Identification of Potential Biomarkers for Abdominal Pain in IBS Patients by Bioinformatics Approach

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Potential Biomarkers for Abdominal Pain in IBS Patients by Bioinformatics Approach Lin et al. BMC Gastroenterol (2021) 21:48 https://doi.org/10.1186/s12876-021-01626-7 RESEARCH ARTICLE Open Access Identifcation of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach Zhongyuan Lin1†, Yimin Wang2†, Shiqing Lin1, Decheng Liu1, Guohui Mo1, Hui Zhang2* and Yunling Dou1* Abstract Background: Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods: Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Diferentially expressed genes (DEGs) between two groups were identi- fed using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results: The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identifed GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions: Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modifcation and biological process of psychological distress may be risk factors of IBS. Keywords: Bioinformatics analysis, Biomarker, Visceral hypersensitivity, Abdominal pain, Irritable bowel syndrome Background Abdominal pain in IBS is thought to be secondary to Chronic abdominal pain is an important symptom of visceral hypersensitivity (VH), which has been described irritable bowel syndrome (IBS), which afects 3.8–9.2% as low thresholds of stimuli perception arising from the of the global population [1]. Recurrent abdominal pain gut [3]. Visceral hypersensitivity is characterized by two can substantially reduce quality of life in IBS patients components: allodynia, a painful response to stimuli that and there is no efective and standard treatment cur- are normally not painful and hyperalgesia, an enhanced rently [2]. In order to identify new therapies, it is impor- response to a painful stimulus [4]. Te underlying patho- tant to understand the underlying mechanism of chronic genesis that lead to VH in patients who have IBS is not abdominal pain. fully understood. However, the prevailing viewpoint in the pathogenesis involves psychosocial factors, subtle *Correspondence: [email protected]; [email protected] infammation and alteration in the neuronal excitability †Zhongyuan Lin and Yimin Wang have contributed equally to this work of gut sensory pathways, which is responsible for trans- 1 Department of Anesthesiology, The First Afliated Hospital of Sun Yat- sen University, Guangzhou 510000, Guangdong, China mitting nociceptive information from the periphery to 2 Department of Anesthesiology, Guangdong Second Provincial General the central nervous system [5]. Specifc changes of a vari- Hospital, Guangzhou 510000, Guangdong, China ety of receptors and ion channels both in the expression © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Lin et al. BMC Gastroenterol (2021) 21:48 Page 2 of 8 and function have been documented in visceral pain con- Hochberg false discovery rate method for adjustment of ditions relevant to irritable bowel syndrome. Researches the P values. In our study, DEGs between healthy volun- have shown genetic factors may play a role in those teers and IBS-D patients were screened and selected by specifc changes in IBS [6]. Beyder and colleagues have the cut-of point of FC ≥ 1.2 and P value < 0.05. reported that a mutation of the SCN5A-encoded voltage- gated sodium channel, type V (alpha subunit) was asso- Functional enrichment analysis ciated with abdominal pain [7]. Other investigators have Te selected DEGs were submitted to the Database for investigated genetic changes related to enteric infection, Annotation, Visualization, and Integrated Discovery epithelial barrier function and immune regulation, sero- (DAVID) for further analysis. Te DAVID database, ver- tonin signaling, cannabinoid receptors, and bile acid syn- sion 6.8 Beta (https ://david -d.ncifc rf.gov/), ofers biologi- thesis, with varying results [8]. cal function annotation for researchers [9]. In this study, Bioinformatics analysis provides tools to produce over- Gene Ontology (GO) analysis and Te Kyoto Encyclope- views of genetic networks and potential biological path- dia of Genes and Genomes (KEGG) pathways of DEGs ways based on large-scale information. Tis study aimed were obtained from the DAVID database. Te biologi- to explore the molecular mechanisms specially involved cal processes and pathways might contribute to verify in pain transmission underlying IBS and to identify hub the signifcative DEGs and to IBS treatments. Functional genes and potential pathways associated with the patho- annotation analysis was performed by two-sided hyper- genesis of IBS. geometric test and Benjamini and Hochberg meth- ods was applied for multiple testing correction. Min. Methods Count ≥ 2 and P value < 0.05 was chosen as the threshold. Microarray data search and selection of eligible data set Te microarray data of GSE36701 was downloaded from Protein–protein interaction (PPI) analysis the GEO database (www.ncbi.nlm.nih.gov/geo/) with Ten we constructed PPI network of DEGs from Search its microarray platform as GPL570 (Afymetrix Human Tool for the Retrieval of Interacting Genes (STRING, Genome U133 Plus 2.0 Array). In this microarray, 53 http://strin g-db.org/) [10]. STRING is a public database samples of rectal mucosa from 27 IBS-D patients with of known and predicted protein–protein interactions. In obvious abdominal pain were obtained and 40 samples this study, we selected confdence score > 0.4 as a thresh- from 21 healthy volunteers as controls. Subjects com- old to construct the PPI network. Te combined score pleted a Talley IBS symptom questionnaire modifed is calculated by combining the probabilities from the to include days with pain. IBS was diagnosed according diferent evidence channels, including high throughput to the Rome II criteria. Tose with IBS also completed experimental data and literature, and corrected for the IBS quality of life questionnaire and the IBS Symptom probability of randomly observing an association [11]. Severity Score Questionnaire including severity of vis- Ten, the list of PPI pairs was downloaded for further ceral pain. Tose agreeing to take part underwent sig- analysis. Module clustering analysis for the network was moidoscopy without bowel preparation. Two biopsies then performed to identify the potential functional mod- from each donor were obtained using endoscopic biopsy ules in the network, using the Molecular Complex Detec- forceps and the mRNA were extracted for further analy- tion (MCODE 1.6.1) in Cytoscape 3.7.1 plugin [12, 13]. sis. After RNA extraction and Microarray processing, Te degree cut-of value to 2 and the node score cut-of samples without visible 18S and 28S rRNA peaks were to 0.2 were set as criteria in the MCODE process. excluded. Tere was one donor in IBS-D group and two donors in HV group only obtained one microarray data. Results Details of clinical data collection, RNA extraction and Screening and prioritization for DEGs microarray processing can be found in GSE36701 dataset An available Expression profiling data set (GSE36701) citation (https ://www.ncbi.nlm.nih.gov/geo/query /acc. in NCBI was selected in this study to identify differ- cgi?acc=GSE36 701). entially expressed genes in the comparisons between IBS-D patients and the healthy volunteers. Then the DEGs’ screening differentially expressed genes were further filtered Te expression profles were expressed as FC (fold for functional associations with neurotransmitters/ change) to produce a normally distributed variable. We mediators of pain. Each array was normalized by screened out DEGs using the online tool GEO2R/R, quantile, and then the DEGs
Recommended publications
  • Applying Screening Techniques to Two Orphan Gpcrs
    Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Mestrado Integrado em Ciências Farmacêuticas 2019 Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Monografia de Mestrado Integrado em Ciências Farmacêuticas apresentada à Universidade de Lisboa através da Faculdade de Farmácia Orientadora: Ghazl Al Hamwi, PhD Student Co-Orientadora: Professora Doutora Elsa Maria Ribeiro dos Santos Anes, Professora Associada com Agregação em Microbiologia 2019 Abstract G-Protein Coupled Receptors represent one of the largest families of cellular receptors discovered and one of the main sources of attractive drug targets. In contrast, it also has a large number of understudied or orphan receptors. Pharmacological assays such as β-Arrestin recruitment assays, are one of the possible approaches for deorphanization of receptors. In this work, I applied the assay system previously mentioned to screen compounds in two orphan receptors, GRP37 and MRGPRX3. GPR37 has been primarily associated with a form of early onset Parkinsonism due to its’ expression patterns, and physiological role as substrate to ubiquitin E3, parkin. Although extensive literature regarding this receptor is available, the identification of a universally recognized ligand has not yet been possible. Two compounds were proposed as ligands, but both were met with controversy. These receptor association with Autosomal Recessive Juvenile Parkinson positions it as a very attractive drug target, and as such its’ deorphanization is a prime objective for investigators in this area. Regarding MRGPRX3 information is much scarcer.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Unlocking the Non-Ige-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2)
    cells Review Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2) Mukesh Kumar, Karthi Duraisamy and Billy-Kwok-Chong Chow * School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; [email protected] (M.K.); [email protected] (K.D.) * Correspondence: [email protected]; Tel.: +852-2299-0850; Fax: +852-2559-9114 Abstract: Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR ex- pressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (Fc"RI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reac- tions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE- mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 ag- onists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 Citation: Kumar, M.; Duraisamy, K.; Chow, B.-K.-C.
    [Show full text]
  • Dap-1788 Goat Anti-MRGPRX3 Or MRGX3
    DATA SHEET Goat anti-MRGPRX3 / MRGX3 Antibody Item Number dAP-1788 Target Molecule Principle Name: MRGPRX3 / MRGX3; Official Symbol: MRGPRX3; All Names and Symbols: MRGPRX3; MAS-related GPR, member X3; GPCR; MRGX3; SNSR1; G protein-coupled receptor MRGX3; G protein- coupled receptor SNSR1; G protein-coupled receptor SNSR2; mas-related GPCR member X3; Accession Number (s): NP_473372.2; Human Gene ID(s): 117195; Non-Human GeneID(s): Immunogen QLPQETLELSGSRL, is from Internal region This antibody may cross-react with human MRGPRX1 and X4 (GeneID: 259249, 117196; MW: 36.25kDa and 36.43kDa). Applications Pep ELISA Species Tested: Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Supplied As lyophilized powder of 50ug or 100ug IgG; Reconsititute IgG with 100ul or 200ul sterile DI Water and final product will be formulated as 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum albumin. Aliquot and store at -20°C. Minimize freezing and thawing. Peptide ELISA Peptide ELISA: antibody detection limit dilution 1 to 4000. Western Blot Western Blot: Not yet tested. At this stage we are dependent on researchers in the field for further charac- terization of this product. Therefore we cannot recommend an optimal concentration and the antibody is an aspiring product. We would appreciate any IHC Reference Reference(s): Kaisho Y, Watanabe T, Nakata M, Yano T, Yasuhara Y, Shimakawa K, Mori I, Sakura Y, Terao Y, Matsui H, Taketomi S. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype.
    [Show full text]
  • MRGPRX4 Is a Novel Bile Acid Receptor in Cholestatic Itch Huasheng Yu1,2,3, Tianjun Zhao1,2,3, Simin Liu1, Qinxue Wu4, Omar
    bioRxiv preprint doi: https://doi.org/10.1101/633446; this version posted May 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 MRGPRX4 is a novel bile acid receptor in cholestatic itch 2 Huasheng Yu1,2,3, Tianjun Zhao1,2,3, Simin Liu1, Qinxue Wu4, Omar Johnson4, Zhaofa 3 Wu1,2, Zihao Zhuang1, Yaocheng Shi5, Renxi He1,2, Yong Yang6, Jianjun Sun7, 4 Xiaoqun Wang8, Haifeng Xu9, Zheng Zeng10, Xiaoguang Lei3,5, Wenqin Luo4*, Yulong 5 Li1,2,3* 6 7 1State Key Laboratory of Membrane Biology, Peking University School of Life 8 Sciences, Beijing 100871, China 9 2PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China 10 3Peking-Tsinghua Center for Life Sciences, Beijing 100871, China 11 4Department of Neuroscience, Perelman School of Medicine, University of 12 Pennsylvania, Philadelphia, PA 19104, USA 13 5Department of Chemical Biology, College of Chemistry and Molecular Engineering, 14 Peking University, Beijing 100871, China 15 6Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory 16 of Molecular Diagnosis on Dermatoses, Beijing 100034, China 17 7Department of Neurosurgery, Peking University Third Hospital, Peking University, 18 Beijing, 100191, China 19 8State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in 20 Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, 21 Chinese Academy of Sciences, Beijing, 100101, China 22 9Department of Liver Surgery, Peking Union Medical College Hospital, Chinese bioRxiv preprint doi: https://doi.org/10.1101/633446; this version posted May 9, 2019.
    [Show full text]
  • Supplementary Materials: Molecular Signature of Subtypes of Non- Small Cell Lung Cancer by Large-Scale Transcriptional Profiling
    Cancers 2020 S1 of S18 Supplementary Materials: Molecular Signature of Subtypes of Non- Small Cell Lung Cancer by Large-Scale Transcriptional Profiling: Identification of Key Modules and Genes by Weighted Gene Co- Expression Network Analysis (WGCNA) Magdalena Niemira, Francois Collin, Anna Szalkowska, Agnieszka Bielska, Karolina Chwialkowska, Joanna Reszec, Jacek Niklinski, Miroslaw Kwasniewski and Adam Kretowski Cancers 2020 S2 of S18 A B Figure S1. The top-ranked enriched canonical pathway identified in (A) SCC and (B) ADC using IPA: Eicosanoid signalling pathway. Cancers 2020 S3 of S18 A Cancers 2020 S4 of S18 Figure S2. The second-ranked enriched canonical pathway identified in (A) SCC and (B) ADC using IPA: Agranulocyte adhesion and diapedesis. Cancers 2020 S5 of S18 Figure S3. The top-ranked enriched canonical pathway identified only in lung ADC: MIF regulation of innate immunity. A B Figure S4. Cluster dendograms of the gene clusters of (A) LUAD and (B) LUSC subset from TCGA database. Cancers 2020 S6 of S18 A B C D Figure S5. Protein-protein interaction (PPI) network of genes in the red (A), lightcyan (B), darkorange (C), yellow (D) modules in ADC. The networks were constructed using Cytoscape v. 3.7.2. software. Cancers 2020 S7 of S18 A B Figure S6. Protein-protein interaction (PPI) network of genes in the blue (A) and (B) modules in SCC. The networks were constructed using Cytoscape v. 3.7.2. software. Cancers 2020 S8 of S18 Table S1. Upstream regulator analysis of DEGs in lung SCC predicted by IPA. Upstream Prediction Target
    [Show full text]
  • Host Lipid Metabolism and Its Effect on the Infectivity of Hepatitis C Virus
    THE CRITICAL ROLE OF MRGPRS IN NON-HISTAMINERGIC PRURITUS OF CHOLESTASIS AND ALLERGIC CONTACT DERMATITIS by James Meixiong A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, MD June 2019 © 2019 James Meixiong All Rights Reserved Abstract Clinically relevant chronic itch conditions commonly result from kidney failure, cholestasis, and skin disorders like allergic contact dermatitis (ACD). Recently, numerous members of the Mas-related G-protein coupled receptor (Mrgpr) family of GPCRs have been identified as receptors for non-histaminergic pruritogens. In this thesis, I utilized Ca2+ imaging, mouse genetics, and mouse models of disease to determine the role of Mrgprs in two non-histaminergic pruritus conditions: cholestasis and ACD. In chapter one, I demonstrate that pathophysiologic levels of bilirubin observed in cholestasis, bound two Mrgprs, mouse MRGPRA1 and human MRGPRX4, activated sensory neurons via Mrgprs, and elicited Mrgpr-dependent pruritus. Genetic deletion of either Mrgpra1 or Bvlra, the bilirubin-producing enzyme, attenuated mouse models of cholestatic itch. In chapter two, I present evidence that human MRGPRX4 is a bile acid receptor. To assess the in vivo relevance of bile acid activation of MRGPRX4, I generated a humanized mouse with targeted expression of MRGPRX4 to itch-encoding sensory neurons. Bile acids activated MRGPRX4-positive sensory neurons at higher levels compared to wild-type (WT) neurons. Compared to WT animals, MRGPRX4-mice scratched more upon acute injection of bile acids and in a model of cholestatic itch. In the final chapter, I examine the role of recently identified mast-cell expressed Mrgprs, murine Mrgprb2 and human MRGPRX2, in pruritus.
    [Show full text]
  • Mediators and Receptors of Chronic Itch in Primates and Humans
    MEDIATORS AND RECEPTORS OF CHRONIC ITCH IN PRIMATES AND HUMANS A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Leigh Ann Nattkemper December 2015 Examining Committee Members: Gil Yosipovitch, MD, Advisory Chair, Department of Dermatology Mary Barbe, PhD, Department of Anatomy and Cell Biology Liselotte Jensen, PhD, Department of Microbiology and Immunology Alan Cowan, PhD, Department of Pharmacology Mark Hoon, PhD, External Member, National Institutes of Health (NIDCR) © Copyright 2015 by Leigh Nattkemper All Rights Reserved ii ABSTRACT Chronic itch has a significant impact on quality of life for millions of patients worldwide, on a level comparable to that of chronic pain. Yet, although there are a host of effective drugs available for pain, there are no therapies that specifically target chronic itch. Current experimental approaches to investigate the pathogenesis of chronic pruritus and to test novel therapeutic agents are largely limited to rodent models. However, rodent models display significant dermatological, neurophysiological, and immunological differences from humans with chronic itch. The disadvantages of the current rodent paradigms call for the design of a valid primate model of chronic itch. For four years, we have monitored scratching behavior in a primate colony (n=35) of Cynomolgus macaques ( Macaca fascicularis ) suffering from idiopathic chronic itch. By comparing molecular and genetic analyses of the primates’ skin to their quantified scratching behavior, we attempted to characterize the underlying mechanisms of chronic itch in this model. Furthermore, the expression of itch-related proteins was examined in both the primate model and in humans with pruritic diseases.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]