The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle International Journal of Molecular Sciences Article The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy Mikhail V. Dubinin 1,* , Eugeny Yu. Talanov 2, Kirill S. Tenkov 1, Vlada S. Starinets 1,2, Natalia V. Belosludtseva 2 and Konstantin N. Belosludtsev 1,3 1 Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; [email protected] (K.S.T.); [email protected] (V.S.S.); [email protected] (K.N.B.) 2 Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; [email protected] (E.Y.T.); [email protected] (N.V.B.) 3 Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-987-701-0437 Received: 27 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice. Keywords: Duchenne muscular dystrophy; skeletal muscle; deflazacort; mitochondria; Ca2+ uniporter; mitochondrial permeability transition 1. Introduction Duchenne muscular dystrophy (DMD) is the most prevalent muscular dystrophy afflicting ~1 in 3500–5000 live born males [1,2]. Regarded as a debilitating and fatal skeletal muscle disease, DMD is characterised by muscular weakness, exercise intolerance, and progressive deterioration of skeletal muscle. DMD is caused by large deletions and small forms of other mutations (deletions, duplications, insertions, and substitutions) in the dystrophin gene located on the short arm of the X-chromosome. The protein encoded by this gene is involved in the formation of a complex functional network (the so-called dystrophin-associated protein complex) which ensures the integrity and rigidity of muscle fibers. However, dystrophin deficiency and secondary reduction of these glycoproteins [3] render the myoctes and their fibers more susceptible to damage as they become structurally unstable and exceedingly porous to the extracellular environment. As a result, excessive Ca2+ influx, Int. J. Mol. Sci. 2020, 21, 8763; doi:10.3390/ijms21228763 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 18 Int. J. Mol. Sci. 2020, 21, 8763 2 of 18 Ca2+ influx, poor Ca2+ handling, activation of proteases/lipases, and mitochondrial Ca2+ overload poorprecede Ca2 muscle+ handling, degeneration activation [4–7]. of proteases While /thelipases, exact and underlying mitochondrial pathomechanisms Ca2+ overload still precede require muscle more degenerationresearch, over [4 time,–7]. While and as the regeneration exact underlying fails, pathomechanismsfatty and connective still tissue require replacement more research, culminates over time, in andnon-functional as regeneration muscle fails, tissue fatty [7]. and connective tissue replacement culminates in non-functional muscle tissueAccording [7]. to several reports, DMD is characterised by a systemic metabolic impairment, which is centralAccording to theto etiology several of reports, the disease. DMD isIndeed, characterised DMD is by accompanied a systemic metabolic by a significant impairment, deficiency which of is centralthe glycolysis to the etiology[8–10] and of thepurine disease. nucleotide Indeed, cycle DMD [11,12] is accompanied enzymes, as by well a significant as the enzymes deficiency involving of the glycolysisthe tricarboxylic [8–10] andacid purine (TCA) nucleotide cycle [10,13] cycle and [11 the,12] electron enzymes, transport as well as chain the enzymes (ETC) [14–16]. involving These the tricarboxylicchanges lead acid to reduced (TCA) cycle ATP [10 levels,13] and in skeletal the electron muscle transport in both chain DMD (ETC) patients [14–16 and]. These mdx changesmodels lead[17– to20]. reduced This, in ATP turn, levels results in skeletal in dysfunction muscle in of both the DMDcontractile patients apparatus, and mdx leadingmodels to [17 reduced–20]. This, muscular in turn, 2+ 2+ resultsstrength, in dysfunctiondysregulation of the of contractileintracellular apparatus, Ca buffering, leading to loss reduced of homeostasis, muscular strength, and dysregulationCa -induced ofdegeneration. intracellular Ca2+ buffering, loss of homeostasis, and Ca2+-induced degeneration. 2+ DMD-induced dysregulation of intracellularintracellular CaCa2+ homeostasis is hypothesized to associatedassociated with the dysfunction of of mitochondria mitochondria [14–16,21–23]. [14–16,21–23]. It Itwas was found found that that DMD DMD results results in ina decrease a decrease in 2+ inthe the efficiency efficiency of transport of transport and andaccumulation accumulation of Ca of in Ca mitochondria,2+ in mitochondria, which develops which develops in the skeletal in the skeletalmuscle already muscle in already the early in stages the early of postnatal stages of development postnatal development and is accompanied and is by accompanied a decrease in by the a rate of mitochondrial oxidative phosphorylation, as well as a decrease in resistance to the decrease in the rate of mitochondrial oxidative phosphorylation, as well as a decrease in resistance mitochondrial permeability transition (MPT) pore opening due to ROS overproduction and to the mitochondrial permeability transition (MPT) pore opening due to ROS overproduction and depolarization of organelles [14–16,23–25]. Recently, we showed that the dysregulation of calcium depolarization of organelles [14–16,23–25]. Recently, we showed that the dysregulation of calcium homeostasis in skeletal muscle mitochondria of mdx mice may be due to rearrangements in the homeostasis in skeletal muscle mitochondria of mdx mice may be due to rearrangements in the systems systems responsible for the transport of calcium ions and MPT pore opening [26]. responsible for the transport of calcium ions and MPT pore opening [26]. Currently, one of the amenable disease interventions available to DMD patients is through the Currently, one of the amenable disease interventions available to DMD patients is through the administration of a subclass of glucocorticoids, specifically prednisone and its oxazoline derivative administration of a subclass of glucocorticoids, specifically prednisone and its oxazoline derivative deflazacort (Dfz, Figure 1). Some other experimental trials are ongoing, such as myostatin inhibition deflazacort (Dfz, Figure1). Some other experimental trials are ongoing, such as myostatin inhibition [ 27] [27] and/or Sarepta’s micro-dystrophin gene therapy [28], which show promising results. However, and/or Sarepta’s micro-dystrophin gene therapy [28], which show promising results. However, currently currently Dfz is the first drug approved by the United States Food and Drug Administration (FDA) Dfz is the first drug approved by the United States Food and Drug Administration (FDA) for the for the management of DMD. It is known that Dfz in the form of an active metabolite, 21- management of DMD. It is known that Dfz in the form of an active metabolite, 21-desacetyldeflazacort, desacetyldeflazacort, is able to inhibit the release of cytokines by inhibiting the proliferation of CD4+ is able to inhibit the release of cytokines by inhibiting the proliferation of CD4+ lymphocytes and at lymphocytes and at the same time increasing the number of CD8+ cells, which helps to suppress the the same time increasing the number of CD8+ cells, which helps to suppress the immune response and immune response and inflammatory processes in muscle tissue [29,30]. Dfz-based therapy prolongs inflammatory processes in muscle tissue [29,30]. Dfz-based therapy prolongs ambulation by 2–5 years ambulation by 2–5 years and modestly improves muscle strength and cardiopulmonary function [30] and modestly improves muscle strength and cardiopulmonary function [30] but is often associated but is often associated with significant side effects such as a Cushingoid appearance, erythema, with significant side effects such as a Cushingoid appearance, erythema, hirsutism, increased weight, hirsutism, increased weight, nasopharyngitis, delayed puberty, cataracts, and vertebral fractures [31– nasopharyngitis, delayed puberty, cataracts, and vertebral fractures [31–33]. Glucocorticoids also 33]. Glucocorticoids
Recommended publications
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • CCDC109B (MCUB) (NM 017918) Human Untagged Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC327798 CCDC109B (MCUB) (NM_017918) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: CCDC109B (MCUB) (NM_017918) Human Untagged Clone Tag: Tag Free Symbol: MCUB Synonyms: CCDC109B Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >OriGene SC327798 ORF sequence for NM_017918, the custom clone sequence may differ by one or more nucleotides ATGTTGTCAACAGTTGGTTCATTCCTTCAGGACCTACAAAATGAAGATAAGGGTATCAAAACTGCAGCCA TCTTCACAGCAGATGGCAACATGATTTCAGCTTCTACCTTGATGGATATTTTGCTAATGAATGATTTTAA ACTTGTCATTAATAAAATAGCATATGATGTGCAGTGTCCAAAGAGAGAAAAACCAAGTAATGAGCACACT GCTGAGATGGAACACATGAAATCCTTGGTTCACAGACTATTTACAATCTTGCATTTAGAAGAGTCTCAGA AAAAGAGAGAGCACCATTTACTGGAGAAAATTGACCACCTGAAGGAACAGCTGCAGCCCCTTGAACAGGT GAAAGCTGGAATAGAAGCTCATTCGGAAGCCAAAACCAGTGGACTCCTGTGGGCTGGATTGGCACTGCTG TCCATTCAGGGTGGGGCACTGGCCTGGCTCACGTGGTGGGTGTACTCCTGGGATATCATGGAGCCAGTTA CATACTTCATCACATTTGCAAATTCTATGGTCTTTTTTGCATACTTTATAGTCACTCGACAGGATTATAC TTACTCAGCTGTTAAGAGTAGGCAATTTCTTCAGTTCTTCCACAAGAAATCAAAGCAACAGCACTTTGAT GTGCAGCAATACAACAAGTTAAAAGAAGACCTTGCTAAGGCTAAAGAATCCCTGAAACAGGCGCGTCATT CTCTCTGTTTGCAAATGCAAGTAGAAGAACTCAATGAAAAGAATTAA Restriction Sites: SgfI-MluI ACCN: NM_017918 OTI Disclaimer: Our molecular clone sequence data has been matched to the reference identifier above as a point
    [Show full text]
  • No Evidence of Association Between Complement Factor I Genetic Variant
    European Journal of Human Genetics (2012) 20, 1–3 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg LETTERS US-based sample of around 1200 cases with advanced AMD and No evidence of association 800 controls. The association signal extended over a region of about 175 kb, the most associated variant (Po10À7)beingtheSNP rs10033900 near the complement factor I (CFI) gene. Two replication between complement studies2,3 published also in this journal provided some additional support for an AMD susceptibility locus in this region. In the course factor I genetic variant of candidate gene studies of AMD, we had previously investigated SNPs spanning CFI including rs10033900 in a UK case–control rs10033900 and sample, which shows the expected associations with the well- established AMD-susceptibility loci CFH, ARMS2, CFB and C3.No age-related macular evidence of association with the CFI variants was observed. Following publication of the reports cited above we have typed rs10033900 degeneration in additional cases and controls in two independent samples from England and Scotland to investigate this further. Full details of the phenotyping criteria have been reported pre- viously.4 The English sample comprised of 859 cases with predomi- European Journal of Human Genetics (2012) 20, 1–2; nantly advanced AMD, either geographic atrophy (GA) or choroidal doi:10.1038/ejhg.2011.118; published online 12 October 2011 neovascularisation (CNV) and 423 examined controls. The Scottish sample consisted of 505 cases with either intermediate disease (age-related maculopathy, ARM) or advanced AMD, and 351 exam- In 2008, an association between age-related macular degeneration ined controls.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Highlights of Prescribing Information
    HIGHLIGHTS OF PRESCRIBING INFORMATION • Gastrointestinal Perforation: Increased risk in patients with certain GI These highlights do not include all the information needed to use disorders; Signs and symptoms may be masked (5.4) ® EMFLAZA safely and effectively. See full prescribing information for • Behavioral and Mood Disturbances: May include euphoria, insomnia, EMFLAZA. mood swings, personality changes, severe depression, and psychosis (5.5) • Effects on Bones: Monitor for decreases in bone mineral density with EMFLAZA® (deflazacort) tablets, for oral use EMFLAZA® (deflazacort) oral suspension chronic use of EMFLAZA (5.6) Initial U.S. Approval: 2017 • Ophthalmic Effects: May include cataracts, infections, and glaucoma; Monitor intraocular pressure if EMFLAZA is continued for more than 6 ---------------------------INDICATIONS AND USAGE--------------------------- weeks (5.7) EMFLAZA is a corticosteroid indicated for the treatment of Duchenne muscular dystrophy (DMD) in patients 2 years of age and older (1) • Vaccination: Do not administer live or live attenuated vaccines to patients receiving immunosuppressive doses of corticosteroids. Administer live- ----------------------DOSAGE AND ADMINISTRATION---------------------- attenuated or live vaccines at least 4 to 6 weeks prior to starting • The recommended once-daily dosage is approximately 0.9 mg/kg/day EMFLAZA (5.8) administered orally (2.2) • Serious Skin Rashes: Discontinue at the first sign of rash, unless the rash is • Discontinue gradually when administered for more than a few
    [Show full text]
  • Comparative Effects of Anti-Inflammatory Corticosteroids in Human Bone-Derived Osteoblast-Like Cells
    Copyright ©ERS Journals Ltd 1998 Eur Respir J 1998; 12: 1327–1333 European Respiratory Journal DOI: 10.1183/09031936.98.12061327 ISSN 0903 - 1936 Printed in UK - all rights reserved Comparative effects of anti-inflammatory corticosteroids in human bone-derived osteoblast-like cells H. Namkung-Matthäi*, J.P. Seale**, K. Brown***, R.S. Mason* aa Comparative effects of anti-inflammatory corticosteroids in human bone-derived osteo- Depts of *Physiology and Institute for blast- like cells. H. Namkung-Matthäi, J.P. Seale, K. Brown, R.S. Mason. ©ERS Journals Ltd Biomedical Research, **Pharmacology and 1998. ***Pharmacy, University of Sydney, Aus- ABSTRACT: While effects of inhaled corticosteroids on serum markers of bone tralia. metabolism in normal and asthmatic subjects have been reported, there are little data Correspondence: R.S. Mason on the direct effects of these corticosteroids on end-organs such as bone. The results Dept of Physiology and Institute for Bio- presented here compare the effects of budesonide and its epimers (22S- and 22R- medical Research budesonide), fluticasone and dexamethasone on growth and differentiation of cul- University of Sydney tured human bone cells. NSW 2006 Osteoblast-like cells were cultured from human foetal bone chips grown to conflu- Australia ence and used at first subculture. Fax: 61 293512058 At concentrations of 10-11–10-7 M each corticosteroid (CS) caused a dose-dependent Keywords: Alkaline phosphatase decrease in [3H]thymidine incorporation into deoxyribonucleic acid (DNA), median bioactivity effective concentration (EC50): fluticasone (0.06 nM) >22R (0.26 nM) >22S (0.4 nM) bone-derived cells >budesonide (0.47 nM) >dexamethasone (1.5 nM).
    [Show full text]
  • MSM Chapter 1200 3/1/21
    MEDICAID SERVICES MANUAL TRANSMITTAL LETTER February 23, 2021 TO: CUSTODIANS OF MEDICAID SERVICES MANUAL FROM: JESSICA KEMMERER, HIPAA PRIVACY AND CIVIL RIGHTS OFFICER /Jessica Kemmerer/ BACKGROUND AND EXPLANATION The DHCFP is proposing revisions to Medicaid Services Manual (MSM), Chapter 1200 – Prescribed Drugs, Appendix A, to reflect recommendations approved on October 22, 2020, by the Drug Use Review (DUR) Board. The proposed changes include the addition of new prior authorization criteria for Doxepine Topical, the addition of new prior authorization criteria for Zeposia® (ozanimod), addition of new prior authorization for Evenity® (romosozumab-aqqg), Prolia® (denosumab), Forteo® (teriparatide) and Tymlos® (abaloparatide) within a new combined osteoporosis agents section, and addition of new prior authorization criteria for Orilissa® (elagolix) and Oriahnn® (elagolix, estradiol, and norethindrone) within a new Gonadorpin Hormone Receptor (GnRH) Antagonist and Combinations section. Additionally, the DHCFP is proposing revisions to the existing prior authorization criteria for psychotropic medications for children and adolescents, and revision to the existing clinical criteria for Epidiolex® (cannabidiol). Throughout the chapter, grammar, punctuation and capitalization changes were made, duplications removed, acronyms used and standardized, and language reworded for clarity. Renumbering and re- arranging of sections was necessary. These changes are effective March 1, 2021. MATERIAL TRANSMITTED MATERIAL SUPERSEDED MTL N/A MTL N/A MSM Ch 1200 – Prescribed Drugs MSM Ch 1200 – Prescribed Drugs Background and Explanation of Policy Changes, Manual Section Section Title Clarifications and Updates Appendix A Psychotropic Added new policy language criteria on which specific Section N Medications for drug classes may bypass polypharmacy clinical criteria. Children and Adolescents Appendix A Reserved for Future Created a new section titled “Doxepin Topical.” Added Section W Use new prior authorization criteria for doxepin topical.
    [Show full text]
  • Bud13 Promotes a Type I Interferon Response by Countering Intron
    bioRxiv preprint doi: https://doi.org/10.1101/443820; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 6 7 8 9 Bud13 Promotes a Type I Interferon Response by 10 Countering Intron Retention in Irf7 11 12 13 Luke S. Frankiw1,2, Devdoot Majumdar1,2, Christian Burns1, Logan Vlach1, Annie Moradian1, 14 Michael J. Sweredoski1, David Baltimore1,3* 15 16 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, 17 USA 18 2These authors contributed equally 19 3Lead Contact 20 *Correspondence: [email protected] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 bioRxiv preprint doi: https://doi.org/10.1101/443820; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 53 SUMMARY 54 55 Intron retention (IR) has emerged as an important mechanism of gene expression control. Despite 56 this, the factors that control IR events remain poorly understood. We observed consistent IR in one 57 intron of the Irf7 gene and identified Bud13 as an RNA-binding protein that acts at this intron to 58 increase the amount of successful splicing. Deficiency in Bud13 led to increased IR, decreased 59 mature Irf7 transcript and protein levels, and consequently to a dampened type I interferon 60 response.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • With Deflazacort
    Annals of the Rheumatic Diseases 1994; 53: 331-333 331 Long term treatment of polymyalgia rheumatica Ann Rheum Dis: first published as 10.1136/ard.53.5.331 on 1 May 1994. Downloaded from with deflazacort Marco A Cimmino, Gianluigi Moggiana, Carlomaurizio Montecucco, Roberto Caporali, Silvano Accardo Abstract most common starting doses were 15 mg/day Objectives-To evaluate the long term (15 patients, 37 5%), 30 mg/day (14 patients, efficacy and tolerability of deflazacort, a 35%), and 6 mg/day (four patients, 10%). The corticosteroid reputed to have only minor highest dose (60 mg) was used in two patients side effects, in the treatment of poly- with concomitant giant cell arteritis. Patients myalgia rheumatica (PMR). were evaluated monthly for one year and every Methods-In a prospective open study, six months thereafter. Deflazacort was tapered deflazacort was administered at an by about 20% if the patient was asymptomatic average initial dose of 21-8 mg/day for a and ESR was reduced. Side effects were mean period of 19 months in 40 patients searched with a questionnaire and by physical with PMR. examination. Results-A highly significant improve- In PMR recurrences (defined as signs or ment of clinical and laboratory param- symptoms of PMR and/or giant cell arteritis eters occurred one month after therapy requiring higher doses of steroids), deflazacort onset. This improvement persisted for the was increased to the latest level that had whole study period. Laboratory param- kept the patient asymptomatic. A relapse eters of tolerability did not change during was defined as signs or symptoms of PMR the study.
    [Show full text]
  • Multiple Corticosteroids Allergy in a Patient with Asthma: a Case Report
    Mahadi et al. The Egyptian Journal of Internal Medicine (2020) 32:4 The Egyptian Journal of https://doi.org/10.1186/s43162-020-00008-x Internal Medicine CASE REPORT Open Access Multiple corticosteroids allergy in a patient with asthma: a case report Mahrunissa Mahadi1, Wan Syazween Lyana Wan Ahmad Kammal2* , Norazirah Md Nor1 and Adawiyah Jamil1 Abstract Background: Allergy towards systemic corticosteroid is rare. This case report discusses the investigations to confirm diagnosis and alternative treatments. Case presentation: A 51-year-old asthmatic woman developed severe anaphylactic reaction following administration of systemic hydrocortisone. Skin prick, intradermal, and intravenous provocation tests confirmed allergy to triamcinolone, hydrocortisone, and dexamethasone. Skin prick tests (SPTs) were negative to all the aforementioned drugs. Intradermal test (IDT) with triamcinolone 1:10 concentration resulted in a 2-mm wheal associated with rhonchi. IDT with hydrocortisone 1:10 concentration showed an 8-mm wheal with rhonchi. IDTs to dexamethasone and carboxymethylcellulose were negative. Generalized rhonchi were observed with intravenous dexamethasone full concentration challenge. Conclusions: Corticosteroid allergy should be suspected in asthma patients with worsening bronchospasm after its administration. Due to its rarity, such diagnosis can easily be missed, resulting in increased morbidity and mortality in patients. Keywords: Glucocorticoid, Drug hypersensitivity, Skin tests, Asthma Key messages Corticosteroid allergy occurs with various administration Corticosteroid allergy is rare. It should be suspected in routes including intravenous, oral, inhaled, intramuscular, asthmatic patients with worsening bronchospasm after intra-articular, ocular, intralesional, and topical applications steroid administration. Allergic skin tests are useful to [4]. Type IV hypersensitivity reaction in the form of allergic identify the allergen and suitable alternatives.
    [Show full text]