Rhinocyllus Conicus: Initial Evaluation and Subsequent Ecological Impacts in North America
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Vascular Plants of the Former Ecological Site “Bogdanka” in Bogdanka River Valley in Poznań
M PO RU LO IA N T O N R E U Acta Sci. Pol. I M C S ACTA Silv. Colendar. Rat. Ind. Lignar. 9(3-4) 2010, 51-69 THE VASCULAR PLANTS OF THE FORMER ECOLOGICAL SITE “BOGDANKA” IN BOGDANKA RIVER VALLEY IN POZNAŃ Dorota Wrońska-Pilarek Poznań University of Life Sciences Abstract. In contrast to other natural objects situated within boundaries of the city of Poznań, the former ecological site “Bogdanka” distinguishes itself by its exceptional flo- ristic values. The flora of this object comprises 527 taxons of vascular plants derived from 91 families and 295 genera, of which 180 can be found on rare and threatened species lists. In addition, 15 species under legal protection as well as 34 species from all country and regional lists of rare and endangered species occur here. The most valuable floristic elements include: Iris sibirica, Galium odoratum, Hierohloë odorata, Trollius europaeus or Dianthus superbus. Several trees with monumental or close to monumental circumfer- ences as well as splendid trees can also be found in this site. The area should regain its protected status as soon as possible. Key words: vascular plants, flora of the city of Poznań, Bogdanka River valley INTRODUCTION Set against the background of natural objects situated within the boundaries of the city of Poznań, the Bogdanka River valley belongs to areas distinguished for the occur- rence of plant sites and communities most similar to natural. It constitutes an important element of ring and wedge-shaped systems of urban greeneries which form part of the north-western (Golęcin) wedges of green areas [Janyszek et al. -
Comparative Analysis and Implications of the Chloroplast Genomes of Three Thistles (Carduus L., Asteraceae)
Comparative analysis and implications of the chloroplast genomes of three thistles (Carduus L., Asteraceae) Joonhyung Jung1,*, Hoang Dang Khoa Do1,2,*, JongYoung Hyun1, Changkyun Kim1 and Joo-Hwan Kim1 1 Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea 2 Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam * These authors contributed equally to this work. ABSTRACT Background. Carduus, commonly known as plumeless thistles, is a genus in the Asteraceae family that exhibits both medicinal value and invasive tendencies. However, the genomic data of Carduus (i.e., complete chloroplast genomes) have not been sequenced. Methods. We sequenced and assembled the chloroplast genome (cpDNA) sequences of three Carduus species using the Illumina Miseq sequencing system and Geneious Prime. Phylogenetic relationships between Carduus and related taxa were reconstructed using Maximum Likelihood and Bayesian Inference analyses. In addition, we used a single nucleotide polymorphism (SNP) in the protein coding region of the matK gene to develop molecular markers to distinguish C. crispus from C. acanthoides and C. tenuiflorus. Results. The cpDNA sequences of C. crispus, C. acanthoides, and C. tenuiflorus ranged from 152,342 bp to 152,617 bp in length. Comparative genomic analysis revealed high conservation in terms of gene content (including 80 protein-coding, 30 tRNA, and four rRNA genes) and gene order within the three focal species and members of subfamily Carduoideae. Despite their high similarity, the three species differed with respect to the number and content of repeats in the chloroplast genome. Additionally, eight Submitted 28 February 2020 hotspot regions, including psbI-trnS_GCU, trnE_UUC-rpoB, trnR_UCU-trnG_UCC, Accepted 11 December 2020 Published 14 January 2021 psbC-trnS_UGA, trnT_UGU-trnL_UAA, psbT-psbN, petD-rpoA, and rpl16-rps3, were identified in the study species. -
Thistles of Colorado
Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately. -
Globalna Strategija Ohranjanja Rastlinskih
GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8) -
Book of Abstracts.Pdf
1 List of presenters A A., Hudson 329 Anil Kumar, Nadesa 189 Panicker A., Kingman 329 Arnautova, Elena 150 Abeli, Thomas 168 Aronson, James 197, 326 Abu Taleb, Tariq 215 ARSLA N, Kadir 363 351Abunnasr, 288 Arvanitis, Pantelis 114 Yaser Agnello, Gaia 268 Aspetakis, Ioannis 114 Aguilar, Rudy 105 Astafieff, Katia 80, 207 Ait Babahmad, 351 Avancini, Ricardo 320 Rachid Al Issaey , 235 Awas, Tesfaye 354, 176 Ghudaina Albrecht , Matthew 326 Ay, Nurhan 78 Allan, Eric 222 Aydınkal, Rasim 31 Murat Allenstein, Pamela 38 Ayenew, Ashenafi 337 Amat De León 233 Azevedo, Carine 204 Arce, Elena An, Miao 286 B B., Von Arx 365 Bétrisey, Sébastien 113 Bang, Miin 160 Birkinshaw, Chris 326 Barblishvili, Tinatin 336 Bizard, Léa 168 Barham, Ellie 179 Bjureke, Kristina 186 Barker, Katharine 220 Blackmore, 325 Stephen Barreiro, Graciela 287 Blanchflower, Paul 94 Barreiro, Graciela 139 Boillat, Cyril 119, 279 Barteau, Benjamin 131 Bonnet, François 67 Bar-Yoseph, Adi 230 Boom, Brian 262, 141 Bauters, Kenneth 118 Boratyński, Adam 113 Bavcon, Jože 111, 110 Bouman, Roderick 15 Beck, Sarah 217 Bouteleau, Serge 287, 139 Beech, Emily 128 Bray, Laurent 350 Beech, Emily 135 Breman, Elinor 168, 170, 280 Bellefroid, Elke 166, 118, 165 Brockington, 342 Samuel Bellet Serrano, 233, 259 Brockington, 341 María Samuel Berg, Christian 168 Burkart, Michael 81 6th Global Botanic Gardens Congress, 26-30 June 2017, Geneva, Switzerland 2 C C., Sousa 329 Chen, Xiaoya 261 Cable, Stuart 312 Cheng, Hyo Cheng 160 Cabral-Oliveira, 204 Cho, YC 49 Joana Callicrate, Taylor 105 Choi, Go Eun 202 Calonje, Michael 105 Christe, Camille 113 Cao, Zhikun 270 Clark, John 105, 251 Carta, Angelino 170 Coddington, 220 Carta Jonathan Caruso, Emily 351 Cole, Chris 24 Casimiro, Pedro 244 Cook, Alexandra 212 Casino, Ana 276, 277, 318 Coombes, Allen 147 Castro, Sílvia 204 Corlett, Richard 86 Catoni, Rosangela 335 Corona Callejas , 274 Norma Edith Cavender, Nicole 84, 139 Correia, Filipe 204 Ceron Carpio , 274 Costa, João 244 Amparo B. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Classical Biological Control of Nodding and Plumeless Thistles
Biological Control 21, 206–213 (2001) doi:10.1006/bcon.2001.0940, available online at http://www.idealibrary.com on Classical Biological Control of Nodding and Plumeless Thistles L. T. Kok Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319 Received March 15, 2001; accepted March 20, 2001; published online May 22, 2001 group. Both thistles are winter annuals or biennials. Nodding (musk) thistle (Carduus thoermeri Wein- Seeds produced in summer form rosettes which over- mann in the Carduus nutans L. group) and plumeless winter. The rosettes resume development in spring, thistle (Carduus acanthoides L.) are introduced nox- followed by stem elongation and flowering. Nodding ious weeds of Eurasian origin. Both weeds are prob- thistle was first recorded in 1853 at Harrisburg, Penn- lematic in pastures, rangelands, and croplands and sylvania (Stuckey and Forsyth, 1971) and has been along state highways in many parts of the United reported in 40 of the 48 contiguous states (Frick, 1978). States. The success of both species of thistles is largely Plumeless thistle first appeared in 1878 at Camden, due to their prolific seed production, seed longevity, New Jersey and in Ohio (Batra, 1978) and is found in competitive ability, and lack of natural enemies. Clas- sical biological control of nodding thistle in Virginia 19 states (Frick, 1978). The two thistle species often has been achieved with three exotic thistle herbivores, occupy the same habitats in the northeast, such as Rhinocyllus conicus Froelich (Coleoptera: Curculion- overgrazed pastures and disturbed roadsides, some- idae), Trichosirocalus horridus (Panzer) (Coleoptera: times occurring in mixed stands (Batra, 1978). -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Morphological and Biological Parameters of the Knapweed Nematode, Subanguina Picridis 1
154 Journal of Nematology, Volume 18, No. 2, April 1986 weeds. 43. Acroptilon (Centaurea) repens (L.) DC. Ca- repens (L.) DC., Russian Knapweed (Compositae). Pp. nadian Journal of Plant Science 60:993-1004. 105-110 in J. S. Kelleher and M. A. Hulme, eds. 19. Watson, A. K. 1986. Host range of, and plant Biological control programmes against insects and reaction to, Subanguina picridis. Journal of Nematol- weeds in Canada 1969-1980. Slough: Common- ogy 18:112-120. wealth Agriculture Bureaux. 20. Watson, A. K. 1986. Morphological and bio- 22. Watson, A. K., and J. D. Shorthouse. 1979. logical parameters of the knapweed nematode, Suban- Gall formation on Cirsium arvense by Ditylenchus dip- guina _picridis.Journal of Nematology 18:154-158. saci. Journal of Nematology 11:16-22. 21. Watson, A. K., and P. Harris. 1984. Acroptilon Journal of Nematology 18(2):154-158. 1986. © The Society of Nematologists 1986. Morphological and Biological Parameters of the Knapweed Nematode, Subanguina picridis 1 A. K. WATSON 2 Abstract: Specimens of the knapweed nematode Subanguina picridis (Kirjanova) Brzeski obtained from different host plants were highly variable in measurement and structure. This variability refutes the validity of six Subanguina species attacking plants in the Asteraceae. Key words: Acroptilon repens (Russian knapweed), host specificity, Subanguina picridis (knapweed nematode), taxonomy, variability. The gall forming nematode Subanguina MATERIALS AND METHODS picridis (Kirjanova, 1944) Brzeski, 1981, Galls were obtained from A. repens, Cen- syn.: Paranguina picridis (Kirjanova, 1944) taurea diffusa Lam., Cynara sco$ymus L., and Kirjanova & Ivanova, 1968, has been eval- Onopordum acanthium L. plants inoculated uated in Canada as a potential biological with S. -
Sterol Addition During Pollen Collection by Bees
Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies?. Apidologie, 2020, 51 (5), pp.826-843. 10.1007/s13592-020-00764-3. hal-02784696 HAL Id: hal-02784696 https://hal.archives-ouvertes.fr/hal-02784696 Submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:826–843 Original article * INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature, 2020 DOI: 10.1007/s13592-020-00764-3 Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? 1,2 1 3 1 Maryse VANDERPLANCK , Pierre-Laurent ZERCK , Georges LOGNAY , Denis MICHEZ 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium 2CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France 3Analytical Chemistry, Agro Bio Chem Department, Gembloux Agro-Bio Tech University of Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium Received 10 July 2019 – Revised2March2020– Accepted 30 March 2020 Abstract – Sterols are essential nutrients for bees which are thought to obtain them exclusively from pollen. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Papilio Alexanor Esper, 1799) in Croatia (Lepidoptera: Papilionidae) SHILAP Revista De Lepidopterología, Vol
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Verovnik, R.; Svara, V. Confirmed recent occurrence of the Southern Swallowtail ( Papilio alexanor Esper, 1799) in Croatia (Lepidoptera: Papilionidae) SHILAP Revista de Lepidopterología, vol. 44, núm. 176, diciembre, 2016, pp. 547-552 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45549852002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 44 (176) diciembre 2016: 547-552 eISSN: 2340-4078 ISSN: 0300-5267 Confirmed recent occurrence of the Southern Swallowtail ( Papilio alexanor Esper, 1799) in Croatia (Lepidoptera: Papilionidae) R. Verovnik & V. Svara Abstract Nearly five decades have passed since the last confirmed occurrence of the Southern Swallowtail ( Papilio alexanor Esper, 1799) in Croatia. The species was not observed at any of the historical sites, but we found it at seven new sites between Split and the region south of the Neretva River. The habitat is very restricted and characterised by steep limestone rock faces with abundance of the larval host plant Opopanax chironium (L.) Koch. Due to severe fragmentation and continuing decline inferred from extinction of the species in historically known locations we consider the species as vulnerable (VU) in Croatia according to IUCN criteria. KEY WORDS: Lepidoptera, Papilionidae, distribution, habitat requirements, conservation, Croatia. Confirmada la presencia reciente de la macaón meridional (Papilio alexanor Esper, 1799) en Croacia (Lepidoptera: Papilionidae) Resumen Han pasado cinco décadas desde la última presencia confirmada de la macaón meridional ( Papilio alexanor Esper, 1799) en Croacia.