Trypanosoma Cruzi Metabolism Triggered by Parasite Interaction with the Host Cell Extracellular Matrix
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
• Glycolysis • Gluconeogenesis • Glycogen Synthesis
Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes! -
Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6 -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Evidence for Extensive Heterotrophic Metabolism, Antioxidant Action, and Associated Regulatory Events During Winter Hardening In
Collakova et al. BMC Plant Biology 2013, 13:72 http://www.biomedcentral.com/1471-2229/13/72 RESEARCH ARTICLE Open Access Evidence for extensive heterotrophic metabolism, antioxidant action, and associated regulatory events during winter hardening in Sitka spruce Eva Collakova1, Curtis Klumas2, Haktan Suren2,3,ElijahMyers2,LenwoodSHeath4, Jason A Holliday3 and Ruth Grene1* Abstract Background: Cold acclimation in woody perennials is a metabolically intensive process, but coincides with environmental conditions that are not conducive to the generation of energy through photosynthesis. While the negative effects of low temperatures on the photosynthetic apparatus during winter have been well studied, less is known about how this is reflected at the level of gene and metabolite expression, nor how the plant generates primary metabolites needed for adaptive processes during autumn. Results: The MapMan tool revealed enrichment of the expression of genes related to mitochondrial function, antioxidant and associated regulatory activity, while changes in metabolite levels over the time course were consistent with the gene expression patterns observed. Genes related to thylakoid function were down-regulated as expected, with the exception of plastid targeted specific antioxidant gene products such as thylakoid-bound ascorbate peroxidase, components of the reactive oxygen species scavenging cycle, and the plastid terminal oxidase. In contrast, the conventional and alternative mitochondrial electron transport chains, the tricarboxylic acid cycle, and redox-associated proteins providing reactive oxygen species scavenging generated by electron transport chains functioning at low temperatures were all active. Conclusions: A regulatory mechanism linking thylakoid-bound ascorbate peroxidase action with “chloroplast dormancy” is proposed. Most importantly, the energy and substrates required for the substantial metabolic remodeling that is a hallmark of freezing acclimation could be provided by heterotrophic metabolism. -
Overexpression of a Biotic Stress-Inducible Pvgstu Gene Activates Early Protective Responses in Tobacco Under Combined Heat and Drought
International Journal of Molecular Sciences Article Overexpression of A Biotic Stress-Inducible Pvgstu Gene Activates Early Protective Responses in Tobacco under Combined Heat and Drought Evangelia Stavridou 1,2 , Georgia Voulgari 1, Michail Michailidis 3 , Stefanos Kostas 4 , Evangelia G. Chronopoulou 5, Nikolaos E. Labrou 5 , Panagiotis Madesis 2,6 and Irini Nianiou-Obeidat 1,* 1 Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, GR-54124 Thessaloniki, Greece; [email protected] (E.S.); [email protected] (G.V.) 2 Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, GR-57001 Thessaloniki, Greece; [email protected] 3 Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; [email protected] 4 Laboratory of Floriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; [email protected] 5 Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; [email protected] (E.G.C.); [email protected] (N.E.L.) 6 Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, Citation: Stavridou, E.; Voulgari, G.; 38446 Thessaly, Greece Michailidis, M.; Kostas, S.; * Correspondence: [email protected]; Tel.: +30-2310-998-617 Chronopoulou, E.G.; Labrou, N.E.; Madesis, P.; Nianiou-Obeidat, I. Abstract: Drought and heat stresses are major factors limiting crop growth and productivity, and Overexpression of A Biotic their effect is more devastating when occurring concurrently. -
2 Points Chem 465 Biochemistry II Test 1 Spring 2017 Multiple Choice
Name: 2 points Chem 465 Biochemistry II Test 1 Spring 2017 Multiple choice (4 points apiece): 1. Which of the following statements about the oxidative decarboxylation of pyruvate in aerobic conditions in animal cells is correct? A) One of the products of the reactions of the pyruvate dehydrogenase complex is a thioester of acetate. B) The methyl (-CH3) group is eliminated as CO2. C) The process occurs in the cytosolic compartment of the cell. D) The pyruvate dehydrogenase complex uses all of the following as cofactors: NAD+, lipoic acid, pyridoxal phosphate (PLP), and FAD. E) The reaction is so important to energy production that pyruvate dehydrogenase operates at full speed under all conditions. 2. In comparison with the resting state, actively contracting human muscle tissue has a: A) higher concentration of ATP. B) higher rate of lactate formation. C) lower consumption of glucose. D) lower rate of consumption of oxygen E) lower ratio of NADH to NAD+. 3.The metabolic function of the pentose phosphate pathway is: A) act as a source of ADP biosynthesis. B) generate NADPH and pentoses for the biosynthesis of fatty acids and nucleic acids. C) participate in oxidation-reduction reactions during the formation of H2O. D) provide intermediates for the citric acid cycle. E) synthesize phosphorus pentoxide. 4. Gluconeogenesis must use "bypass reactions" to circumvent three reactions in the glycolytic pathway that are highly exergonic and essentially irreversible. Reactions carried out by which three of the enzymes listed must be bypassed in the gluconeogenic pathway? 1) Hexokinase 2) Phosphoglycerate kinase 3) Phosphofructokinase-1 4) Pyruvate kinase 5) Triosephosphate isomerase A) 1, 2, 3 B) 1, 2, 4 C) 1, 4, 5 D) 1, 3, 4 E) 2, 3, 4 5. -
Direct Interaction Between Hnrnp-M and CDC5L/PLRG1 Proteins Affects Alternative Splice Site Choice
Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond To cite this version: David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond. Direct interaction be- tween hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Reports, EMBO Press, 2010, 11 (6), pp.445 - 451. 10.1038/embor.2010.64. hal-03027049 HAL Id: hal-03027049 https://hal.archives-ouvertes.fr/hal-03027049 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. scientificscientificreport report Direct interaction between hnRNP-M and CDC5L/ PLRG1 proteins affects alternative splice site choice David Lle`res1*, Marco Denegri1*w,MarcoBiggiogera2,PaulAjuh1z & Angus I. Lamond1+ 1Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK, and 2LaboratoriodiBiologiaCellulareandCentrodiStudioperl’IstochimicadelCNR,DipartimentodiBiologiaAnimale, Universita’ di Pavia, Pavia, Italy Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an and affect the fate of heterogeneous nuclear RNAs by influencing their abundant nuclear protein that binds to pre-mRNA and is a structure and/or by facilitating or hindering the interaction of their component of the spliceosome complex. -
Regulation of T Lymphocyte Metabolism Kenneth A
Regulation of T Lymphocyte Metabolism Kenneth A. Frauwirth and Craig B. Thompson J Immunol 2004; 172:4661-4665; ; This information is current as doi: 10.4049/jimmunol.172.8.4661 of September 30, 2021. http://www.jimmunol.org/content/172/8/4661 Downloaded from References This article cites 38 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/172/8/4661.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 30, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS Regulation of T Lymphocyte Metabolism Kenneth A. Frauwirth* and Craig B. Thompson1† Upon stimulation, lymphocytes develop from small resting Metabolism in resting lymphocytes cells into highly proliferative and secretory cells. Although When T lymphocytes exit the thymus, they enter peripheral cir- a great deal of study has focused on the genetic program culation as small quiescent cells. -
De Novo Lipogenesis in the Liver in Health and Disease: More Than Just a Shunting Yard for Glucose
Biol. Rev. (2016), 91, pp. 452–468. 452 doi: 10.1111/brv.12178 De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose Francis W. B. Sanders1,2 and Julian L. Griffin1,2,∗ 1MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K. 2The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K. ABSTRACT Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl-CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non-alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance. Key words: de novo lipogenesis (DNL), non-alcoholic fatty liver disease (NAFLD), fructose, liver, selective insulin resistance. CONTENTS I. Introduction ............................................................................................. -
Characterisation of the ATP-Dependent Phosphofructokinase Gene Family from Arabidopsis Thaliana
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 581 (2007) 2401–2410 Characterisation of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana Angelika Mustropha,1, Uwe Sonnewaldb, Sophia Biemeltb,* a Humboldt-University Berlin, Institute of Biology, AG Plant Physiology, Philippstrasse 13, 10115 Berlin, Germany b Friedrich-Alexander University Erlangen-Nuremberg, Department of Biochemistry, Staudtstrasse 5, 91058 Erlangen, Germany Received 1 March 2007; revised 15 April 2007; accepted 16 April 2007 Available online 30 April 2007 Edited by Mark Stitt addition to the widely distributed ATP-dependent phospho- Abstract Plants possess two different types of phosphofructo- kinases, an ATP-dependent (PFK) and a pyrophosphate-depen- fructokinase (PFK, EC 2.7.1.11), in plants and a number of dent form (PFP). While plant PFPs have been investigated in prokaryotes a second type of phosphofructokinase is present detail, cDNA clones coding for PFK have not been identified using pyrophosphate (PPi) instead of ATP as phosphoryl in Arabidopsis thaliana. Searching the A. thaliana genome re- donor (pyrophosphate-fructose-6-phosphate-phosphotransfer- vealed 11 putative members of a phosphofructokinase gene fam- ase, PFP, EC 2.7.1.90). Phosphorylation of Fru6P catalyzed by ily. Among those, four sequences showed high homology to the PFK is virtually irreversible in vivo, while PFP reacts near alpha- or beta-subunits of plant PFPs. Seven cDNAs resulted equilibrium and catalyzes the reaction in both directions. In in elevated PFK, but not PFP activity after transient expression addition a third, ADP-dependent phosphofructokinase has in tobacco leaves suggesting that they encode Arabidopsis PFKs. -
Masterarbeit / Master's Thesis
MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „Physiology, Metabolism and Biohydrogen Production of Desulfurococcus fermentans“ verfasst von / submitted by Barbara Reischl, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2016 / Vienna 2016 Studienkennzahl lt. Studienblatt / A 066 830 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Molecular Microbiology, Microbial Ecology degree programme as it appears on and Immunobiology the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Biol. Dr. Christa Schleper Mitbetreut von / Co-Supervisor: Mag. Mag. Dr. Simon Karl-Maria Rasso Rittmann, Bakk. 2 Table of Contents 1. Introduction .......................................................................................................... 5 1.1 Role of Biohydrogen ................................................................................................ 5 1.2 Hydrogenases ......................................................................................................... 6 1.3 Characteristics of Desulfurococcus fermentans ....................................................... 7 1.4 Aims of this Study ................................................................................................... 8 2. Material and Methods ............................................................................................ 9 2.1 Chemicals .............................................................................................................. -
The Survival Kinases Akt and Pim As Potential Pharmacological Targets
The survival kinases Akt and Pim as potential pharmacological targets Ravi Amaravadi, Craig B. Thompson J Clin Invest. 2005;115(10):2618-2624. https://doi.org/10.1172/JCI26273. Review Series The Akt and Pim kinases are cytoplasmic serine/threonine kinases that control programmed cell death by phosphorylating substrates that regulate both apoptosis and cellular metabolism. The PI3K-dependent activation of the Akt kinases and the JAK/STAT–dependent induction of the Pim kinases are examples of partially overlapping survival kinase pathways. Pharmacological manipulation of such kinases could have a major impact on the treatment of a wide variety of human diseases including cancer, inflammatory disorders, and ischemic diseases. Find the latest version: https://jci.me/26273/pdf Review series The survival kinases Akt and Pim as potential pharmacological targets Ravi Amaravadi and Craig B. Thompson Abramson Family Cancer Research Institute, Department of Cancer Biology and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. The Akt and Pim kinases are cytoplasmic serine/threonine kinases that control programmed cell death by phos- phorylating substrates that regulate both apoptosis and cellular metabolism. The PI3K-dependent activation of the Akt kinases and the JAK/STAT–dependent induction of the Pim kinases are examples of partially overlapping sur- vival kinase pathways. Pharmacological manipulation of such kinases could have a major impact on the treatment of a wide variety of human diseases including cancer, inflammatory disorders, and ischemic diseases. Introduction allow myc to act as an oncogene, leading to a malignant phe- There is increasing evidence that serine/threonine kinases exist notype. While deficiency in the tumor suppressor gene p53 and that directly regulate cell survival.