Adventures in Rocket Science Educator Guide

Total Page:16

File Type:pdf, Size:1020Kb

Adventures in Rocket Science Educator Guide Educational Guide Grades Educators K–12 EG-2007-12-179-MSFC Acknowledgements Adventures in Rocket Science is an expansion of the NASA guidebook Rockets by Deborah Shearer, Greg Vogt and Carla Rosenberg. New and additional material was written and compiled by: Vince Huegele, Marshall Space Flight Center Scientist and National Association of Rocketry (NAR) Education Chair Kristy Hill, Education Specialist for WILL Technology, NASA Marshall Space Flight Center Brenda Terry, Executive Director, Alabama Mathematics, Science and Technology Education Coalition (AMSTEC) This document was produced through The NASA Explorer Institute (NEI) Funding for the development of this rocketry guidebook for Informal Education was provided by NASA Explorer Institute and directed by the Marshall Space Flight Center Academic Affairs Office 2008. i Table of Contents Adventures in Rocket Science Activity Matrix ....................................................................... v Standards ............................................................................................................................... vi How to Use this Guide ........................................................................................................... vii Adventures in Rocket Science Introduction: Flight of a Model Rocket .................................. 1 Practical Rocketry .................................................................................................................. 7 A Brief History of Rockets ...................................................................................................... 17 Rocket History Glossary ........................................................................................................ 24 Constellation Program America’s Fleet of Next Generation Launch Vehicles ....................... 27 Activities ................................................................................................................................. 31 1. Move It! .................................................................................................................... 32 2. Magic Marbles ......................................................................................................... 35 3. Shuttle Drag Parachute ............................................................................................ 38 4. Paper Rockets ......................................................................................................... 43 5. Straw Rockets .......................................................................................................... 49 6. Rocket Racer ........................................................................................................... 50 7. 3-2-1 POP! ............................................................................................................... 58 8. Newton Car .............................................................................................................. 62 9. Pop Can Hero Engine .............................................................................................. 68 10. Rocket Transportation ............................................................................................. 74 11. Parachute Area Versus Drop Time ........................................................................... 77 12. Balloon Staging ........................................................................................................ 83 13. Water Bottle Rocket Assembly ................................................................................ 85 14. The Nose Cone Experts ........................................................................................... 90 iii 15. Racing Against Friction ............................................................................................ 95 16. The Parachuting Egg ................................................................................................ 100 17. Egg Drop Lander ...................................................................................................... 103 18. At the Drop of a Ball ................................................................................................. 105 19. Free Fall Rocket Ball Drop ....................................................................................... 107 20. Altitude Tracking ...................................................................................................... 109 21. The Scale of a Model Rocket ................................................................................... 117 22. Rocket Motion Video Studies .................................................................................. 120 23. Rocket Parachute Flight Duration Study .................................................................. 123 24. Predicting and Measuring Rocket Parachute Drift Rate .......................................... 126 25. Project Enterprise .................................................................................................... 128 Glossary ................................................................................................................................. 143 Appendix A – Assembly Instructions....................................................................................... 145 Appendix B – Rocket Safety Code .......................................................................................... 155 Appendix C – Rocket Principles .............................................................................................. 159 Appendix D – Rocketry Resource Materials ........................................................................... 165 iv Adventures in Rocket Science Activity Matrix Grade Level Groups Activity 1-3 4-6 7-9 10-12 Altitude Velocity Acceleration Page Number 1 Move It! (balloon direction) X 32 2 Magic Marbles X 35 3 Shuttle Drag Parachute X 38 4 Paper Rockets X X 43 5 Straw Rockets X 49 6 Rocket Racer X 50 7 3-2-1 POP! X X X 58 8 Newton Car X 62 9 Pop Can Hero Engine 68 10 Rocket Transportation X 74 11 Parachute Area Versus Drop Time X 77 12 Balloon Staging X 83 13 Water Bottle Rocket Assembly X X X 85 14 The Nose Cone Experts X 90 15 Racing Against Friction X 95 16 The Parachuting Egg X 100 17 Egg Drop Lander 103 18 At the Drop of a Ball X X 105 19 Free Fall Rocket Ball Drop X 107 20 Altitude Tracking X 109 21 The Scale of a Model Rocket X X 117 22 Rocket Motion Video Studies X 120 23 Predicting and Measuring Rocket Parachute Drift Rate 123 24 Rocket Parachute Flight Duration X 126 25 Project Enterprise (2 weeks) X X X 128 Legend: X : Denotes the primary target word focus (altitude, velocity and/or acceleration). : Denotes secondary target word. : Denotes suggested grade level. v Standards Science Standard Activity Science as Inquiry Physical Science Position and Motion of Objects Properties of Objects and Materials Unifying Concepts and Processes Change, Consistency and Measurement Evidence, Models and Explanation Science and Technology Abilities of Technological Design Understanding Science and Technology Move It! (balloon direction) X X X Magic Marbles X X X X X X Shuttle Drag Parachute X X X X Paper Rockets X X X X X X X X Straw Rockets X X X X X X X X Rocket Racer X X X X X X 3-2-1 POP! X X X X X Newton Car X X X X X X Pop Can Hero Engine X X X X X X X Rocket Transportation X X X X X Parachute Area Versus Drop Time X X X X X X X X X Balloon Staging X X X X X Water Bottle Rocket Assembly X X X X The Nose Cone Experts X X X X X Racing Against Friction X X X X X X The Parachuting Egg X X X X X X X X Egg Drop Lander X X X X X X X X At the Drop of a Ball X X X Free Fall Rocket Ball Drop X X X Altitude Tracking X X X X X The Scale of a Model Rocket X X X X X X Rocket Motion Video Studies X X X X X X X X Predicting and Measuring Rocket Parachute Drift Rate X X X X X X Rocket Parachute Flight Duration X X X X X X Project Enterprise (2 weeks) X X X X X vi How to Use This Guide Acknowledgements Examine the matrix for a grade level band The excitement and thrill from experiencing (e.g., grades 1–3). Select a target word the launch of rocket-powered vehicles ignites located in that grade level band (e.g., engagement and imagination in children as velocity). The activity, “Move It!” will address well as adults. Constructing and launching the concept of velocity. Activities are model rockets certainly provided a charge included within each grade level band to of excitement among a group of National address the three target concepts. Some Aeronautics and Space Administration (NASA) activities can be used to address multiple and higher education professionals as they target words. The length of time for each planned an Exploration Systems Mission activity is approximately one or two hours Directorate (ESMD) sponsored K-12 rocketry with the exception of the Project Enterprise curriculum and mentor/coach workshop. activity which can take up to two weeks to complete. This guide was prepared as a tool useful for informal education venues (4-H, Boys The guide includes a compilation of NASA- and Girls Clubs, Boy Scouts, Girl Scouts, developed and originally developed activities etc.), science clubs and related programs, that emphasize hands-on involvement, and can be adopted for formal education prediction, data collection and interpretation, settings. An exciting and productive study in teamwork, and problem solving. Project rocket science can be implemented using the background and an edited, student-friendly selected activities
Recommended publications
  • Frequently Asked Questions
    Frequently Asked Questions What Types of Companies Are on the "Don't Test" List? This list includes companies that make cosmetics, personal-care products, household-cleaning products, and other common household products. All companies that are included on PETA's "don't test" list have signed our statement of assurance verifying that they and their ingredient suppliers don't conduct, commission, pay for, or allow any tests on animals for ingredients, formulations, or finished products anywhere in the world and will not do so in the future. We encourage consumers to support the companies on this list, since we know that they're committed to making products without harming animals. Companies on the "Do Test" list should be shunned until they implement a policy that prohibits animal testing. The "do test" list doesn't include companies that manufacture only products that are required by law to be tested on animals (e.g., pharmaceuticals and garden chemicals). Although PETA is opposed to all animal testing, our focus in those instances is less on the individual companies and more on the regulatory agencies that require animal testing. _________________________________________________________________________________________________________________ Legend V - The company makes or sells strictly vegan products. L - The company has licensed PETA's official cruelty-free bunny logo. F - The company is a PETA Business Friend, and shopping at this company supports an innovative partnership for compassionate companies willing to assist in PETA's groundbreaking work to stop animal abuse and suffering. Companies Whose Products Are Available in Russian Federation L F 100% Pure 510-836-6500 http://www.100percentpure.com L 3INA https://3ina.com/ V L 66°30 https://66-30.com/en/ V L Abyssal Japan Co.
    [Show full text]
  • Emacspeak — the Complete Audio Desktop User Manual
    Emacspeak | The Complete Audio Desktop User Manual T. V. Raman Last Updated: 19 November 2016 Copyright c 1994{2016 T. V. Raman. All Rights Reserved. Permission is granted to make and distribute verbatim copies of this manual without charge provided the copyright notice and this permission notice are preserved on all copies. Short Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright ::::::::::::::::::::::::::::::::::::::::::: 2 2 Announcing Emacspeak Manual 2nd Edition As An Open Source Project ::::::::::::::::::::::::::::::::::::::::::::: 3 3 Background :::::::::::::::::::::::::::::::::::::::::: 4 4 Introduction ::::::::::::::::::::::::::::::::::::::::: 6 5 Installation Instructions :::::::::::::::::::::::::::::::: 7 6 Basic Usage. ::::::::::::::::::::::::::::::::::::::::: 9 7 The Emacspeak Audio Desktop. :::::::::::::::::::::::: 19 8 Voice Lock :::::::::::::::::::::::::::::::::::::::::: 22 9 Using Online Help With Emacspeak. :::::::::::::::::::: 24 10 Emacs Packages. ::::::::::::::::::::::::::::::::::::: 26 11 Running Terminal Based Applications. ::::::::::::::::::: 45 12 Emacspeak Commands And Options::::::::::::::::::::: 49 13 Emacspeak Keyboard Commands. :::::::::::::::::::::: 361 14 TTS Servers ::::::::::::::::::::::::::::::::::::::: 362 15 Acknowledgments.::::::::::::::::::::::::::::::::::: 366 16 Concept Index :::::::::::::::::::::::::::::::::::::: 367 17 Key Index ::::::::::::::::::::::::::::::::::::::::: 368 Table of Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Constellation Program Overview
    Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable
    [Show full text]
  • Emacspeak User's Guide
    Emacspeak User's Guide Jennifer Jobst Revision History Revision 1.3 July 24,2002 Revised by: SDS Updated the maintainer of this document to Sharon Snider, corrected links, and converted to HTML Revision 1.2 December 3, 2001 Revised by: JEJ Changed license to GFDL Revision 1.1 November 12, 2001 Revised by: JEJ Revision 1.0 DRAFT October 19, 2001 Revised by: JEJ This document helps Emacspeak users become familiar with Emacs as an audio desktop and provides tutorials on many common tasks and the Emacs applications available to perform those tasks. Emacspeak User's Guide Table of Contents 1. Legal Notice.....................................................................................................................................................1 2. Introduction.....................................................................................................................................................2 2.1. What is Emacspeak?.........................................................................................................................2 2.2. About this tutorial.............................................................................................................................2 3. Before you begin..............................................................................................................................................3 3.1. Getting started with Emacs and Emacspeak.....................................................................................3 3.2. Emacs Command Conventions.........................................................................................................3
    [Show full text]
  • An Automated Approach to Grammar Recovery for a Dialect of the C++ Language
    An Automated Approach to Grammar Recovery for a Dialect of the C++ Language Edward B. Duffy and Brian A. Malloy School of Computing Clemson University Clemson, SC 29634, USA feduffy,[email protected] Abstract plications developed in a new or existing language [12, 15]. Frequently, the only representation of a dialect is the gram- In this paper we present the design and implementa- mar contained in the source code of a compiler; however, a tion of a fully automated technique for reverse engineering compiler grammar is difficult to comprehend since parser or recovering a grammar from existing language artifacts. generation algorithms place restrictions on the form of the The technique that we describe uses only test cases and a compiler grammar [16, page 10]. parse tree, and we apply the technique to a dialect of the Another problem with language dialects is that there C++ language. However, given test cases and a parse tree has been little research, to date, addressing the problem for a language or a dialect of a language, our technique of reverse engineering a grammar or language specifica- can be used to recover a grammar for the language, in- tion for a language dialect from existing language arti- cluding languages such as Java, C, Python or Ruby. facts. Lammel¨ and Verhoef have developed a technique that uses a language reference manual and test cases to recover a grammar for a language or dialect [16]. How- 1. Introduction ever, their technique requires user intervention along most of the stages of recovery and some of the recovery process The role of programming languages in software devel- is manual.
    [Show full text]
  • This Curriculum Is Designed to Assist Teachers, Sujoervisors and Administrators Procedures, Setting up Activities, and Locating
    DOCUMENT RESUME ED 022 708 SE 005 323 By Taylor, Paul H.; And Others SCIENCE GRADES K-6. North Carolina State Dept. of Pubiic Instruction, Raleigh. Pub Date Mar 68 Note 203p. EDRS Price MF-$1.00 HC-$820 Descriptors-CONCEPTUAL SCHEMES, *CURRICULUM, *CURRICULUM GUIDES, *ELEMENTARY SCHOOL SCIENCE, SCIENCE ACTIVITIES, *TEACHING GUIDES, TEACHING PROCEDURES, TEACHING TECHNIQUES This curriculum is designed to assist teachers, sujoervisors and administrators develop effective elementary school science programs. The phases of planning at the local level are given in terms of defining objectives, developing a scope of instructional topics, establishing a sequence of topics, developing teaching units, devising evaluation procedures, setting up activities, and locating information. Some 445 activities are outlined which relate to major content areas and a series of appendices gives useful practical hints for teachers. (GR) U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATION ORiGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOY NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. , If I ua tt--44 Vt, 1.3. MEV 4111111110. -1416-1* u NNW/ SCIE.... GRADES K-6 STATE DEPARTMENT OFPUBLICINSTRUCTION RALEIGH, N. C. PUBLICATION NO. 410 FOREWORD There is widespread interest in the elementary schools of North Cal'..:a in de :l- oping improved science programs for grades K-6. This cornmndable interest is reflected in the numerous requests for assistance and guidance received by the Department of Public Instruction. This bulletin is designed to meet part of the needs expressed in those requests. The contents of this bulletin represent the combined efforts of scores of scientists and hundreds of educators throughout North Carolina.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Cultures and Traditions of Wordplay and Wordplay Research the Dynamics of Wordplay
    Cultures and Traditions of Wordplay and Wordplay Research The Dynamics of Wordplay Edited by Esme Winter-Froemel Editorial Board Salvatore Attardo, Dirk Delabastita, Dirk Geeraerts, Raymond W. Gibbs, Alain Rabatel, Monika Schmitz-Emans and Deirdre Wilson Volume 6 Cultures and Traditions of Wordplay and Wordplay Research Edited by Esme Winter-Froemel and Verena Thaler The conference “The Dynamics of Wordplay / La dynamique du jeu de mots – Interdisciplinary perspectives / perspectives interdisciplinaires” (Universität Trier, 29 September – 1st October 2016) and the publication of the present volume were funded by the German Research Founda- tion (DFG) and the University of Trier. Le colloque « The Dynamics of Wordplay / La dynamique du jeu de mots – Interdisciplinary perspectives / perspectives interdisciplinaires » (Universität Trier, 29 septembre – 1er octobre 2016) et la publication de ce volume ont été financés par la Deutsche Forschungsgemeinschaft (DFG) et l’Université de Trèves. ISBN 978-3-11-058634-3 e-ISBN (PDF) 978-3-11-058637-4 e-ISBN (EPUB) 978-3-11-063087-9 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License. For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/. Library of Congress Control Number: 2018955240 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2018 Esme Winter-Froemel and Verena Thaler, published by Walter de Gruyter GmbH, Berlin/Boston Printing and binding: CPI books GmbH, Leck www.degruyter.com Contents Esme Winter-Froemel, Verena Thaler and Alex Demeulenaere The dynamics of wordplay and wordplay research 1 I New perspectives on the dynamics of wordplay Raymond W.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • 19940015753.Pdf
    National Aeronautics and Educational Product Space Administration Teachers I Grades 2-6 I Office of Education and Human Resources Education Division _o N N cO 0 u_ 0 N t_ I ,.-, CO ,4" U O" 0_ _ Z _ 0 0 tM < u Is LIJ I-. _-.q4" W_ O ul ,,_ W;Z. INWel I I,,-. UJ .... 0,. i,-,{ .... u4 uJ I-,- .. IU_ Z_ .1 i ! I i I j | ] ROCKETS Physical Science Teacher's Guide with Activities National Aeronautics and Space Administration Office of Human Resources and Education Education Division This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EP-291 July 1993 Acknowledgments This publication was developed for the National Aeronautics and Space Administra- tion with the assistance of the many educa- tors of the Aerospace Education Services Program, Oklahoma State University. Writer: Gregory L. Vogt, Ed.D. Teaching From Space Program NASA Johnson Space Center Houston, TX Editor: Carla R. Rosenberg Teaching From Space Program NASA Headquarters Washington, DC Table of Contents How To Use This Guide ............................... 1 Activities and Demonstration Matrix ............. 2 Brief History of Rockets ................................ 3 Rocket Principles ......................................... 8 Practical Rocketry ...................................... 12 Activities and Demonstrations .................... 19 Glossary ..................................................... 40 NASA Educational Materials And Suggested Readings .......................... 41 NASA Educational Resources ................... 42 Evaluation Card ..................................... Insert ii How To Use This Guide vehiclesockets arein theexistence.oldest formEarlyofrocketsself-containedwere in use more than two thousand years ago. Over a long and exciting history, rockets have evolved from simple tubes filled with black powder into mighty vehicles capable of launching a spacecraft out into the galaxy.
    [Show full text]
  • Sounding Rockets 2013 Annual Report
    National Aeronautics and Space Administration NASA Sounding Rockets Annual Report 2013 The NASA Sounding Rockets Program has closed another highly successful op- erational year with the completion of 19 successful flights. As of October 2013, the program has had 100% success on 38 flights over a period of 24 months. This is an impressive accomplishment. The scientific teams, the technical and administrative sounding rocket staff, and the launch ranges are to be congratu- lated on a job well done! This year involved flights from Wallops Flight Facility (Virginia), White Sands Missile Range (New Mexico), the Kwajalein Atoll (Marshall Islands), and Poker Flat Research Range (Alaska). The Kwajalein campaign involved four rockets designed to probe the equatorial ionosphere and gain a better understanding of plasma energies and particle dynamics af- fecting the Earth. Multiple telescope missions were flown from White Sands Missile Range to study the Sun, the interstellar medium, and distant galaxies. Message from the Chief Message Flights from Wallops and Alaska have furthered our understanding of how the Phil Eberspeaker Earth and Sun interact. With every flight, NASA added to the body of scien- Chief, Sounding Rockets Program Office tific knowledge that will help unravel a host of scientific mysteries. The Sounding Rockets Program also continued to cultivate young minds by offering two university-level flight opportunities. Approximately 250 students from universities around the country had the opportunity to fly experiments aboard two-stage sounding rockets in 2013. The Sounding Rockets Program once again provided a unique teacher training workshop known as WRATS. With the knowledge obtained from this experience, teachers returned to the classroom with exciting options for enhancing their STEM curriculum.
    [Show full text]
  • ALTAIR - Design & Progress on the Space Launch Vehicle Design
    DOI: 10.13009/EUCASS2017-575 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) ALTAIR - Design & Progress on the Space Launch Vehicle Design Cédric Dupont*, Andrea Tromba*, Bastien Haemmerli**, Eduard Diez*** , Giulio Molinari****, Christoph Karl**** * Bertin Technologies, France – [email protected], [email protected] **NAMMO Raufoss AS, P.O. Box 162, NO-2831 Raufoss, Norway – [email protected] *** GTD Sistemas de Información S.A, Spain - [email protected] ***** ETH Zürich, Switzerland – [email protected], [email protected] Abstract ALTAIR is an innovative air-launch system consisting of a reusable unmanned aircraft carrier, an expendable launch vehicle and a cost-effective ground segment. The autonomous aircraft brings the launcher at altitude; following the release, the launcher boosts the payload to the intended orbit. This paper presents the launcher design at the project mid-term. Primary aims of the development are risk mitigation, cost savings, reliability and high performance. The project leverages collaborative engineering, design-to-cost techniques and multidisciplinary design optimization strategies. The resulting design utilizes low-cost hybrid propulsion, lightweight composite structures, innovative avionics and a smart multi-mission upper-stage to simultaneously attain all goals. 1. Introduction The market of satellite launches will drastically change in the coming decade. While being nowadays monopolised by the needs of massive and expensive satellites, requiring heavy launchers of the size of the Proton M, Delta IV or Ariane 5, it is foreseen that another product will take a large share of the global market: small satellites in the 50-150 kg range. This growth will be mainly driven by two factors.
    [Show full text]