S/S-N, SW-NE/NE-SW, NW-SE/SE-NW) were created and analysed in the investigated period.
    [Show full text]
  • Note to Users
    NOTE TO USERS Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was scanned as received. 61,81 , & 82 This reproduction is the best copy available. UMI UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE INTRASEASONAL VARIABILITY OF THE NORTH AMERICAN MONSOON OVER ARIZONA A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Pamela Lynn Heinselman Norman, Oklahoma 2004 UMI Number: 3117196 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3117196 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 © Copyright by Pamela Lynn Heinselman 2004 All Rights Reserved INTRASEASONAL VARIABILITY IN THE NORTH AMERICAN MONSOON OVER ARIZONA A Dissertation APPROVED FOR THE SCHOOL OF METEOROLOGY BY Dr. Frederick Carr . ^ r. David Sch Dr. Michael Richman D^. Alan Sfiapiro . David S î^s fu d /I Dr. May Yuan Acknowledgments This dissertation arose from personal perseverance and support and encouragement from my Ph.D.
    [Show full text]
  • Middle School Round 17 Page 1 ROUND 17 TOSS-UP 1) PHYSICAL SCIENCE Multiple Choice J. J. Thomson Primarily Used What Instru
    ROUND 17 TOSS-UP 1) PHYSICAL SCIENCE Multiple Choice J. J. Thomson primarily used what instrument to discover electrons: W) cathode ray tube X) torsion balance Y) interferometer Z) mass spectrometer ANSWER: W) CATHODE RAY TUBE BONUS 1) PHYSICAL SCIENCE Multiple Choice In the early 20th century, physicists were unknowingly fissioning uranium by which of the following methods: W) bombardment with neutrons X) combining heavy isotopes of plutonium Y) exposing uranium to high temperatures Z) exposing heavy elements to immense pressure using explosive devices in heavy-walled containment vessels ANSWER: W) BOMBARDMENT WITH NEUTRONS TOSS-UP 2) EARTH SCIENCE Multiple Choice It is the fate of all lakes and ponds on Earth to eventually become dry lands, bogs, marshes, or fens, through a process called: W) fossilization X) eutrophication Y) mineralization Z) oligotrophy ANSWER: X) EUTROPHICATION BONUS 2) EARTH SCIENCE Short Answer Which one of the following 4 terms does not belong with the others: zone of accumulation; zone of wastage; snow line; frontal wedging ANSWER: FRONTAL WEDGING (Solution: frontal wedging is a meteorological term, others are glacial terms) Middle School Round 17 Page 1 TOSS-UP 3) MATH Multiple Choice The formula, SA = s2 + 2sl, where s is one side of the base and l is the slant height, is used to calculate the surface area of which of the following: W) right circular cone X) right pentagonal prism Y) rectangular solid Z) right square pyramid ANSWER: Z) RIGHT SQUARE PYRAMID BONUS 3) MATH Short Answer Giving your answer rounded
    [Show full text]
  • North American Monsoon Precipitation Reconstructed from Tree-Ring Latewood Daniel Griffin,1,2 Connie A
    GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–5, doi:10.1002/grl.50184, 2013 North American monsoon precipitation reconstructed from tree-ring latewood Daniel Griffin,1,2 Connie A. Woodhouse,1,2 David M. Meko,1 David W. Stahle,3 Holly L. Faulstich,1,2 Carlos Carrillo,4 Ramzi Touchan,1 Christopher L. Castro,4 and Steven W. Leavitt1 Received 30 November 2012; revised 18 January 2013; accepted 21 January 2013. [1] The North American monsoon is a major focus of paleoclimatology [e.g., Asmerom et al., 2007; Barron et al., modern and paleoclimate research, but relatively little is 2012], but relatively little is known about pre-instrumental known about interannual- to decadal-scale monsoon monsoon variability at interannual to decadal timescales. moisture variability in the pre-instrumental era. This study Understanding the plausible range of monsoon variability is draws from a new network of subannual tree-ring latewood critical because model projections of monsoon response to width chronologies and presents a 470-year reconstruction anthropogenic greenhouse gas forcing remain unclear of monsoon (June–August) standardized precipitation for [Castro et al., 2012; Bukovsky and Mearns, 2012; Cook southwestern North America. Comparison with an and Seager, 2013]. The American Southwest has a rich independent reconstruction of cool-season (October–April) history of dendroclimatology, but the vast majority of tree-ring standardized precipitation indicates that southwestern reconstructions from the region reflect only cool-season or decadal droughts of the last five centuries were characterized annual-scale moisture variability. This is epitomized by the not only by cool-season precipitation deficits but also by North American Drought Atlas, which, for the Southwest, concurrent failure of the summer monsoon.
    [Show full text]
  • In This Paper We Review Evidence for Climatic Variability Across the North American Monsoon (NAM) Region Over the Holocene and C
    Aberystwyth University The Holocene history of the North American Monsoon: 'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity Metcalfe, Sarah E.; Barron, John A.; Davies, Sarah J. Published in: Quaternary Science Reviews DOI: 10.1016/j.quascirev.2015.04.004 Publication date: 2015 Citation for published version (APA): Metcalfe, S. E., Barron, J. A., & Davies, S. J. (2015). The Holocene history of the North American Monsoon: 'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity. Quaternary Science Reviews, 120, 1-27. https://doi.org/10.1016/j.quascirev.2015.04.004 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 29. Sep. 2021 The Holocene history of the North American Monsoon: ’known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity Sarah E.
    [Show full text]
  • Classification and Description of World Formation Types
    United States Department of Agriculture Classification and Description of World Formation Types Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, David Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Gene Fults, Eileen Helmer Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-346 August 2016 Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. 2016. Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. Abstract An ecological vegetation classification approach has been developed in which a combi- nation of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classifica- tion efforts. The classification structure was largely developed by the Hierarchy Revisions Working Group (HRWG), which contained members from across the Americas. The HRWG was authorized by the U.S. Federal Geographic Data Committee (FGDC) to devel- op a revised global vegetation classification to replace the earlier versions of the structure that guided the U.S. National Vegetation Classification and International Vegetation Classification, which formerly relied on the UNESCO (1973) global classification (see FGDC 1997; Grossman and others 1998). This document summarizes the develop- ment of the upper formation levels. We first describe the history of the Hierarchy Revisions Working Group and discuss the three main parameters that guide the clas- sification—it focuses on vegetated parts of the globe, on existing vegetation, and includes (but distinguishes) both cultural and natural vegetation for which parallel hierarchies are provided.
    [Show full text]