The Phylogeny of Ceratosauria (Dinosauria: Theropoda)

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogeny of Ceratosauria (Dinosauria: Theropoda) Journal of Systematic Palaeontology 6 (2): 183–236 Issued 23 May 2008 doi:10.1017/S1477201907002246 Printed in the United Kingdom C The Natural History Museum The Phylogeny of Ceratosauria (Dinosauria: Theropoda) Matthew T. Carrano∗ Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA Scott D. Sampson Department of Geology & Geophysics and Utah Museum of Natural History, University of Utah, Salt Lake City, UT 84112 USA SYNOPSIS Recent discoveries and analyses have drawn increased attention to Ceratosauria, a taxo- nomically and morphologically diverse group of basal theropods. By the time of its first appearance in the Late Jurassic, the group was probably globally distributed. This pattern eventually gave way to a primarily Gondwanan distribution by the Late Cretaceous. Ceratosaurs are one of several focal groups for studies of Cretaceous palaeobiogeography and their often bizarre morphological develop- ments highlight their distinctiveness. Unfortunately, lack of phylogenetic resolution, shifting views of which taxa fall within Ceratosauria and minimal overlap in coverage between systematic studies, have made it difficult to explicate any of these important evolutionary patterns. Although many taxa are fragmentary, an increase in new, more complete forms has clarified much of ceratosaur anatomy, allowed the identification of additional materials and increased our ability to compare specimens and taxa. We studied nearly 40 ceratosaurs from the Late Jurassic–Late Cretaceous of North and South America, Europe, Africa, India and Madagascar, ultimately selecting 18 for a new cladistic analysis. The results suggest that Elaphrosaurus and its relatives are the most basal ceratosaurs, followed by Ceratosaurus and Noasauridae + Abelisauridae (= Abelisauroidea). Several additional forms were identified as noasaurids, including Genusaurus. Within Abelisauridae, our analysis reveals a clade including Majungasaurus and the Indian forms, as well as a more weakly supported clade comprising Carnotaurus and Ilokelesia. These results greatly clarify the sequence of character acquisition lead- ing to, and within, Abelisauroidea. Thanks to new noasaurid materials (particularly Masiakasaurus), numerous formerly ambiguous characters can now be resolved as either abelisaurid, noasaurid or abelisauroid synapomorphies. Skull and forelimb shortening, for example, now appear to be features confined to Abelisauridae. Nevertheless, a great deal of phylogenetic resolution is lacking, particu- larly among noasaurids, which hampers attempts to glean meaningful biogeographical information from the phylogeny. As a result, temporal and geographical sampling biases are probably contributing to the apparent patterns in the data and we suggest that definitive answers must await new discover- ies. None of the recent ceratosaurian discoveries bear directly on the controversy surrounding latest Cretaceous ceratosaur biogeography. KEY WORDS systematics, dinosaur, Saurischia, evolution, Abelisauroidea, Abelisauridae, Noasaur- idae, biogeography, morphology Contents Introduction 185 Historical background 185 Constituency and placement of Ceratosauria 185 Ingroup relationships of Ceratosauria 187 Materials and methods 187 Outgroup relationships 187 Operational taxonomic units 190 Institutional abbreviations 190 Abelisaurus comahuensis Bonaparte & Novas, 1985 190 Aucasaurus garridoi Coria et al., 2002 191 Carnotaurus sastrei Bonaparte, 1985 191 Ceratosaurus nasicornis Marsh, 1884a 192 Deltadromeus agilis Sereno et al., 1996 192 Elaphrosaurus bambergi Janensch, 1920 193 ∗E-mail address: [email protected]. 184 Matthew T. Carrano and Scott D. Sampson Ekrixinatosaurus novasi Calvo et al., 2004 193 Genusaurus sisteronis Accarie et al., 1995 194 Ilokelesia aguadagrandensis Coria & Salgado, 2000 194 Indosaurus matleyi Huene & Matley, 1933 195 Laevisuchus indicus Huene & Matley, 1933 195 Majungasaurus crenatissimus (Deperet,´ 1896) Lavocat, 1955 195 Masiakasaurus knopfleri Sampson et al., 2001 196 Noasaurus leali Bonaparte & Powell, 1980 196 Rajasaurus narmadensis Wilson et al., 2003 197 Rugops primus Sereno et al., 2004 197 Spinostropheus gautieri (Lapparent, 1960) Sereno et al., 2004 197 Velocisaurus unicus Bonaparte, 1991b 198 Characters 198 Phylogenetic methods 198 Biogeographical methods 198 Results 199 Phylogenetic results 199 Biogeographical results 199 Discussion 200 Comparisons with previous analyses 200 Basal taxa 200 Deltadromeus 201 Noasauridae 201 Abelisauridae 202 Fragmentary taxa 202 Betasuchus bredai (Seeley, 1883) Huene, 1932 202 Coeluroides largus Huene & Matley, 1933 202 Compsosuchus solus Huene & Matley, 1933 202 Dryptosauroides grandis Huene & Matley, 1933 202 Genyodectes serus Woodward, 1901 202 Indosuchus raptorius Huene & Matley, 1933 207 Jubbulpuria tenuis Huene & Matley, 1933 208 Lametasaurus indicus Matley, 1924 208 Ligabueino andesi Bonaparte, 1996 208 Ornithomimoides mobilis Huene & Matley, 1933 208 Ornithomimoides? barasimlensis Huene & Matley, 1933 208 Pycnonemosaurus nevesi Kellner & Campos, 2002 208 Quilmesaurus curriei Coria, 2001 208 Tarascosaurus salluvicus Le Loeuff & Buffetaut, 1991 209 Xenotarsosaurus bonapartei Mart´ınez et al., 1986 209 South American, Cretaceous abelisauroids 209 Tendaguru ceratosaurs 209 European abelisauroids 210 North African, medial Cretaceous abelisauroids 210 North African, Late Cretaceous abelisauroids 210 Evolutionary Implications 210 Morphology 210 Biogeography 212 Stratigraphical fit 214 Persistent problems 214 Conclusions 214 Acknowledgements 215 References 215 Appendix 1. List of characters 220 Appendix 2. Taxon-by-character matrix for the 21 taxa used in this study 234 The Phylogeny of Ceratosauria (Dinosauria: Theropoda) 185 Appendix 3. Theropod specimens examined 235 Supplementary Data 236 Introduction taxon – indeed, a single specimen – from the Upper Jurassic Morrison Formation of Colorado, Ceratosaurus nasicornis. In 1999, we began an extensive phylogenetic study of Thero- Marsh noted certain characteristics of Ceratosaurus (fused poda (Dinosauria: Saurischia), to elucidate the detailed inter- pelvic elements, a coossified metatarsus: Marsh 1884c)that relationships of the basal (i.e. non-coelurosaurian) members were then unknown elsewhere among theropods, but were of this clade. In the intervening years, this task has involved also found in birds. Other features (midline dorsal osteo- firsthand examination of hundreds of specimens representing derms, a median nasal horn) were apparently unique. Cerato- more than 70 taxa and the critical review of more than 600 saurus seemed to occupy a distinct position among theropods published characters and character state observations. The that deserved formal recognition and, therefore, he set it apart results of our broader study are now in preparation and will from taxa such as Allosaurus, Megalosaurus and the ‘coe- be published elsewhere. In this paper, we focus on the phylo- lurosaurs’ in its own infraorder, Ceratosauria (Marsh 1884b). geny of Ceratosauria, particularly the primarily Gondwanan Later, the group was informally allied with Ornithomimidae radiations of the families Abelisauridae and Noasauridae. (Marsh 1892). Most previous systematic studies of Ceratosauria (e.g. For nearly half a century thereafter, the distinctiveness Coria & Salgado 2000; Coria et al. 2002; Lamanna et al. of Ceratosaurus among theropods was either explicitly or im- 2002; Wilson et al. 2003) have focused on the placement plicitly supported (e.g. Gilmore 1920). When Huene (1914, of individual – usually new – taxa. As such, they typically 1923, 1926) formally reorganised Theropoda into two largely employ relatively complete taxa with the goal of achieving size-based suborders (Coelurosauria and Carnosauria), he the greatest possible resolution. By contrast, other works specifically exempted both Tyrannosaurus and Ceratosaurus (e.g. Novas 1997; Tykoski & Rowe 2004) have attempted from ‘typical’ positions among the other large carnosaurs (al- to resolve relationships within ceratosaurs as a whole. Not though citing different reasons for each). He allied Cerato- surprisingly (see below), the latter studies tend to achieve saurus with the smaller Proceratosaurus bradleyi from the more limited resolution, with rather less agreement between Bathonian Great Oolite of England, based on the supposed them. presence of a nasal ‘horn’ in the latter. This relationship Much of the problem stems from the highly incomplete was recently supported by Madsen & Welles (2000), but has nature of many ceratosaur taxa, resulting in generally poor been questioned by most other workers (Paul 1988a, b; Holtz resolution and/or the tendency of researchers to exclude nu- 2000; Rauhut 2000, 2003). merous taxa. In addition, discrepancies can arise when stud- Very few additional taxa have been referred to Cer- ies employ different taxon samples, using only a stable core atosauria sensu Marsh, 1884b. Among these were the frag- group to which selected taxa of interest are added. This paper mentary materials described as Ceratosaurus (?) roech- attempts to alleviate several of these difficulties by presenting lingi (Kimmeridgian–Tithonian, Tendaguru Beds, Tanzania: a character and taxon-rich analysis of ceratosaur theropods, Janensch 1925) and Chienkosaurus ceratosauroides which is then analysed in several different iterations. (Tithonian, Kyangyuan Series, China: Young 1942). Other We begin with the presumption, supported in several poorly known species (e.g. Megalosaurus
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • Jurassic Park" Have Come to Pass
    JURASSIC WORLD and INDOMINUS REX 0. JURASSIC WORLD and INDOMINUS REX - Story Preface 1. EARLY DINOSAUR DISCOVERIES 2. THE JURASSIC PERIOD 3. JURASSIC-ERA DINOSAURS 4. FOSSILIZED AMBER 5. THE SOLNHOFEN LIMESTONE 6. TYRANNOSAURUS REX 7. T-REX - SUE 8. PTERANODON 9. TRICERATOPS 10. VELOCIRAPTOR 11. SPINOSAURUS 12. DINOSAUR TRACKS AND DISPUTES 13. NEW DINOSAUR DISCOVERIES 14. JURASSIC WORLD and INDOMINUS REX What do you do when you want to boost visitor attendance to your dinosaur-dominated, Jurassic World theme park? Use DNA, from four different dinosaurs, and “in the Hammond lab” create something entirely new and fearsome. Then ... give the new creature a name which signifies its awesome power: Indominus rex. At least ... that’s how the story theme works in the 2015 film “Jurassic World.” So ... let’s travel back in time, to the age of the dinosaurs, and meet the four interesting creatures whose DNA led to this new and ferocious predator: Rugops; Carnotaurus; Giganotosaurus; Majungasaurus. If—contrary to plan—Indominus rex becomes a killing machine, we have to ask: Did she “inherit” that trait from her “ancestors?” Let’s examine the question, starting with Rugops (ROO-gops). What we know about this theropod, from a physical standpoint, comes from a single, nearly complete and fossilized skull. With its weak but gaping jaw and skull, Rugops—which means “wrinkle face”—is not a predator like the Cretaceous-Period Spinosaurus. Instead, Rugops is a natural-born scavenger, likely waiting in the wings for what’s left of a Spinosaurus-caught, Cretaceous-era fish known as Onchopristis. Living off the scraps of meals, killed by another creature, could be enough for a Rugops.
    [Show full text]
  • Sereno 20060098.Vp
    Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger PAUL C. SERENO and STEPHEN L. BRUSATTE Sereno, P.C. and Brusatte, S.L. 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53 (1): 15–46. We report the discovery of basal abelisaurid and carcharodontosaurid theropods from the mid Cretaceous (Aptian– Albian, ca. 112 Ma) Elrhaz Formation of the Niger Republic. The abelisaurid, Kryptops palaios gen. et sp. nov., is repre− sented by a single individual preserving the maxilla, pelvic girdle, vertebrae and ribs. Several features, including a maxilla textured externally by impressed vascular grooves and a narrow antorbital fossa, clearly place Kryptops palaios within Abelisauridae as its oldest known member. The carcharodontosaurid, Eocarcharia dinops gen. et sp. nov., is repre− sented by several cranial bones and isolated teeth. Phylogenetic analysis places it as a basal carcharodontosaurid, similar to Acrocanthosaurus and less derived than Carcharodontosaurus and Giganotosaurus. The discovery of these taxa sug− gests that large body size and many of the derived cranial features of abelisaurids and carcharodontosaurids had already evolved by the mid Cretaceous. The presence of a close relative of the North American genus Acrocanthosaurus on Af− rica suggests that carcharodontosaurids had already achieved a trans−Tethyan distribution by the mid Cretaceous. Key words: Theropod, abelisaurid, allosauroid, carcharodontosaurid, Kryptops, Eocarcharia, Cretaceous, Africa. Paul C. Sereno [[email protected]], Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, Illinois, 60637, USA; Stephen L. Brusatte [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom.
    [Show full text]
  • Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
    Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • Coossified Tarsometatarsi in Theropod Dinosaurs and Their Bearing on the Problem of Bird Origins
    HALSZKA OSM6LSKA COOSSIFIED TARSOMETATARSI IN THEROPOD DINOSAURS AND THEIR BEARING ON THE PROBLEM OF BIRD ORIGINS OSM6LSKA, H. : Coossified tarsometatarsi in theropod dinosaurs and their bearing on the problem of bird origins, Palaeontologia Polonica, 42, 79-95, 1981. Limb remains of two small theropod dinosaurs from the Upper Cretaceous deposits of Mongolia display fused tarsometatarsi. Presence of fusion in the tarsometatarsus in some theropods is consi­ dered as additional evidence for the theropod origin of birds. E/misaurus rarus gen. et sp. n. is described based upon a fragmentary skeleton represented by limbs. Family Elmisauridae novo is erected to include Elmisaurus, Chirostenotes GlLMORE and Ma crophalangia STERNBERG. Key words: Dinosauria, Theropoda, bird origins, Upper Cretaceous, Mongolia. Halszka Osmolska , ZakladPaleobiologii, Polska Akademia Nauk, Al. Zw irki i Wigury 93,02-089 War­ szawa, Po/and. Received: June 1979. Streszczenie. - W pracy opisano szczatki malych dinozaur6w drapieznych z osad6w gornokredo­ wych Mongolii . Stopa tych dinozaur6w wykazuje obecnosc zrosnietego tarsomet atarsusa. Zrosniecie to stanowi dodatkowy dow6d na pochodzenie ptak6w od dinozaur6w drapieznych, Opisano nowy rodzaj i gatunek dinozaura drapieznego E/misaurus rarus, kt6ry zaliczono do nowej rodziny Elmisau­ ridae . Do rodziny tej, opr6cz Elmisaurus, naleza: Chirostenotes GILMORE i Macr opha/angia STERNBERG. Praca byla finansowana przez Polska Akademie Nauk w ramach problemu rniedzyresorto­ wego MR 11-6. INTRODUCTION During the Polish-Mongolian
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • A Century of Spinosaurs - a Review and Revision of the Spinosauridae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online A century of spinosaurs - a review and revision of the Spinosauridae with comments on their ecology HONE David William Elliott1, * HOLTZ Thomas Richard Jnr2 1 School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK 2 Department of Geology, University of Maryland, College Park, MD 20742 USA Abstract: The spinosaurids represent an enigmatic and highly unusual form of large tetanuran theropods that were first identified in 1915. A recent flurry of discoveries and taxonomic revisions of this important and interesting clade had added greatly to our knowledge, however, spinosaur body fossils are generally rare and most species are known from only limited skeletal remains. Their unusual anatomical adaptations to the skull, limbs and axial column all differ from other large theropods and point to an unusual ecological niche and a lifestyle intimately linked to water. Keywords: Theropoda, Megalosauroidea, Baryonychinae, Spinosaurinae, palaeoecology E-mail: [email protected] 1 Introduction The Spinosauridae is an enigmatic clade of large and carnivorous theropods from the Jurassic and Cretaceous that are known from both Gondwana and Laurasia (Holtz et al., 2004). Despite their wide temporal and geographic distribution, the clade is known primarily from teeth and the body fossil record is extremely limited (Bertin, 2010). As such, relatively little is known about this group of animals, although their unusual morphology with regard to skull shape, dentition, dorsal neural spines and other features mark them out as divergent from the essential bauplan of other non-tetanuran theropods (Fig 1).
    [Show full text]
  • 506 Kellner.Pmd
    Arquivos do Museu Nacional, Rio de Janeiro, v.62, n.3, p.309-320, jul./set.2004 ISSN 0365-4508 ON A SEQUENCE OF SACROCAUDAL THEROPOD DINOSAUR VERTEBRAE FROM THE LOWER CRETACEOUS SANTANA FORMATION, NORTHEASTERN BRAZIL 1 (With 14 figures) JONATHAS DE SOUZA BITTENCOURT 2, 3 ALEXANDER WILHELM ARMIN KELLNER 2, 4 ABSTRACT: Besides being rare, most theropod remains from fossil deposits of Brazil are incomplete. Up to date the Romualdo Member (Aptian/Albian) of the Santana Formation yielded six theropod specimens. To those we add the description of a sequence of three posterior sacral and six anterior caudal vertebrae with three chevrons (MN 4743-V). Differences between MN 4743-V and members of the major theropod clades such as Ceratosauria, Allosauroidea and Coelorusauria do not allow its assignment to one of those groups. Instead, MN 4743-V is referred to the Spinosauroidea (Spinosauridae plus Torvosauridae), based on the presence of three robust laminae below the transverse process of the anterior caudals, which delimit three fossae. The lack of paired processes on the chevrons suggest that within Spinosauroidea MN 4743-V is a member of the Spinosauridae. This is congruent with previous findings of spinosaurids in the Romualdo Member. MN 4743-V differs from the remaining specimens that present sacrocaudal elements indicating the co-existence of at least five theropod species in this deposit. Key words: Spinosauroidea, Dinosauria, Santana Formation, Lower Cretaceous, Brazil. RESUMO: Sobre uma seqüência de vértebras sacrocaudais de um dinossauro terópode da Formação Santana, Cretáceo Inferior, Nordeste do Brasil. Restos de terópodes de depósitos fossilíferos brasileiros são raros, sendo a maioria dos espécimens incompletos.
    [Show full text]
  • Abelisauroidea and Carchardontosauridae (Theropoda, Dinosauria) in the Cretaceous of South America
    Abelisauroidea and carchardontosauridae (theropoda, dinosauria) in the cretaceous of south america. Paleogeographical and geocronological implications Carlos Roberto dos Anjos Candeiro, Agustín Guillermo Martinelli ABELISAUROIDEA AND CARCHARDONTOSAURIDAE (THEROPODA, DINOSAURIA) IN THE CRETACEOUS OF SOUTH AMERICA. PALEOGEOGRAPHICAL AND GEOCRONOLOGICAL IMPLICATIONS Abelisauroidea e Carcharodontosauridae (Theropoda, Dinosauria) na América do Sul durante do Cretáceo. Implicações paleogeograficas e geocronologicas Carlos Roberto dos Anjos Candeiro Depart. Geologia, Universidade Federal do Rio de Janeiro [email protected], [email protected] Agustín Guillermo Martinelli Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina [email protected] Artigo recebido em 18/10/2004 e aceito para publicação em 31/08/2005 ABSTRACT: In this contribution an up-to-date list of abelisauroid ceratosaurians and carcharodontosaurid allosaurians recognized in South America is presented. Abelisauroids and carcharodontosaurids in South America show rich species diversity and a wide range of temporal and geographical distribution. At least eight formally described species of Abelisauroidea are recognized in Argen- tina and only one in Brazil; in contrast, only one species of Carcharodontosauridae is known for all South America. The fossil record of abelisauroids and carcharodontosaurids in South America shows a dominance of abelisauroids in the upper late Cretaceous, while the dominance of carcharodontosaurids as large predators was during the Cenomanian-Turonian. Although knowl- edge of the evolution of Abelisauroidea and Carcharodontasauridae in South America, as well as in the rest of Gondwana is still far for being complete, intensive explorations in recent years have provided greater insight into the composition of theropod faunas in the Cretaceous of Gondwana.
    [Show full text]