I Online Supplementary Data – Sexual Size Dimorphism in Salamanders

Total Page:16

File Type:pdf, Size:1020Kb

I Online Supplementary Data – Sexual Size Dimorphism in Salamanders Online Supplementary data – Sexual size dimorphism in salamanders Supplementary data S1. Species data used in this study and references list. Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Andrias davidianus 2 532.5 8 383.0 -0.280 12 Cryptobranchus alleganiensis 53 277.4±5.2 52 300.9±3.4 0.084 Yes 61 Batrachuperus karlschmidti 10 80.0 10 84.8 0.060 26 Batrachuperus londongensis 20 98.6 10 96.7 -0.019 12 Batrachuperus pinchonii 5 69.6 5 74.6 0.070 26 Batrachuperus taibaiensis 11 92.9±12.1 9 102.1±7.1 0.099 Yes 27 Batrachuperus tibetanus 10 94.5 10 92.8 -0.017 12 Batrachuperus yenyuadensis 10 82.8 10 74.8 -0.096 26 Hynobius abei 24 57.8±2.1 34 55.0±1.2 -0.048 Yes 92 Hynobius amakusaensis 22 75.4±4.8 12 76.5±3.6 0.014 No 93 Hynobius arisanensis 72 54.3±4.8 40 55.2±4.8 0.016 No 94 Hynobius boulengeri 37 83.0±5.4 15 91.5±3.8 0.102 Yes 95 Hynobius formosanus 15 53.0±4.4 8 52.4±3.9 -0.011 No 94 Hynobius fuca 4 50.9±2.8 3 52.8±2.0 0.037 No 94 Hynobius glacialis 12 63.1±4.7 11 58.9±5.2 -0.066 No 94 Hynobius hidamontanus 39 47.7±1.0 15 51.3±1.2 0.075 Yes 96 Hynobius katoi 12 58.4±3.3 10 62.7±1.6 0.073 Yes 97 Hynobius kimurae 20 63.0±1.5 15 72.7±2.0 0.153 Yes 98 Hynobius leechii 70 61.6±4.5 18 66.5±5.9 0.079 Yes 99 Hynobius lichenatus 37 58.5±1.9 2 53.8 -0.080 100 Hynobius maoershanensis 4 86.1 2 80.1 -0.069 101 Hynobius naevius 72.1 76.7 0.063 102 Hynobius nebulosus 14 48.3±2.9 12 50.4±2.1 0.043 Yes 96 Hynobius osumiensis 9 68.4±3.1 15 70.2±3.0 0.026 No 103 Hynobius quelpaertensis 41 52.5±3.8 4 61.3±4.1 0.167 Yes 104 Hynobius schinichisatoi 25 82.9±5.5 8 84.3±8.9 0.016 No 105 Hynobius sonani 21 56.8±6.0 16 58.4±4.4 0.028 No 106 Hynobius takedai 24 57.2±2.0 7 57.8±2.0 0.010 No 107 Hynobius tokyoensis 117 63.1±6.1 36 65.3±6.4 0.034 No 108 Hynobius tsuensis 9 61.9±6.2 4 62.1±3.3 0.003 No 104 Hynobius yangi 18 52.6±4.4 3 57.8±2.4 0.098 No 104 Hynobius yiwensis 14 63.8 10 59.8 -0.062 109 Liua shihi 55 76.4±6.0 61 71.1±7.6 -0.069 Yes 121 Liua tsinpaensis 15 66.1 4 66.0 -0.001 12 Onychodactylus fischeri 35 70.1±3.7 35 66.8±5.8 -0.047 Yes 142 Onychodactylus japonicus 33 62.3±5.7 33 65.3±5.0 0.048 Yes 142 Onychodactylus koreanus 22 66.5±7.7 14 58.2±8.8 -0.124 Yes 142 Onychodactylus nipponoborealis 7 71.3±3.6 7 67.8±5.0 -0.049 No 142 Onychodactylus zhangyapingi 6 64.6±2.2 10 73.5±6.2 0.137 Yes 142 Onychodactylus zhaoermii 20 65.3±4.0 6 76.9±3.3 0.177 Yes 142 Pachyhynobius shangchengensis 7 102.3 9 100.8 -0.014 143 Paradactylodon gorganensis 12 103.8±10.4 15 105.9±15.8 0.020 No 150 Paradactylodon mustersi 19 74.8±8.6 15 73.1±7.3 -0.022 No 151 Pseudohynobius flavomaculatus 10 87.0 10 85.8 -0.013 193 Pseudohynobius shuichengensis 10 101.7±3.1 10 106.0±3.7 0.042 Yes 194 Salamandrella keyserlingii 276 57.6±0.2 130 61.7±0.4 0.071 Yes 203 Siren intermedia 1200 282.4 1200 216.9 -0.231 205 Dicamptodon copei 6 96.6 2 101.8 0.053 81 I Online Supplementary data – Fèlix Amat Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Dicamptodon ensatus 3 122.9 3 208.2 0.694 81 Ambystoma annulatum 111 92.0±0.6 44 95.0±0.9 0.032 Yes 1 Ambystoma bishopi 23 43.8±3.2 27 46.1±5.0 0.052 Yes 2 Ambystoma cingulatum 13 50.4±4.4 23 52.3±5.9 0.037 No 2 Ambystoma jeffersonianum 69 72.8±0.9 115 82.0±0.7 0.126 Yes 3 Ambystoma laterale 22 52.9 18 56.6 0.069 4 Ambystoma macrodactylum 196 60.9±0.2 203 64.3±0.2 0.055 Yes 5 Ambystoma maculatum 394 85.0±0.6 261 95.0±0.5 0.117 Yes 6 Ambystoma opacum 7 56.0±4.6 10 63.3±1.9 0.130 Yes 7 Ambystoma talpoideum 13 56.2 9 60.1 0.069 8 Ambystoma texanum 58 72.8 36 77.7 0.067 4 Ambystoma tigrinum 43 101.9±11.7 11 91.8±8.6 -0.099 Yes 9 Calotriton arnoldi 38 59.5±0.2 27 60.3±0.3 0.013 Yes 59 Calotriton asper 422 61.2 332 62.2 0.016 60 Cynops cyanurus 16 78.0 13 87.3 0.119 62 Cynops ensicauda 23 55.5 30 61.2 0.102 63 Cynops fudingensis 4 39.8±1.2 6 44.1±1.3 0.108 Yes 64 Cynops glaucus 8 35.7±0.6 21 45.7±3.1 0.280 Yes 65 Cynops orientalis 52 40.1±1.9 110 48.0±3.1 0.197 Yes 66 Cynops pyrrhogaster 46 49.0±2.9 24 55.7±5.0 0.136 Yes 67 Chioglossa lusitanica 64 45.5±0.2 67 47.1±0.2 0.035 Yes 68 Ichthyosaura alpestris 20 46.3±6.4 33 55.3±2.7 0.194 Yes 110 Echinotriton chinhaiensis 12 66.7 10 82.3 0.233 12 Euproctus montanus 24 47.5 55 45.9 -0.033 83 Euproctus platycephalus 80 55.7±7.1 45 47.1±3.8 -0.154 Yes 84 Laotriton laoensis 154 91.0±4.0 120 101.0±6.0 0.109 Yes 115 Lissotriton boscai 12 35.9±0.7 10 41.6±0.8 0.158 Yes 116 Lissotriton helveticus 139 36.0±0.1 232 38.0±0.1 0.055 Yes 117 Lissotriton italicus 14 33.8±0.03 21 34.5±0.06 0.020 Yes 118 Lissotriton montandoni 142 41.1±2.4 173 47.4±3.2 0.153 Yes 119 Lissotriton vulgaris 88 40.0.0 72 40.9 0.022 120 Lyciasalamandra antalyana 9 66.4 11 68.0 0.024 122 Lyciasalamandra atifi 25 63.4±1.2 42 58.8±1.4 -0.072 Yes 123 Lyciasalamandra billae 8 62.5 8 63.5 0.016 124 Lyciasalamandra fazilae 13 61.1±1.3 8 62.3±4.0 0.019 No 125 Lyciasalamandra flavimembris 8 44.7 14 59.7 0.335 126 Lyciasalamandra luschani 6 65.6±3.0 13 60.4±7.2 -0.079 No 127 Mertensiella caucasica 22 63.9±3.7 26 63.7±3.9 -0.003 No 128 Neurergus crocatus 34 69.2±3.6 19 76.2±3.8 0.101 Yes 130 Neurergus kaiseri 58 54.8±0.5 41 63.6±0.8 0.160 Yes 131 Neurergus strauchii 24 69.8±0.9 15 79.6±0.9 0.140 Yes 132 Notophthalmus perstriatus 450 33.5±1.6 556 35.6±2.7 0.062 Yes 133 Notophthalmus viridescens 14 42.4 19 44.5 0.049 134 Ommatotriton nesterovi 12 57.2±1.2 8 65.3±1.3 0.141 Yes 140 Ommatotriton ophryticus 43 70.4±4.6 49 58.9±4.4 -0.163 Yes 141 Ommatotriton vittatus 15 46.3±3.1 15 43.0±4.5 -0.071 Yes 141 Pachytriton archospotus 8 87.2±6.5 13 92.0±6.3 0.055 No 144 Pachytriton brevipes 18 88.9±5.6 7 78.6±3.6 -0.115 Yes 145 Pachytriton feii 18 73.3±8.6 13 81.6±7.5 0.113 Yes 146 Pachytriton granulosus 9 69.0±6.1 11 70.9±7.7 0.027 No 146 II Online Supplementary data – Sexual size dimorphism in salamanders Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Pachytriton inexpectatus 12 85.9±9.6 17 92.3±9.4 0.074 No 146 Pachytriton labiatus 15 86.0 18 88.9 0.033 147 Pachytriton wuguanfui 2 86.1±0.8 6 83.5±6.1 -0.030 No 148 Pachytriton xanthospilos 6 87.0±9.6 17 91.7±7.1 0.054 No 149 Paramesotriton caudopunctatus 20 71.5 20 75.4 0.054 12 Paramesotriton chinensis 5 76.0±11.0 3 82.0±5.0 0.078 No 152 Paramesotriton ermizhaoi 5 56.1±3.1 6 56.3±2.7 0.003 No 153 Paramesotriton fuzhongensis 4 81.5 3 77.0 -0.055 154 Paramesotriton hongkongensis 100 66.9±0.2 100 70.2±0.2 0.049 Yes 155 Paramesotriton longliensis 4 77.3±5.6 3 78.8±6.8 0.019 No 156 Paramesotriton maolanensis 3 94.1±4.3 2 114.7 0.218 157 Paramesotriton wulingensis 5 71.6±1.7 5 69.3±3.3 -0.032 No 158 Paramesotriton yunwuensis 3 99.5 5 82.9 -0.166 159 Paramesotriton zhijinensis 7 58.1±3.9 7 63.0±4.6 0.084 No 160 Pleurodeles nebulosus 8 60.5 11 59.3 -0.019 185 Pleurodeles poireti 16 45.4 6 50.3 0.107 185 Pleurodeles waltli 158 79.7±9.0 142 83.4±11.9 0.046 Yes 186 Salamandra algira 42 95.3±7.9 17 99.0±7.8 0.038 No 128 Salamandra atra 20 58.2±2.6 17 59.6±2.8 0.024 No 199 Salamandra corsica 5 99.8 6 102.6 0.028 200 Salamandra infrainmaculata 149 129.4 121 134.9 0.042 201 Salamandra lanzai 11 74.2±2.8 9 74.0±3.8 -0.002 No 200 Salamandra salamandra 32 102.1±1.5 6 105.5±2.4 0.033 Yes 202 Salamandrina perspicillata 33 33.8±1.6 33 38.7±1.9 0.144 Yes 204 Taricha granulosa 805 58.2±0.2 945 54.8±0.03 -0.058 Yes 208 Taricha torosa 4 67.4±6.9 2 66.2±3.4 -0.017 No 209 Triturus carnifex 45 75.1±1.1 40 76.2±0.7 0.014 Yes 214 Triturus cristatus 8 68.3±2.2 3 73.6±8.3 0.077 No 215 Triturus dobrogicus 26 65.0±8.8 21 68.9±6.6 0.060 No 216 Triturus karelinii 40 76.9±5.6 46 75.6±10.1 -0.016 No 215 Triturus macedonicus 9 74.4±4.2 8 81.4±4.1 0.094 Yes 215 Triturus marmoratus 35 68.5±3.3 67 71.9±3.1 0.049 Yes 217 Triturus pygmaeus 42.3 43.9 0.037 218 Tylototriton anguliceps 2 61.8 5 70.6±3.4 0.142 219 Tylototriton anhuiensis 69.2 68.1 -0.015 220 Tylototriton asperrimus 20 65.8 6 87.0 0.322 12 Tylototriton broadoridgus 29 66.5±3.2 3 83.3±6.1 0.252 Yes 221 Tylototriton hainanensis 4 75.0 7 76.3 0.017 12 Tylototriton himalayanus 32 71.9±6.1 13 76.0±7.5 0.057 No 222 Tylototriton kweichowensis 13 96.2 6 110.8 0.151 12 Tylototriton liuyangensis 8 69.4±5.5 6 84.0±2.5 0.210 Yes 223 Tylototriton notialis 2 66.8 2 81.1 0.214 224 Tylototriton panhai 2 73.5 2 86.3 0.174 225 Tylototriton podichthys 13 66.9 2 75.5 0.128 225 Tylototriton shanjing 10 73.6 10 83.3 0.131 12 Tylototriton taliangensis 10 93.1 10 103 0.106 12 Tylototriton uyenoi 9 68.1 2 73.8 0.083 225 Tylototriton verrucosus 20 63.9±6.1 19 77.8±10.0 0.217 Yes 226 Necturus maculosus 148.8 167.7 0.127 129 Rhyacotriton cascadae 208 46.5 227 49.5 0.064 196 III Online Supplementary data – Fèlix Amat Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Rhyacotriton kezeri 52.0 55.0 0.057 197 Rhyacotriton olympicus 59.0 57.3 -0.028 197 Rhyacotriton variegatus 59 43.6±0.2 23 42.1±0.2 -0.034 Yes 198 Amphiuma means 117 404.5 147 398.1 -0.015 10 Amphiuma tridactylum 80 555.0±1.1 59 545.0±1.3 -0.018 Yes 11 Aneides aeneus 52.8±1.4 57.1±1.1 0.081 13 Aneides ferreus 57.1 58.1 0.017 14 Aneides flavipunctatus 65.4 69.0 0.055 15 Aneides lugubris 59.8 62.5 0.045 16 Aquiloeurycea cafetalera 2 45.5±3.8 6 49.9±6.4 0.096 No 17 Aquiloeurycea cephalica 8 45.3±3.9 15 47.3±4.5 0.044 Yes 17 Aquiloeurycea quetzalanensis 2 35.7±5.1 4 32.8±4.3 -0.081 No 17 Atylodes genei 55 52.8 50 52 -0.015 18 Batrachoseps altasierrae 8 38.0±2.4 8 40.1±3.5 0.055 No 19 Batrachoseps attenuatus 42.3 42.2 -0.002 20 Batrachoseps bramei 10 34.3±2.4 11 35.5±3.8 0.034 No 19 Batrachoseps campi 5 42.0±2.5 7 53.0±4.0 0.261 Yes 21 Batrachoseps diabolicus 10 36.2±2.4 10 38.9±4.4 0.074
Recommended publications
  • Aquiloeurycea Scandens (Walker, 1955). the Tamaulipan False Brook Salamander Is Endemic to Mexico
    Aquiloeurycea scandens (Walker, 1955). The Tamaulipan False Brook Salamander is endemic to Mexico. Originally described from caves in the Reserva de la Biósfera El Cielo in southwestern Tamaulipas, this species later was reported from a locality in San Luis Potosí (Johnson et al., 1978) and another in Coahuila (Lemos-Espinal and Smith, 2007). Frost (2015) noted, however, that specimens from areas remote from the type locality might be unnamed species. This individual was found in an ecotone of cloud forest and pine-oak forest near Ejido La Gloria, in the municipality of Gómez Farías. Wilson et al. (2013b) determined its EVS as 17, placing it in the middle portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by IUCN, and as a species of special protection by SEMARNAT. ' © Elí García-Padilla 42 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The herpetofauna of Tamaulipas, Mexico: composition, distribution, and conservation status SERGIO A. TERÁN-JUÁREZ1, ELÍ GARCÍA-PADILLA2, VICENTE Mata-SILva3, JERRY D. JOHNSON3, AND LARRY DavID WILSON4 1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Boulevard Emilio Portes Gil No. 1301 Pte. Apartado postal 175, 87010, Ciudad Victoria, Tamaulipas, Mexico. Email: [email protected] 2Oaxaca de Juárez, Oaxaca, Código Postal 68023, Mexico. E-mail: [email protected] 3Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mails: [email protected] and [email protected] 4Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] ABSTRACT: The herpetofauna of Tamaulipas, the northeasternmost state in Mexico, is comprised of 184 species, including 31 anurans, 13 salamanders, one crocodylian, 124 squamates, and 15 turtles.
    [Show full text]
  • What Really Hampers Taxonomy and Conservation? a Riposte to Garnett and Christidis (2017)
    Zootaxa 4317 (1): 179–184 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4317.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:88FA0944-D3CF-4A7D-B8FB-BAA6A3A76744 What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017) MARCOS A. RAPOSO1,2, RENATA STOPIGLIA3,4, GUILHERME RENZO R. BRITO1,5, FLÁVIO A. BOCKMANN3,6, GUY M. KIRWAN1,7, JEAN GAYON2 & ALAIN DUBOIS4 1 Setor de Ornitologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940–040 Rio de Janeiro, RJ, Brazil. [email protected] (MAR), [email protected] (GRRB), [email protected] (GMK) 2 UMR 8590, IHPST–Institut d'Histoire et de Philosophie des Sciences et des Techniques, UMR 8590, Université Paris 1 Panthéon- Sorbonne & CNRS, 13 rue du Four, 75006 Paris, France. [email protected] (JG) 3 Laboratório de Ictiologia de Ribeirão Preto, Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040–901 Ribeirão Preto, SP, Brazil. [email protected] (RS), [email protected] (FAB) 4 Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 25 rue Cuvier, CP 30, 75005, Paris, France. [email protected] (AD). 5 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941- 902, Rio de Janeiro, RJ, Brazil. 6 Programa de Pós-Graduação em Biologia Comparada, FFCLRP, Universidade de São Paulo, Av.
    [Show full text]
  • Western Tiger Salamander,Ambystoma Mavortium
    COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada.
    [Show full text]
  • Notophthalmus Perstriatus) Version 1.0
    Species Status Assessment for the Striped Newt (Notophthalmus perstriatus) Version 1.0 Striped newt eft. Photo credit Ryan Means (used with permission). May 2018 U.S. Fish and Wildlife Service Region 4 Jacksonville, Florida 1 Acknowledgements This document was prepared by the U.S. Fish and Wildlife Service’s North Florida Field Office with assistance from the Georgia Field Office, and the striped newt Species Status Assessment Team (Sabrina West (USFWS-Region 8), Kaye London (USFWS-Region 4) Christopher Coppola (USFWS-Region 4), and Lourdes Mena (USFWS-Region 4)). Additionally, valuable peer reviews of a draft of this document were provided by Lora Smith (Jones Ecological Research Center) , Dirk Stevenson (Altamaha Consulting), Dr. Eric Hoffman (University of Central Florida), Dr. Susan Walls (USGS), and other partners, including members of the Striped Newt Working Group. We appreciate their comments, which resulted in a more robust status assessment and final report. EXECUTIVE SUMMARY This Species Status Assessment (SSA) is an in-depth review of the striped newt's (Notophthalmus perstriatus) biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain species viability. We begin the SSA with an understanding of the species’ unique life history, and from that we evaluate the biological requirements of individuals, populations, and species using the principles of population resiliency, species redundancy, and species representation. All three concepts (or analogous ones) apply at both the population and species levels, and are explained that way below for simplicity and clarity as we introduce them. The striped newt is a small salamander that uses ephemeral wetlands and the upland habitat (scrub, mesic flatwoods, and sandhills) that surrounds those wetlands.
    [Show full text]
  • Scientific Publication of Georeferenced Molecular Data As an Adequate Guide to Delimit the Range of Korean Hynobius Salamanders Through Citizen Science
    Acta Herpetologica 14(1): 27-33, 2019 DOI: 10.13128/Acta_Herpetol-24102 Scientific publication of georeferenced molecular data as an adequate guide to delimit the range of Korean Hynobius salamanders through citizen science Amaël Borzée1,*, Hae Jun Baek2,3, Chang Hoon Lee2,3, Dong Yoon Kim2, Jae-Young Song4, Jae-Hwa Suh5, Yik- weon Jang1, Mi-Sook Min2,* 1 Division of EcoScience, Ewha Womans University, 03760, Seoul, Republic of Korea. *Corresponding authors. E-mail: amaelborzee@ gmail.com; [email protected] 2 Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea 3 National Institute of Ecology, Seocheon, 33657, South Chungcheong Province, Republic of Korea 4 National Park Research Institute, Korea National Park Service, Wonju, 26441, Gangwon Province, Republic of Korea 5 National Institute of Biological Resources, 22689, Incheon, Republic of Korea Submitted on: 2018, October 26th; Revised on: 2019, February 20th; Accepted on: 2019, March 1st Editor: Daniele Pellitteri-Rosa Abstract. Despite the importance of clearly assessing the distribution boundaries of species, it is not possible for sci- entists to acquire genetic information and conduct molecular analysis for all populations. Consequently, citizen sci- ence is of increasing importance for large scale data collection. In this study, we described the range boundaries of the four Hynobius species occurring in Korea based on genetic identification and refined their distribution through citizen science data. The genetic identification of individuals was extracted from the literature, while the citizen science data were extracted from iNaturalist through GBIF. Distribution boundary lines were drawn from the genetic data and consistency with citizen science datapoints was assessed through a comparative analysis with the points found beyond the established boundary lines.
    [Show full text]
  • Caudata: Hynobiidae): Heterochronies and Reductions
    65 (1): 117 – 130 © Senckenberg Gesellschaft für Naturforschung, 2015. 4.5.2015 Development of the bony skeleton in the Taiwan salamander, Hynobius formosanus Maki, 1922 (Caudata: Hynobiidae): Heterochronies and reductions Anna B. Vassilieva 1 *, June-Shiang Lai 2, Shang-Fang Yang 2, Yu-Hao Chang 1 & Nikolay A. Poyarkov, Jr. 1 1 Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia — 2 Department of Life Science, National Taiwan Normal University, 88, Sec. 4 Tingchou Rd., Taipei 11677, Taiwan, R.O.C. — *Cor- responding author; vassil.anna(at)gmail.com Accepted 19.ii.2015. Published online at www.senckenberg.de / vertebrate-zoology on 4.v.2015. Abstract The development of the bony skeleton in a partially embryonized lotic-breeding salamander Hynobius formosanus is studied using the ontogenetic series from late embryos to postmetamorphic juveniles and adult specimen. Early stages of skull development in this spe- cies are compared with the early cranial ontogeny in two non-embryonized lentic-breeding species H. lichenatus and H. nigrescens. The obtained results show that skeletal development distinguishes H. formosanus from other hynobiids by a set of important features: 1) the reduction of provisory ossifications (complete absence of palatine and reduced state of coronoid), 2) alteration of a typical sequence of ossification appearance, namely, the delayed formation of vomer and coronoid, and 3) the absence of a separate ossification center of a lacrimal and formation of a single prefrontolacrimal. These unique osteological characters in H. formosanus are admittedly connected with specific traits of its life history, including partial embryonization, endogenous feeding until the end of metamorphosis and relatively short larval period.
    [Show full text]
  • Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
    COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela­ tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char­ acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri­ nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac­ tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth­ odontini. The highly diversified tribe Bolitoglossini includes three super­ genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig­ ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char­ acterized. Range maps are presented for all genera. Relationships of all genera are discussed.
    [Show full text]
  • Rediscovery at the Type Locality and Detection of a New Population 1José L
    Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(2) [General Section]: 126–132 (e193). Thorius narismagnus (Amphibia: Plethodontidae): rediscovery at the type locality and detection of a new population 1José L. Aguilar-López, 2,*Paulina García-Bañuelos, 3Eduardo Pineda, and 4Sean M. Rovito 1,2,3Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, MEXICO 4Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato CP 36824, MEXICO Abstract.—Of the 42 Critically Endangered species of plethodontid salamanders that occur in Mexico, thirteen have not been reported in more than ten years. Given the lack of reports since 1976, the minute plethodontid salamander Thorius narismagnus is widely considered as missing. However, this report describes the rediscovery of this minute salamander at the type locality (Volcán San Martín), as well as a new locality on Volcán Santa Marta, 28 km southeast of its previously known distribution, both in the Los Tuxtlas region of Veracruz, Mexico. The localities where T. narismagnus has been found are mature forests in a community reserve on Volcán San Martín and a private reserve on Volcán Santa Marta. The presence of maxillary teeth, generally absent in Thorius, are reported here in some T. narismagnus females. Two efforts which may contribute to the conservation of Thorius narismagnus are the preservation of the cloud forests where this species persists, as well as the determination of the presence and possible effect of chytrid fungus in these populations.
    [Show full text]
  • Assessing Environmental Variables Across Plethodontid Salamanders
    Lauren Mellenthin1, Erica Baken1, Dr. Dean Adams1 1Iowa State University, Ames, Iowa Stereochilus marginatus Pseudotriton ruber Pseudotriton montanus Gyrinophilus subterraneus Gyrinophilus porphyriticus Gyrinophilus palleucus Gyrinophilus gulolineatus Urspelerpes brucei Eurycea tynerensis Eurycea spelaea Eurycea multiplicata Introduction Eurycea waterlooensis Eurycea rathbuni Materials & Methods Eurycea sosorum Eurycea tridentifera Eurycea pterophila Eurycea neotenes Eurycea nana Eurycea troglodytes Eurycea latitans Eurycea naufragia • Arboreality has evolved at least 5 times within Plethodontid salamanders. [1] Eurycea tonkawae Eurycea chisholmensis Climate Variables & Eurycea quadridigitata Polygons & Point Data Eurycea wallacei Eurycea lucifuga Eurycea longicauda Eurycea guttolineata MAXENT Modeling Eurycea bislineata Eurycea wilderae Eurycea cirrigera • Yet no morphological differences separate arboreal and terrestrial species. [1] Eurycea junaluska Hemidactylium scutatum Batrachoseps robustus Batrachoseps wrighti Batrachoseps campi Batrachoseps attenuatus Batrachoseps pacificus Batrachoseps major Batrachoseps luciae Batrachoseps minor Batrachoseps incognitus • There is minimal range overlap between the two microhabitat types. Batrachoseps gavilanensis Batrachoseps gabrieli Batrachoseps stebbinsi Batrachoseps relictus Batrachoseps simatus Batrachoseps nigriventris Batrachoseps gregarius Preliminary results discovered that 71% of the arboreal species distribution Batrachoseps diabolicus Batrachoseps regius Batrachoseps kawia Dendrotriton
    [Show full text]
  • Vernacular Name AMPHIUMA, ONE-TOED (Aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel)
    1/6 Vernacular Name AMPHIUMA, ONE-TOED (aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel) GEOGRAPHIC RANGE Eastern Gulf coast. HABITAT Wetlands: slow moving or stagnant freshwater rivers/streams/creeks and bogs, marshes, swamps, fens and peat lands. CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Because of the limited extent of its occurrence and because of the declining extent and quality of its habitat, this species is close to qualifying for Vulnerable. COOL FACTS Amphiumas are commonly known as "Congo eels," a misnomer. First of all, amphiumas are amphibians, rather than fish (which eels are). This notwithstanding, amphiumas bear resemblance to the elongate fishes. It is easy to overlook the diminutive legs, and the lack of any external gills adds to the similarity between the amphiumas and eels. Amphiumas are adapted for digging and tunneling. They seem to spend most of the time in muddy burrows and are rarely observed in the wild. They never fully metamorphose and retain larval characteristics in varying degrees into adulthood: one pair of the larval gill slits is retained and never disappears, no eyelids, no tongue and the presence of 4 gill arches with a single respiratory opening between the 3 rd--4th arches. Amphiumas have two pairs of limbs, and the three species, all of which occur in the S.E. U.S, differ in regard to the number of toes at the ends of these limbs: one, two or three. These amphiumas possess tiny, single-toed limbs, one pair just behind the small gill opening at each side of the neck and another pair just ahead of the longitudinal anal slit .
    [Show full text]
  • Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
    SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A.
    [Show full text]
  • AMPHIBIANS of OHIO F I E L D G U I D E DIVISION of WILDLIFE INTRODUCTION
    AMPHIBIANS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE INTRODUCTION Amphibians are typically shy, secre- Unlike reptiles, their skin is not scaly. Amphibian eggs must remain moist if tive animals. While a few amphibians Nor do they have claws on their toes. they are to hatch. The eggs do not have are relatively large, most are small, deli- Most amphibians prefer to come out at shells but rather are covered with a jelly- cately attractive, and brightly colored. night. like substance. Amphibians lay eggs sin- That some of these more vulnerable spe- gly, in masses, or in strings in the water The young undergo what is known cies survive at all is cause for wonder. or in some other moist place. as metamorphosis. They pass through Nearly 200 million years ago, amphib- a larval, usually aquatic, stage before As with all Ohio wildlife, the only ians were the first creatures to emerge drastically changing form and becoming real threat to their continued existence from the seas to begin life on land. The adults. is habitat degradation and destruction. term amphibian comes from the Greek Only by conserving suitable habitat to- Ohio is fortunate in having many spe- amphi, which means dual, and bios, day will we enable future generations to cies of amphibians. Although generally meaning life. While it is true that many study and enjoy Ohio’s amphibians. inconspicuous most of the year, during amphibians live a double life — spend- the breeding season, especially follow- ing part of their lives in water and the ing a warm, early spring rain, amphib- rest on land — some never go into the ians appear in great numbers seemingly water and others never leave it.
    [Show full text]