Functional Morphology and Evolution of Tail Autotomy in Salamanders

Total Page:16

File Type:pdf, Size:1020Kb

Functional Morphology and Evolution of Tail Autotomy in Salamanders Functional Morphology and Evolution of Tail Autotomy in Salamanders DAVID B. WAKE AND IAN G. DRESNER Department of Anatomy, The University of Chicago, Chicago, lllinois ABSTRACT Basal tail constriction occurs in about two-thirds of the species of plethodontid salamanders. The constriction, which marks the site of tail autotomy, is a result of a reduction in length and diameter of the first caudal segment. Gross and microscopic anatomical studies reveal that many structural specializations are associated with basal constriction, and these are considered in detail. Areas of weak- ness in the skin at the posterior end of the first caudal segment, at the attachment of the musculature to the intermyotomal septum at the anterior end of the same segment, and between the last caudosacral and first caudal vertebrae precisely define the route of tail breakage. During autotomy the entire tail is shed, and a cylinder of skin one segment long closes over the wound at the end of the body. It is suggested that specializations described in this paper have evolved jndepend- ently in three different groups of salamanders. Experiments and field observations reveal that, contrary to expectations, frequency of tail breakage is less in species with apparent provisions for tail autotomy than in less specialized species. The tail is a very important, highly functional organ in salamanders and it is suggested that selection has been for behavioral and structural adaptations for control of tail loss, rather than for tail loss per se. Tail loss and subsequent regeneration is sent facts concerning anatomical details a well documented phenomenon among of the basal tail region, a functional inter- the lower vertebrates. Although much is pretation of the morphology of the region, known concerning regeneration, the litera- and a hypothesis concerning the evolution ture on tail breakage is scattered and of the observed morphological specializa- scanty. This is particularly true of sala- tions. manders, a group that contains a number of species reputed to practice tail autot- MATERIALS AND METHODS omy. The present study was undertaken Cleared and stained as well as skeleton- in an attempt to determine those anatom- ized specimens of adults of all genera and ical features that permit and facilitate tail most species of plethodontid salamanders breakage in salamanders. In addition, we have been available for the study (see wished to investigate morphological spe- Wake, '66, for complete list). In addition, cializations in those species reported to large numbers of x-rays have been exam- practice tail autotomy, and to attempt an ined to obtain osteological information. analysis of the evolution of such specializa- Histological investigations were made on tions. Our working hypothesis has been adults of the following species of the fam- that species which demonstrate specialized ily Plethodontidae : Desmognathus fuscus, behavioral patterns resulting in tail loss D. quadramaculatus, D. ochrophaeus, likely have evolved physiological and ana- Pseudotriton ruber, Gyrinophilus porphy- tomical specializations which facilitate the riticus, Eurycea bislineata, Hemidactylium phenomenon. These morphological fea- scutatum, Plethodon cinereus, P. jordani, tures might, in turn, provide insight into Aneides lugubris, Ensatina eschscholtzii, the processes leading to structural and Hydromantes brunus, Batrachoseps attenu- functional specialization. atus, B. pacificus, Bolitoglossa subpalmata, Our study has revealed that basal tail B. morio, B. rufescens, Chiropterotriton constriction in salamanders is an indica- chiropterus, C. abscondens, C. multidenta- tion of a series of interrelated morpholog- tus, Pseudoeunjcea leprosa, Oedipina uni- ical specializations. In this paper we pre- formis, Lineatriton lineola, and Thorius J. MORPII., 122: 265-306. 265 266 DAVID B. WAKE AND IAN G. DRESNER dubitus. Emphasis was placed on three all of the tail is lost. Many authors have genera, Hemidactylium, Ensatina, and reported tail autotomy in salamanders, liz- Bolitoglossa. ards, snakes, and mammals. The phenom- Material utilized in the study was fixed enon is most prevalent and most thor- in neutral buffered formalin, Bouin's or oughly understood in lizards (Quattrini, Zenker's fluid, decalcified in dilute HC1 or '52a,b, '54; Etheridge, '67) where breakage buffered EDTA, embedded in paraffin or is intravertebral. The breakage plane fol- parlodion, and sectioned serially in frontal, lows an unossified area that extends trans- sagittal, or transverse planes at 5 to 10 P. versely through from one to many Stains were chosen to best demonstrate vertebrae, along the caudal side of the connective tissue relationships. These in- associated intermyotomal septum and cluded routine Ehrlich's hematoxylin and through the skin. An unsegmented cartila- eosin, orcein (Mallory, '38), aldehyde fuch- ginous rod and rather atypical musculature sin (Gomori, '50), Heidenhain's azan (Lil- and skin is regenerated (Moffat and Bel- lie, '54), Van Gieson's connective tissue lairs, '64). Breakage is between vertebrae stain (Lillie, '54), and Bodian's Protargol in the other groups, but only in salaman- method of silver staining (Bodian, '36). ders is there any apparent morphological Living examples of many species of sal- specialization and only salamanders regen- amanders have been studied in the field erate a virtually normal tail. and laboratory, including Hemidactylium Salamanders may be placed in three scutatum, Ensatina eschscholtzii, Bolito- very general groups based on the structure glossa subpalmata, B. yucatana, Pseudo- of the tail and the pattern of tail breakage eurycea leprosa, Chiropterotriton multiden- (Wake, '66). These groups are not phy- tatus, C. chiropterus, Thorius dubitus, Ietic, but rather represent grades of mor- Batrachoseps attentuatus, B. pacificus, and phological and functional specialization. Plethodon cinereus. Large numbers of pre- Because this classification is convenient served animals have been studied in the and facilitates communication we have Field Museum of Natural History and the adopted it in the present report. University of Michigan Museum of No obvious specializations are associ- Zoology. ated with the breakage of tails in the more The classification scheme adopted here primitive families of salamanders. Break- for the salamander family Plethodontidae age is the result of traumatic events, such is that proposed by Wake ('66). Because as attacks by predators, rock falls, entrap- this classification is as yet relatively un- ment, and similar accidents. These ani- familiar, it is briefly summarized below mals usually have tails that are not sharply (genera in parentheses) : differentiated from the body and hence are Subfamily Desmognathinae (Desmognathus, of large diameter basally. Breakage is usu- Leurognathus, Phaeognathus). ally limited to posterior parts of the tail. Subfamily Plethodontinae Tribe Hemidactyliini ( Gyrinophilus, Pseudo- These animals are said to have thich-based triton, Stereochilus, Typhlotriton, Eurycea, tails in this study. Species characteristic Typhlomolge, Haideotriton, of this group included in our study are Hemidactylium). Pseudotriton Tuber, Desmognathus fuscus, Tribe Plethodontini (Plethodon, Aneides, Ensatina). and Eurycea bislineata. Tribe Bolitoglossini Some members of the family Salaman- Supergenus Hydromantes (Hydromantes). dridae (e.g. Chwglossa lusitanica) and Supergenus Batrachoseps (Batrachoseps). many members of the family Plethodon- Supergenus Bolitoglossa (Bolitoglossa, Oedipina, Pseudoeulycea, Chiropterotriton, tidae (e.g. Batrachoseps pacificus, Pletho- Lineatriton, Parvimolge, Thorius). don cinereus) have what we call slender- based tails. In these species breakage may Patterns of tail morphology occur at any point in the tail, but the route The term tail autotomy has been used of breakage is specialized in that the skin freely in the literature and it is impossible break occurs one segment posterior to the to determine exactly what various authors muscle break. The result is that, following mean by it. Nevertheless, the end result of breakage, the skin covers the open wound tail autotomy is always the same - part or and facilitates healing. This pattern, first TAIL AUTOTOMY IN SALAMANDERS 267 mentioned by Piersol ('lo), is called the sines) species. The amount of constriction wound-healing specialization by us. and details of structure differ considerably A final group that includes almost two- among the species. Constriction is pro- thirds of the species of the family Pletho- nounced in most, but is barely evident in dontidae has constricted-based tails. A dis- Oedipina, Lineatriton, and some species of tinct tail constriction is found at the base other genera. A universal feature of the of the tail and breakage, when it occurs, group is the presence of a first caudal seg- is ordinarily at this point. Members of the ment that is short relative to the segments group have been reported to practice tail that immediately precede and follow it. autotomy by many authors. We have stud- This segment is immediately posterior to ied this group more intensively than the the cloaca1 slit and is the first to entirely others, especially the following species : surround the vertebral column. Shortening Hemidactylium scutatum, Ensatina esch- of the segment is most pronounced in those scholtzii, and Bolitoglossa subpalmata. species with obvious basal constriction, With the exception of some brief and gen- such as members of the genus Bolitoglossa.
Recommended publications
  • Extreme Morphological and Ecological Homoplasy in Tropical Salamanders
    Extreme morphological and ecological homoplasy in tropical salamanders Gabriela Parra-Olea* and David B. Wake† Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160 Contributed by David B. Wake, April 25, 2001 Fossorial salamanders typically have elongate and attenuated We analyzed sequences of mtDNA of many tropical bolito- heads and bodies, diminutive limbs, hands and feet, and extremely glossines, including all recognized genera, and determined that elongate tails. Batrachoseps from California, Lineatriton from east- Lineatriton and Oedipina are much more closely related to other ern Me´xico, and Oedipina from southern Me´xico to Ecuador, all taxa than to each other (3, 4). Not only was Lineatriton deeply members of the family Plethodontidae, tribe Bolitoglossini, resem- nested within the large, mainly Mexican genus Pseudoeurycea, ble one another in external morphology, which has evolved inde- but populations of Lineatriton from different parts of its geo- pendently. Whereas Oedipina and Batrachoseps are elongate be- graphic range were more closely related to different species of cause there are more trunk vertebrae, a widespread homoplasy Pseudoeurycea than to each other. Here we analyze molecular (parallelism) in salamanders, the genus Lineatriton is unique in data for 1,816 bp of mtDNA derived from three genes, reject the having evolved convergently by an alternate ‘‘giraffe-neck’’ de- monophyly of Lineatriton, and support an extraordinary case of velopmental program. Lineatriton has the same number of trunk homoplasy in a putative species that previously has been con- vertebrae as related, nonelongated taxa, but individual trunk sidered to be extremely specialized, and unique, in both mor- vertebrae are elongated.
    [Show full text]
  • Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
    COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela­ tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char­ acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri­ nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac­ tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth­ odontini. The highly diversified tribe Bolitoglossini includes three super­ genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig­ ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char­ acterized. Range maps are presented for all genera. Relationships of all genera are discussed.
    [Show full text]
  • Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
    Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered.
    [Show full text]
  • Amphibia: Caudata: Plethodontidae
    AMPHIBIA: CAUDATA: PLETHODONTIDAE Catalogue of American Amphibian and Reptiles. Parra-Olea, G. 1998. Pseudoeutyea nigrornnculntn. Pseudoeurycea nigromaculata Taylor Boliroglossa nigromac~ilnraTaylor 194 1 : 14 1. Type locality, "Cuautlapan, Veracruz [I g052'N, 97'0 1 'W; Mexico]." Holotype, National Museum of Natural History (USNM) 110635, adult female. collected January-February 1940 by H.M. Smith (not examined by author). Psa~rcloeu~cennigrornaculntn Taylor 1944:209. CONTENT. No subspecies are recognized. DEFINITION. Adult Pserrrloenpceo nigromnculatn are ro- bust and of moderate size, with mean SVL = 49.2mm (44.9- 55.8). Females tend to be larger than males, but no significant difference in total body length occurs. Tail length is longer than SVL (2-12 mm longer). Costal grooves number 13. The limbs are long and, when adpressed, are separated by a space of 1-2.5 costal grooves. The digits are long and webbed at their bases. Toes are broadly flattened and tips are truncate. Vomerine teeth number 35 (mean) and about 60 maxillary teeth are present. In alcohol a pattern of different intensities of brown is present along the body. The neck is dark brown, the head and dorsum are lighter, and the tail is light brown or beige. Distinct scat- tered black spots are present all along the dorsum, on the flanks, and all around the tail. The density of spots is higher on the head. The underside of the head and the venter are uniformly MAP. Distribution of Pseudoelrrycea nigromocrrlrrrrr. The circle marks medium brown and without spots. Color in life was described the type locality and the dot indicates the only other known locality.
    [Show full text]
  • I Online Supplementary Data – Sexual Size Dimorphism in Salamanders
    Online Supplementary data – Sexual size dimorphism in salamanders Supplementary data S1. Species data used in this study and references list. Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Andrias davidianus 2 532.5 8 383.0 -0.280 12 Cryptobranchus alleganiensis 53 277.4±5.2 52 300.9±3.4 0.084 Yes 61 Batrachuperus karlschmidti 10 80.0 10 84.8 0.060 26 Batrachuperus londongensis 20 98.6 10 96.7 -0.019 12 Batrachuperus pinchonii 5 69.6 5 74.6 0.070 26 Batrachuperus taibaiensis 11 92.9±12.1 9 102.1±7.1 0.099 Yes 27 Batrachuperus tibetanus 10 94.5 10 92.8 -0.017 12 Batrachuperus yenyuadensis 10 82.8 10 74.8 -0.096 26 Hynobius abei 24 57.8±2.1 34 55.0±1.2 -0.048 Yes 92 Hynobius amakusaensis 22 75.4±4.8 12 76.5±3.6 0.014 No 93 Hynobius arisanensis 72 54.3±4.8 40 55.2±4.8 0.016 No 94 Hynobius boulengeri 37 83.0±5.4 15 91.5±3.8 0.102 Yes 95 Hynobius formosanus 15 53.0±4.4 8 52.4±3.9 -0.011 No 94 Hynobius fuca 4 50.9±2.8 3 52.8±2.0 0.037 No 94 Hynobius glacialis 12 63.1±4.7 11 58.9±5.2 -0.066 No 94 Hynobius hidamontanus 39 47.7±1.0 15 51.3±1.2 0.075 Yes 96 Hynobius katoi 12 58.4±3.3 10 62.7±1.6 0.073 Yes 97 Hynobius kimurae 20 63.0±1.5 15 72.7±2.0 0.153 Yes 98 Hynobius leechii 70 61.6±4.5 18 66.5±5.9 0.079 Yes 99 Hynobius lichenatus 37 58.5±1.9 2 53.8 -0.080 100 Hynobius maoershanensis 4 86.1 2 80.1 -0.069 101 Hynobius naevius 72.1 76.7 0.063 102 Hynobius nebulosus 14 48.3±2.9 12 50.4±2.1 0.043 Yes 96 Hynobius osumiensis 9 68.4±3.1 15 70.2±3.0 0.026 No 103 Hynobius quelpaertensis 41 52.5±3.8 4 61.3±4.1 0.167 Yes 104 Hynobius
    [Show full text]
  • Porthidium Dunni (Hartweg and Oliver, 1938)
    Porthidium dunni (Hartweg and Oliver, 1938). Dunn’s Hognosed Pitviper is a “priority two species” that has been assessed Environmental Vulnerability Score of 16 (see the following article). This pitviper is found primarily at low elevations along the foothills of the Sierra Madre del Sur physiographic region and the coastal plain of the Planicie Costera del Pacífico and Planicie Costera de Tehuantepec physiographic regions (Mata-Silva et al., 2015b) in southern Oaxaca and extreme western Chiapas, Mexico. This individual was found ca. 3.6 km NNW of La Soledad, Municipio de Villa de Tututepec de Melchor Ocampo, Oaxaca. ' © Vicente Mata-Silva 543 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The endemic herpetofauna of Mexico: organisms of global significance in severe peril JERRY D. JOHNSON1, LARRY DAVID WILSON2, VICENTE MATA-SILVA1, ELÍ GARCÍA-PADILLA3, AND DOMINIC L. DESANTIS1 1Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mail: [email protected], and [email protected], and [email protected] 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] 3Oaxaca de Juárez, Oaxaca 68023, Mexico. E-mail: [email protected] ABSTRACT: Life on Earth exists due to the interactions among the atmosphere, hydrosphere, and litho- sphere. Humans, however, have created and are faced with the consequences of an interrelated set of problems that impact all of these spheres, including the biosphere. The decline in the diversity of life is a problem of global dimensions resulting from a sixth mass extinction episode created by humans.
    [Show full text]
  • A Statistical Assessment of Population Trends for Data Deficient Mexican Amphibians
    A peer-reviewed version of this preprint was published in PeerJ on 16 December 2014. View the peer-reviewed version (peerj.com/articles/703), which is the preferred citable publication unless you specifically need to cite this preprint. Quintero E, Thessen AE, Arias-Caballero P, Ayala-Orozco B. 2014. A statistical assessment of population trends for data deficient Mexican amphibians. PeerJ 2:e703 https://doi.org/10.7717/peerj.703 A statistical assessment of population trends for data deficient Mexican amphibians Esther Quintero, Anne E. Thessen, Paulina Arias-Caballero, Bárbara Ayala-Orozco Background: Mexico is the fourth richest country in amphibians and the second country with the highest quantity of threatened amphibian species, and this number could be higher as many species are too poorly known to be accurately assigned to a risk category. The absence of a risk status or an unknown population trend can slow or halt conservation action, so it is vital to develop tools that in the absence of specific demographic data can assess a species’ risk of extinction, population trend, and to better understand which variables increase their vulnerability. Recent studies have demonstrated that the risk of species decline depends on extrinsic and intrinsic trait, thus including both of them for PrePrints assessing extinction might render more accurate assessment of threat. Methods: In this study harvested data from the Encyclopedia of Life (EOL) and the published literature for Mexican amphibians and used these data to assess the population trend of some of the Mexican species that have been assigned to the Data Deficient category of the IUCN using Random Forests, a Machine Learning method that gives a prediction of complex processes and identifies the most important variables that account for the predictions.
    [Show full text]
  • Herpetologists' League
    Herpetologists' League An Aquatic Plethodontid Salamander from Oaxaca, Mexico Author(s): David B. Wake and Jonathan A. Campbell Source: Herpetologica, Vol. 57, No. 4 (Dec., 2001), pp. 509-514 Published by: Allen Press on behalf of the Herpetologists' League Stable URL: http://www.jstor.org/stable/3893057 Accessed: 03-02-2016 23:26 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Herpetologists' League and Allen Press are collaborating with JSTOR to digitize, preserve and extend access to Herpetologica. http://www.jstor.org This content downloaded from 136.152.142.101 on Wed, 03 Feb 2016 23:26:36 UTC All use subject to JSTOR Terms and Conditions Herpetologica,57(4), 2001, 509-514 (? 2001 by The Herpetologists' League, Inc. AN AQUATIC PLETHODONTID SALAMANDER FROM OAXACA, MEXICO DAVID B. WAKE' AND JONATHAN A. CAMPBELL2 'Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA 2Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA ABSTRACT: We describe a new species of Pseudoeurycea from the northern versant of the state of Oaxaca, Mexico. This is the only aquatic species of bolitoglossine salamander known.
    [Show full text]
  • Promoting Conservation of Amphibians at El Pedregal in Mexico City, Mexico
    Conservation Leadership Programme: Final Report Project ID 02244015 Promoting Conservation of Amphibians at El Pedregal in Mexico City, Mexico. Mexico, August 2015–February 2016 Institutions involved: Centro de Educación Ambiental Ecoguardas (Secretaría de Medio Ambiente de la Ciudad de México), Centro de Educación Ambiental del Ajusco Medio (PRONATURA México A.C.) and Reserva Ecológica del Pedregal de San Ángel (UNAM) Overall aim: To generate baseline information about local amphibian species in urban areas of Mexico City. Authors: José M. Serrano, Gloria Tapia, Flor G. Vázquez-Corzas & Adriana Sandoval-Comte. Contact address: [email protected] Webpage: https://www.facebook.com/anfibiospedregal/ Date: May 30th 2017 1 Table of Contents Project Partners & Collaborators ........................................................................................................................ 4 Section 1: ............................................................................................................................................................ 5 1.1 Summary .................................................................................................................................................. 5 1.2 Introduction ............................................................................................................................................... 5 1.3 Project members ...................................................................................................................................... 7 Section
    [Show full text]
  • Supporting Online Material For
    www.sciencemag.org/cgi/content/full/science.1194442/DC1 Supporting Online Material for The Impact of Conservation on the Status of the World’s Vertebrates Michael Hoffmann,* Craig Hilton-Taylor, Ariadne Angulo, Monika Böhm, Thomas M. Brooks, Stuart H. M. Butchart, Kent E. Carpenter, Janice Chanson, Ben Collen, Neil A. Cox, William R. T. Darwall, Nicholas K. Dulvy, Lucy R. Harrison, Vineet Katariya, Caroline M. Pollock, Suhel Quader, Nadia I. Richman, Ana S. L. Rodrigues, Marcelo F. Tognelli, Jean-Christophe Vié, John M. Aguiar, David J. Allen, Gerald R. Allen, Giovanni Amori, Natalia B. Ananjeva, Franco Andreone, Paul Andrew, Aida Luz Aquino Ortiz, Jonathan E. M. Baillie, Ricardo Baldi, Ben D. Bell, S. D. Biju, Jeremy P. Bird, Patricia Black-Decima, J. Julian Blanc, Federico Bolaños, Wilmar Bolivar-G., Ian J. Burfield, James A. Burton, David R. Capper, Fernando Castro, Gianluca Catullo, Rachel D. Cavanagh, Alan Channing, Ning Labbish Chao, Anna M. Chenery, Federica Chiozza, Viola Clausnitzer, Nigel J. Collar, Leah C. Collett, Bruce B. Collette, Claudia F. Cortez Fernandez, Matthew T. Craig, Michael J. Crosby, Neil Cumberlidge, Annabelle Cuttelod, Andrew E. Derocher, Arvin C. Diesmos, John S. Donaldson, J. W. Duckworth, Guy Dutson, S. K. Dutta, Richard H. Emslie, Aljos Farjon, Sarah Fowler, Jörg Freyhof, David L. Garshelis, Justin Gerlach, David J. Gower, Tandora D. Grant, Geoffrey A. Hammerson, Richard B. Harris, Lawrence R. Heaney, S. Blair Hedges, Jean- Marc Hero, Baz Hughes, Syed Ainul Hussain, Javier Icochea M., Robert F. Inger, Nobuo Ishii, Djoko T. Iskandar, Richard K. B. Jenkins, Yoshio Kaneko, Maurice Kottelat, Kit M. Kovacs, Sergius L.
    [Show full text]
  • WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
    WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C.
    [Show full text]
  • PLETHODONTIDAE Pseudoeurycea Unguidentis
    P AMPHIBIA: CAUDATA: PLETHODONTIDAE PSEUDOEURYCEAUNGUIDENTIS Catalogue of American Amphibians and Reptiles. Lynch, J.F. and D.B. Wake. 1999. Pseudoeurycea unguidentis. Pseudoeurycea unguidentis (Taylor) Bolitoglossa unguiden~isTaylor1941 57. Type locality, "Cerro San Felipe, about 15 kilometers north of Oaxaca, Oaxaca [MCxico], at an elevation of about 2200 meters in mixed for- est containing much pine." Holotype, Field Museum of Natural History (FMNH) 10001 1 (formerly EHT-HMS 17102). adult male, collected by E.H. Taylor, 20August 1938 (not examined by authors). Pseudoeurycea unguidentis: Taylor 1944:209. CONTENT. No subspecies are recognized. DEFINITION. Compared with other species in the genus, Pseudoeurycea unguidentis is moderately large (maximum SVL = 62 mm) and has a very long tail (tail length exceeds SVL in adults), long limbs (combined limb IengtMSVL > 1.0). large hands and feet, and a narrow head. Males tend to exceed fe- males in SVL, but have relatively narrower heads and longer limbs, and possess bifid premaxillary teeth. Compared with MAP. Distribution of Pseudoeur.vcea unguidenris. The circle repre- adults, juveniles have shorter relative tail length and broader sents the type locality and other known localities in close proximity to heads. the type locality. The background color of the dorsum is medium gray, grad- ing to pale gray laterally. The middorsal region tends to be mottled brown and gray, but lacks a distinctly delineated mid- DISTRIBUTION. The only sites where Pseudoerirycen P dorsal stripe. The sides usually are marked with irregular patches unguidentis is known to occur are at high elevations (2,900- of white iridophores. The belly and undersurface of the tail are 3,050 m) in mixed oak-conifer forest on Cerro San Felipe and a uniform pale gray; the chin is white and flecked with tiny adjacent Cerro San Luis, about 15 km north of the city of Oaxaca.
    [Show full text]