Lauren Mellenthin1, Erica Baken1, Dr. Dean Adams1 1Iowa State University, Ames, Iowa

Stereochilus marginatus Pseudotriton ruber Pseudotriton montanus Gyrinophilus subterraneus Gyrinophilus porphyriticus Gyrinophilus palleucus Gyrinophilus gulolineatus Urspelerpes brucei Eurycea tynerensis Eurycea spelaea Eurycea multiplicata Introduction Eurycea waterlooensis Eurycea rathbuni Materials & Methods Eurycea sosorum Eurycea tridentifera Eurycea pterophila Eurycea neotenes Eurycea nana Eurycea troglodytes Eurycea latitans Eurycea naufragia • Arboreality has evolved at least 5 times within Plethodontid . [1] Eurycea tonkawae Eurycea chisholmensis Climate Variables & Eurycea quadridigitata Polygons & Point Data Eurycea wallacei Eurycea lucifuga Eurycea longicauda Eurycea guttolineata MAXENT Modeling Eurycea bislineata Eurycea wilderae Eurycea cirrigera • Yet no morphological differences separate arboreal and terrestrial species. [1] Eurycea junaluska Hemidactylium scutatum Batrachoseps robustus Batrachoseps wrighti Batrachoseps campi Batrachoseps attenuatus Batrachoseps pacificus Batrachoseps major Batrachoseps luciae Batrachoseps minor Batrachoseps incognitus • There is minimal range overlap between the two microhabitat types. Batrachoseps gavilanensis Batrachoseps gabrieli Batrachoseps stebbinsi Batrachoseps relictus Batrachoseps simatus Batrachoseps nigriventris Batrachoseps gregarius Preliminary results discovered that 71% of the arboreal species distribution Batrachoseps diabolicus Batrachoseps regius Batrachoseps kawia kekchiorum Dendrotriton cuchumatanus Dendrotriton chujorum IUCN or EOO made Polygons Biologically informed climate variables Dendrotriton sanctibarbarus Dendrotriton xolocalcae does not overlap with the terrestrial species distribution. Dendrotriton megarhinus Dendrotriton rabbi Dendrotriton bromeliacius Cryptotriton monzoni Cryptotriton nasalis Cryptotriton veraepacis Cryptotriton sierraminensis Cryptotriton alvarezdeltoroi Nyctanolis pernix Nototriton limnospectator From these observations we tested the following hypotheses: Nototriton brodiei Nototriton barbouri Nototriton saslaya Nototriton richardi Nototriton picadoi Nototriton abscondens taylori Oedipina gracilis Oedipina poelzi (H1) Terrestrial species do not live in habitats suitable for arboreality Oedipina pseudouniformis Oedipina cyclocauda Oedipina savagei Oedipina gephyra Oedipina parvipes Oedipina maritima Oedipina complex Oedipina elongata Oedipina carablanca (H2) Arboreal species do not live in habitats suitable for terrestrial life silus Thorius munificus Thorius lunaris Thorius pennatulus Gridded by Point data to represent Thorius spilogaster Thorius minydemus Thorius schmidti 2.5 arc-min Resolution NA microhabitats Thorius magnipes Thorius troglodytes Thorius dubitus Thorius narisovalis Thorius minutissimus Thorius boreas Thorius aureus Thorius pulmonaris Thorius omiltemi Thorius grandis Thorius papaloae Thorius macdougalli Thorius arboreus Chiropterotriton chondrostega Chiropterotriton lavae Chiropterotriton dimidiatus Chiropterotriton priscus Chiropterotriton mosaueri Chiropterotriton cracens Chiropterotriton magnipes Chiropterotriton multidentatus Chiropterotriton arboreus Arboreal Terrestrial engelhardti x 5 Bolitoglossa rostrata Bolitoglossa helmrichi Bolitoglossa cuchumatana Bolitoglossa lincolni Bolitoglossa meliana Bolitoglossa franklini Suitability Model Suitability Model Bolitoglossa flavimembris Bolitoglossa morio Bolitoglossa suchitanensis Bolitoglossa heiroreias Bolitoglossa synoria Bolitoglossa celaque Bolitoglossa porrasorum Consensus climatic Bolitoglossa longissima Centroid point for Bolitoglossa decora Bolitoglossa dunni Bolitoglossa diaphora

60 suitability model MAXENT each gridded cell Bolitoglossa conanti Bolitoglossa carri Bolitoglossa oaxacensis Bolitoglossa macrinii Suitability Bolitoglossa zapoteca Bolitoglossa riletti Bolitoglossa hermosa Bolitoglossa sombra 1.0 Bolitoglossa dofleini Bolitoglossa alvaradoi Bolitoglossa stuarti Bolitoglossa hartwegi Bolitoglossa rufescens Bolitoglossa occidentalis Note: 293 species were used for this study (56 arboreal species, 201 Bolitoglossa platydactyla Bolitoglossa flaviventris Bolitoglossa mombachoensis 40 0.8 Bolitoglossa mulleri terrestrial species), after excluding European and Asian species. Bolitoglossa mexicana Bolitoglossa yucatana Bolitoglossa odonnelli Bolitoglossa alberchi Bolitoglossa pesrubra Bolitoglossa gracilis Bolitoglossa tica 0.6 Bolitoglossa subpalmata Bolitoglossa gomezi Bolitoglossa bramei Bolitoglossa minutula Bolitoglossa marmorea Bolitoglossa epimela Bolitoglossa cerroensis Arboreal Bolitoglossa nigrescens 0.4 Bolitoglossa schizodactyla 20 Bolitoglossa robusta Bolitoglossa compacta

Distribution Bolitoglossa colonnea Conclusions Bolitoglossa cuna Bolitoglossa biseriata Bolitoglossa peruviana Bolitoglossa palmata 0.2 Bolitoglossa paraensis Bolitoglossa equatoriana Bolitoglossa orestes Bolitoglossa medemi 59.3% 4.2% Despite the broad scale of these climate data, we found: Bolitoglossa adspersa orchimelas Pseudoeurycea orchileucos Pseudoeurycea werleri Pseudoeurycea obesa Overlap 0 Overlap Pseudoeurycea leprosa Pseudoeurycea firscheini Pseudoeurycea unguidentis Pseudoeurycea ruficauda (H1) Little of the terrestrial species distribution is suitable Pseudoeurycea saltator Pseudoeurycea juarezi Pseudoeurycea aurantia Pseudoeurycea rex Pseudoeurycea smithi Pseudoeurycea papenfussi for arboreality (35%) Pseudoeurycea cochranae Pseudoeurycea melanomolga Pseudoeurycea gadovii Pseudoeurycea tenchalli Pseudoeurycea mixcoatl Pseudoeurycea longicauda Pseudoeurycea robertsi 20 Pseudoeurycea altamontana

− (H2) Even less of the arboreal species distribution is suitable Parvimolge townsendi parvus bellii galeanae Aquiloeurycea quetzalanensis Aquiloeurycea cephalica −140 −120 −100 −80 −60 −40 −20 for terrestrial life (4%) Plethodon neomexicanus Plethodon larselli Plethodon vandykei Plethodon idahoensis Plethodon vehiculum Plethodon dunni Plethodon stormi Plethodon elongatus Future Directions Plethodon asupak Plethodon serratus Plethodon nettingi Plethodon hubrichti Plethodon richmondi Plethodon electromorphus Plethodon virginia • These results suggest climate may have influenced the Plethodon hoffmani Plethodon shenandoah Plethodon cinereus Plethodon websteri Plethodon wehrlei Plethodon punctatus macroevolution of arboreality in this family. Further research is Plethodon welleri Plethodon ventralis Terrestrial Plethodon dorsalis Plethodon angusticlavius

Distribution Plethodon yonahlossee needed to elucidate this pattern. Plethodon petraeus Plethodon kentucki Plethodon ouachitae Plethodon fourchensis Plethodon caddoensis Plethodon teyahalee Plethodon cylindraceus 35.0% 84.4% • Understanding the climatic limits of different species can inform Plethodon cheoah Plethodon montanus Plethodon metcalfi Plethodon meridianus Plethodon amplus Plethodon jordani Overlap Overlap future climate projection models. [2] Plethodon glutinosus Plethodon shermani Plethodon aureolus Plethodon kiamichi Plethodon kisatchie Plethodon sequoyah Plethodon albagula Karsenia koreana Hydromantes shastae Hydromantes platycephalus Hydromantes brunus Hydromantes imperialis Hydromantes supramontis Hydromantes flavus Hydromantes genei Hydromantes strinatii Acknowledgments & Literature Cited Hydromantes italicus Hydromantes ambrosii Phaeognathus hubrichti Figure 1. We used environmental niche models (ENM) to evaluate the overlap in species distributions Desmognathus wrighti Desmognathus quadramaculatus Thanks to the following: NSF for funding. Comments & feedback from Dr. Dean Adams’ evolutionary morphology lab, specifically Desmognathus marmoratus Desmognathus folkertsi Desmognathus aeneus and their corresponding niche models. Blue coloration representing 0.5 suitability, red coloration Desmognathus welteri Bryan Juarez and Elizabeth Glynne. IUCN for open access data. R statistical software & packages of dismo, rgdal, and rgeos. Desmognathus fuscus Desmognathus auriculatus Desmognathus orestes 1. Baken and Adams. Accepted. Macroevolutionary of Arboreality in Salamanders. Ecology and Evolution. Desmognathus ochrophaeus representing 0.25-0.49 suitability, and white coloration representing 0-0.24 suitability. Models Desmognathus carolinensis Desmognathus imitator Desmognathus santeetlah 2. Mcentire, Kd. "Plant Climbing by Salamanders as a Compensatory Behavior in Relation to Climate." Integrative and Comparative Biology. 59 (2019) Desmognathus ocoee Desmognathus monticola Desmognathus apalachicolae averaged over 5 all with AUC above 0.85. 3. silouettes: Phylopic, Matt Reinbold (modified by T. Michael Keesey), Liscence link: http://creativecommons.org/licenses/by-sa/3.0/ Desmognathus brimleyorum Desmognathus abditus Ensatina eschscholtzii Aneides hardii 4. Bonett, R. M., and A. L. Blair. 2017. Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl. Acad. Sci. 114(37):9936-9941. Aneides lugubris Aneides flavipunctatus Aneides vagrans Aneides ferreus Aneides aeneus