PRESS RELEASE Your Peers, Your Science Academic Publishing Is Evolving
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth odontini. The highly diversified tribe Bolitoglossini includes three super genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char acterized. Range maps are presented for all genera. Relationships of all genera are discussed. -
Rediscovery at the Type Locality and Detection of a New Population 1José L
Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(2) [General Section]: 126–132 (e193). Thorius narismagnus (Amphibia: Plethodontidae): rediscovery at the type locality and detection of a new population 1José L. Aguilar-López, 2,*Paulina García-Bañuelos, 3Eduardo Pineda, and 4Sean M. Rovito 1,2,3Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, MEXICO 4Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato CP 36824, MEXICO Abstract.—Of the 42 Critically Endangered species of plethodontid salamanders that occur in Mexico, thirteen have not been reported in more than ten years. Given the lack of reports since 1976, the minute plethodontid salamander Thorius narismagnus is widely considered as missing. However, this report describes the rediscovery of this minute salamander at the type locality (Volcán San Martín), as well as a new locality on Volcán Santa Marta, 28 km southeast of its previously known distribution, both in the Los Tuxtlas region of Veracruz, Mexico. The localities where T. narismagnus has been found are mature forests in a community reserve on Volcán San Martín and a private reserve on Volcán Santa Marta. The presence of maxillary teeth, generally absent in Thorius, are reported here in some T. narismagnus females. Two efforts which may contribute to the conservation of Thorius narismagnus are the preservation of the cloud forests where this species persists, as well as the determination of the presence and possible effect of chytrid fungus in these populations. -
Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered. -
Functional Morphology and Evolution of Tail Autotomy in Salamanders
Functional Morphology and Evolution of Tail Autotomy in Salamanders DAVID B. WAKE AND IAN G. DRESNER Department of Anatomy, The University of Chicago, Chicago, lllinois ABSTRACT Basal tail constriction occurs in about two-thirds of the species of plethodontid salamanders. The constriction, which marks the site of tail autotomy, is a result of a reduction in length and diameter of the first caudal segment. Gross and microscopic anatomical studies reveal that many structural specializations are associated with basal constriction, and these are considered in detail. Areas of weak- ness in the skin at the posterior end of the first caudal segment, at the attachment of the musculature to the intermyotomal septum at the anterior end of the same segment, and between the last caudosacral and first caudal vertebrae precisely define the route of tail breakage. During autotomy the entire tail is shed, and a cylinder of skin one segment long closes over the wound at the end of the body. It is suggested that specializations described in this paper have evolved jndepend- ently in three different groups of salamanders. Experiments and field observations reveal that, contrary to expectations, frequency of tail breakage is less in species with apparent provisions for tail autotomy than in less specialized species. The tail is a very important, highly functional organ in salamanders and it is suggested that selection has been for behavioral and structural adaptations for control of tail loss, rather than for tail loss per se. Tail loss and subsequent regeneration is sent facts concerning anatomical details a well documented phenomenon among of the basal tail region, a functional inter- the lower vertebrates. -
I Online Supplementary Data – Sexual Size Dimorphism in Salamanders
Online Supplementary data – Sexual size dimorphism in salamanders Supplementary data S1. Species data used in this study and references list. Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Andrias davidianus 2 532.5 8 383.0 -0.280 12 Cryptobranchus alleganiensis 53 277.4±5.2 52 300.9±3.4 0.084 Yes 61 Batrachuperus karlschmidti 10 80.0 10 84.8 0.060 26 Batrachuperus londongensis 20 98.6 10 96.7 -0.019 12 Batrachuperus pinchonii 5 69.6 5 74.6 0.070 26 Batrachuperus taibaiensis 11 92.9±12.1 9 102.1±7.1 0.099 Yes 27 Batrachuperus tibetanus 10 94.5 10 92.8 -0.017 12 Batrachuperus yenyuadensis 10 82.8 10 74.8 -0.096 26 Hynobius abei 24 57.8±2.1 34 55.0±1.2 -0.048 Yes 92 Hynobius amakusaensis 22 75.4±4.8 12 76.5±3.6 0.014 No 93 Hynobius arisanensis 72 54.3±4.8 40 55.2±4.8 0.016 No 94 Hynobius boulengeri 37 83.0±5.4 15 91.5±3.8 0.102 Yes 95 Hynobius formosanus 15 53.0±4.4 8 52.4±3.9 -0.011 No 94 Hynobius fuca 4 50.9±2.8 3 52.8±2.0 0.037 No 94 Hynobius glacialis 12 63.1±4.7 11 58.9±5.2 -0.066 No 94 Hynobius hidamontanus 39 47.7±1.0 15 51.3±1.2 0.075 Yes 96 Hynobius katoi 12 58.4±3.3 10 62.7±1.6 0.073 Yes 97 Hynobius kimurae 20 63.0±1.5 15 72.7±2.0 0.153 Yes 98 Hynobius leechii 70 61.6±4.5 18 66.5±5.9 0.079 Yes 99 Hynobius lichenatus 37 58.5±1.9 2 53.8 -0.080 100 Hynobius maoershanensis 4 86.1 2 80.1 -0.069 101 Hynobius naevius 72.1 76.7 0.063 102 Hynobius nebulosus 14 48.3±2.9 12 50.4±2.1 0.043 Yes 96 Hynobius osumiensis 9 68.4±3.1 15 70.2±3.0 0.026 No 103 Hynobius quelpaertensis 41 52.5±3.8 4 61.3±4.1 0.167 Yes 104 Hynobius -
Hanken and Wake 1998 Copeia.Pdf
Copeia, 1998(2), pp. 312-345 Biology of Tiny Animals: Systematics of the Minute Salamanders (Thorius: Plethodontidae) from Veracruz and Puebla, Mexico, with Descriptions of Five New Species JAMES HANKEN AND DAVID B. WAKE Minute plethodontid salamanders, genus Thorius, are far more diverse taxonom- ically than has been recognized previously. Populations of these salamanders from the Mexican states of Veracruz and Puebla are assigned to 10 species, five of which are described as new. Combinations of morphological and allozymic characters are used to sort the species and to make initial assessments of relationships. Valid ex- isting names include Thorius pennatulus, T. troglodytes, T. dubitus, and T. schmidti. Thorius narismagnus, from the Sierra de Los Tuxtlas, which previously was consid- ered to be a disjunct subspecies of T. pennatulus, is elevated to species rank. Thorius maxillabrochusis treated as a subjective junior synonym of the sympatric T. schmidti. New taxa include Thorius lunaris, T. magnipes, T. minydemus, T. munificus, and T. spilogaster. All 10 species can be distinguished by morphological characters, but the distinctiveness of the taxa is bolstered by allozymic characters and by extensive sympatry. As many as three, and possibly four, species occur in sympatry, with some evidence of segregation by microhabitat (arboreal vs terrestrial). Adult body sizes span the range known for the genus, from very small in T. pennatulus (maturing at < 16 mm standard length) to large in T. lunaris (adults reaching > 31 mm). Collec- tively these species display a wide elevational distribution, from less than 1000 m (T. pennatulus, T. narismagnus) to more than 3000 m (T lunaris, T. -
Rampant Tooth Loss Across 200 Million Years of Frog Evolution
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Evolutionarystudies of Salamanders
AN INTEGRATED APPROACH TO EVOLUTIONARYSTUDIES OF SALAMANDERS DAVIDB. WAKE* CONTENTS der Caudata. Studying organisms from one Introduction ...................................................... 163 perspective can inform and direct investiga- Phylogenetics .................................................... 163 tions that have other goals, and an integra- Hierarchical Approaches .................................. 166 tive approach to organismal evolution can Ontogeny and Phylogeny ................................. 168 result. As evolutionary biologists, our ultimate Recognition of Species ...................................... 170 goal is to understand how biological diversifi- Species Diversity .............................................. 172 cation occurs, and as herpetologists our pri- A Plea for Conservation .................................... 174 mary focus is the whole organism, as exempli- Acknowledgments ............................................ 175 fied by amphibians and reptiles. The examples Literature Cited ............................................... 175 I use are mainly from my own laboratory, be- cause I can see most clearly in these cases how Abstract: This essay is an examination of the ways integration can be achieved. Although this in which seemingly disparate studies focused on a paper is topical in nature, I attempt to provide single, rather small taxon, the Order Caudata, can connections between topics. provide a foundation for development of programs in evolutionary biology. Topics addressed include Any -
Porthidium Dunni (Hartweg and Oliver, 1938)
Porthidium dunni (Hartweg and Oliver, 1938). Dunn’s Hognosed Pitviper is a “priority two species” that has been assessed Environmental Vulnerability Score of 16 (see the following article). This pitviper is found primarily at low elevations along the foothills of the Sierra Madre del Sur physiographic region and the coastal plain of the Planicie Costera del Pacífico and Planicie Costera de Tehuantepec physiographic regions (Mata-Silva et al., 2015b) in southern Oaxaca and extreme western Chiapas, Mexico. This individual was found ca. 3.6 km NNW of La Soledad, Municipio de Villa de Tututepec de Melchor Ocampo, Oaxaca. ' © Vicente Mata-Silva 543 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The endemic herpetofauna of Mexico: organisms of global significance in severe peril JERRY D. JOHNSON1, LARRY DAVID WILSON2, VICENTE MATA-SILVA1, ELÍ GARCÍA-PADILLA3, AND DOMINIC L. DESANTIS1 1Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mail: [email protected], and [email protected], and [email protected] 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] 3Oaxaca de Juárez, Oaxaca 68023, Mexico. E-mail: [email protected] ABSTRACT: Life on Earth exists due to the interactions among the atmosphere, hydrosphere, and litho- sphere. Humans, however, have created and are faced with the consequences of an interrelated set of problems that impact all of these spheres, including the biosphere. The decline in the diversity of life is a problem of global dimensions resulting from a sixth mass extinction episode created by humans. -
Supporting Online Material For
www.sciencemag.org/cgi/content/full/science.1194442/DC1 Supporting Online Material for The Impact of Conservation on the Status of the World’s Vertebrates Michael Hoffmann,* Craig Hilton-Taylor, Ariadne Angulo, Monika Böhm, Thomas M. Brooks, Stuart H. M. Butchart, Kent E. Carpenter, Janice Chanson, Ben Collen, Neil A. Cox, William R. T. Darwall, Nicholas K. Dulvy, Lucy R. Harrison, Vineet Katariya, Caroline M. Pollock, Suhel Quader, Nadia I. Richman, Ana S. L. Rodrigues, Marcelo F. Tognelli, Jean-Christophe Vié, John M. Aguiar, David J. Allen, Gerald R. Allen, Giovanni Amori, Natalia B. Ananjeva, Franco Andreone, Paul Andrew, Aida Luz Aquino Ortiz, Jonathan E. M. Baillie, Ricardo Baldi, Ben D. Bell, S. D. Biju, Jeremy P. Bird, Patricia Black-Decima, J. Julian Blanc, Federico Bolaños, Wilmar Bolivar-G., Ian J. Burfield, James A. Burton, David R. Capper, Fernando Castro, Gianluca Catullo, Rachel D. Cavanagh, Alan Channing, Ning Labbish Chao, Anna M. Chenery, Federica Chiozza, Viola Clausnitzer, Nigel J. Collar, Leah C. Collett, Bruce B. Collette, Claudia F. Cortez Fernandez, Matthew T. Craig, Michael J. Crosby, Neil Cumberlidge, Annabelle Cuttelod, Andrew E. Derocher, Arvin C. Diesmos, John S. Donaldson, J. W. Duckworth, Guy Dutson, S. K. Dutta, Richard H. Emslie, Aljos Farjon, Sarah Fowler, Jörg Freyhof, David L. Garshelis, Justin Gerlach, David J. Gower, Tandora D. Grant, Geoffrey A. Hammerson, Richard B. Harris, Lawrence R. Heaney, S. Blair Hedges, Jean- Marc Hero, Baz Hughes, Syed Ainul Hussain, Javier Icochea M., Robert F. Inger, Nobuo Ishii, Djoko T. Iskandar, Richard K. B. Jenkins, Yoshio Kaneko, Maurice Kottelat, Kit M. Kovacs, Sergius L. -
Three New Species of Minute Salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico
Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Parra-Olea, Gabriela, Sean M. Rovito, Mario García-París, Jessica A. Maisano, David B. Wake, and James Hanken. 2016. “Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico.” PeerJ 4 (1): e2694. doi:10.7717/ peerj.2694. http://dx.doi.org/10.7717/peerj.2694. Published Version doi:10.7717/peerj.2694 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626181 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico Gabriela Parra-Olea1, Sean M. Rovito2, Mario Garcı´a-Parı´s3, Jessica A. Maisano4,DavidB.Wake5 and James Hanken6 1 Instituto de Biologı´a, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico 2 Unidad de Geno´mica Avanzada (Langebio), CINVESTAV, Irapuato, Guanajuato, Mexico 3 Departamento de Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain 4 Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States 5 Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States 6 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States ABSTRACT We describe three new species of minute salamanders, genus Thorius, from the Sierra Madre del Sur of Oaxaca, Mexico. -
New Genera and a New Species of Central American Salamanders, with a Review of the Tropical Genera (Amphibia, Caudata, Plethodontidae)
NEW GENERA AND A NEW SPECIES OF CENTRAL AMERICAN SALAMANDERS, WITH A REVIEW OF THE TROPICAL GENERA (AMPHIBIA, CAUDATA, PLETHODONTIDAE) David B. and Paul Elias' ABSTRACT. A new genus and species of plethodontid bolitoglos- Chiropterotriton se seiiala como polifilttico y por lo tanto dos nuevos sin: salamander is described from material collected in northwestern generos se describen. Nototriton, nuevo gtnero, incluye el grupo Guatemala. Bradytriton silus new genus, new species, is unique in a picadoi de Chiropterotriton beta. Dendrotriton. nuevo gtnero, inclu- cornbination of structural characteristics that includes a laterally ye el grupo hromeliacia de Chiropterotriton beta. Las especies pre- cornpressed tail, stocky body with no clearly defined neck, and short, viamente incluidas en Chiropterotriton alfa permanecen como las slender limbs bearing syndactylous hands and feet. To diagnose the unicas representantes de este ghero. Ocho de 10s once generos neo- new genus, an analysis of the entire neotropical assemblage of pleth- tropicales se seiialan como monofiltticos. De 10s tres generos res- od(intid salamanders was undertaken. Approximately 138 species tantes, tanto Dendrotriton como Nototriton son monofiltticos en bel Jng to the supergenus Bolitoglossa and 1 1 genera are recognized. relacion a todos 10s gtneros except0 Oedipina, aunque Dendrotriton Th: genus Chiropterotriton is shown to be polyphyletic; thus, two es facilmente distinguible de Oedipina. Nototriton podria ser para- new genera are described. Nototriton new genus, includes the picadoi filt'tico en relacion a Oedipina, pero estos dos gtneros pueden ser group of Chiropterotriton beta. Dendrotriton new genus, includes the rapidamente reconocidos en base a sus marcadas diferencias en eco- hrc meliacia group of Chiropterotriton beta.