Dinosaurs (Reptilia, Archosauria) at Museo De La Plata, Argentina: Annotated Catalogue of the Type Material and Antarctic Specimens

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurs (Reptilia, Archosauria) at Museo De La Plata, Argentina: Annotated Catalogue of the Type Material and Antarctic Specimens Palaeontologia Electronica palaeo-electronica.org Dinosaurs (Reptilia, Archosauria) at Museo de La Plata, Argentina: annotated catalogue of the type material and Antarctic specimens Alejandro Otero and Marcelo Reguero ABSTRACT A commented-illustrated catalogue of non-avian dinosaurs housed at Museo de La Plata, Argentina is presented. This represents the first commented catalogue of the La Plata Museum dinosaurs to be published. This includes the type material as well as Antarctic specimens. The arrangement of the material was made in a phylogenetic fashion, including systematic rank, type material, referred specimens, geographic and stratigraphic location, and comments/remarks, when necessary. A total of 13 type specimens of non-avian dinosaurs are housed at the collection of Museo de La Plata, including eight sauropods, one theropod, one ornithischian, and three ichnotaxa. There are four Antarctic specimens, one of which is a holotype, whereas other corresponds to the first sauropod dinosaur registered for that continent. Alejandro Otero. División Paleontología de Vertebrados, Museo de La Plata. Paseo del Bosque s/n (1900), La Plata, Argentina. [email protected] Marcelo Reguero. División Paleontología de Vertebrados, Museo de La Plata. Paseo del Bosque s/n (1900), La Plata, Argentina. [email protected] Keywords: Saurischia; Ornithischia; Holotype; Lectotype; Patagonia; Antarctica INTRODUCTION housed at the DPV collection, reaching more than 600 individual bones. These include 13 type mate- The Museo de La Plata (MLP), constructed in rial and otherwise important dinosaur specimens, 1884, is one of the oldest museums of natural his- which include ornithischians (e.g., ornithopods, tory of South America. The collection of the ankylosaurs), saurischians (e.g., theropods, sau- División Paleontología de Vertebrados (DPV) was ropodomorphs), as well as three ichnospecies created in 1877 when the museum’s future Direc- included (see Table 1 for a summary of the taxa tor, Dr. Francisco Pascasio Moreno, donated presented). 15,000 pieces. In addition to those original bones, Many fossil vertebrate catalogues of the numerous dinosaur materials from Argentina and Museo de La Plata were previously published, Antarctica (Figure 1) have been collected and mostly devoted to mammals (Mercerat, 1891, accessioned during more than a century and PE Article Number: 16.1.3T Copyright: Palaeontological Association March 2013 Submission: 14 September 2012. Acceptance: 6 March 2013 Otero, Alejandro and Reguero, Marcelo. 2013. Dinosaurs (Reptilia, Archosauria) at Museo de La Plata, Argentina: annotated catalogue of the type material and Antarctic specimens, Palaeontologia Electronica Vol. 16, Issue 1; 3T; 24p; palaeo-electronica.org/content/2013-technical/410-museo-de-la-plata-catalogue OTERO & REGUERO: MUSEO DE LA PLATA CATALOGUE 12 South America 60° 150°W 90°W 30°W 600 km Pacific N Ocean 180° 0° Antarcca Atlanc 70° Ocean 150°E Indic 30°E 1 Ocean 90°E Neuquén Río Negro Vega Island 20 km 7 2 3 6 Chubut 4 64° Prince Gustavo Canal 5 Seymour James Ross Island (Marambio) Island Santa Cruz 8 Snow Hill 64°30’S Island Tierra 58°W 57°W del Fuego FIGURE 1. Location map showing the distribution of the occurrence of the materials mentioned in this contribution. 1. Detail of Patagonia. 2. Detail of Antarctic Peninsula. Abbreviations: 1: Neuquensaurus australis, N. robustus, Laplata- saurus araukanicus, Microcoelus patagonicus, “Titanosaurus” nanus; 2: Amygdalodon patagonicus; 3: Genyodectes serus; 4: Argyrosaurus superbus; 5: Wildeichnus navesi, Sarmientichnus scagliai, Delatorrichnus goyenechei; 6: Ant- arctopelta oliveroi and MLP 11-II-20-1; 7: MLP 99-I-10-1; 8: MLP 96-I-6-2. 1895; Roth, 1898; Cabrera, 1926, 1927, 1929; presented in his Catalogue of South American fos- Berta and Marshall, 1978; Bond, 1986; Mones, sils a resume of the dinosaurs collected to that 1986; Prevosti and Reguero, 2000) and birds time. Finally, Otero (2010) presented all the avail- (Acosta Hospitaleche et al., 2001). Regarding non- able appendicular material of Neuquensaurus avian dinosaurs, no published catalogue actually housed at MLP as an Appendix. The only cata- exists for the Museo de La Plata. Lydekker (1893) logue that has been done for the MLP dinosaurs and Huene (1929) presented seminal papers was performed in 1973 by sauropod specialist where all knowledge of that time about dinosaurs John McIntosh who created a hand-written cata- was virtually enclosed there. More recently, Bona- logue of all the dinosaurs housed at MLP to that parte and Gasparini (1979) published a taxonomic moment. However, the catalogue was never pub- contribution in which they specified lectotypes for lished. some sauropods housed at MLP. Mones (1986) 2 PALAEO-ELECTRONICA.ORG TABLE 1. Summary of the taxa presented in this contribution. Denotes missing at present. Type/referred Systematic rank Collection number Horizon Locality Age material Saurischia Sauropodomorpha Sauropoda Amygdalodon MLP 46-VIII-21-1/2 Cerro Carnerero Cañadón Puelman, Late Toarcian to Posterior dorsal patagonicus Formation southwest from Cerro Early Aalenian vertebra (lectotype) Carnerero, Sierra del Cerro Negro, Chubut Province, Argentina Laplatasaurus MLP-CS 1128, MLP- Anacleto Formation, Rio Cinco Saltos and Lago Lower Right tibia and right araukanicus CS 1127 Colorado Subgroup Pellegrini, Rio Negro Campanian fibula (lectotype) Province, Argentina Microcoelus MLP-Ly 23 Bajo de La Carpa Right bank of the Río Santonian Anterior dorsal patagonicus Formation, Río Colorado Neuquén, close to the vertebra (holotype) Subgroup city of Neuquén, Neuquén Province, Argentina “Titanosaurus” MLP-Ly 18/19 Bajo de La Carpa Right bank of the Río Santonian Incomplete cervical nanus Formation, Río Colorado Neuquén, close to the and dorsal vertebrae Subgroup city of Neuquén, (holotype) Neuquén Province, Argentina Argyrosaurus MLP 77-V-29-1 Bajo Barreal Formation, Left bank (northwest) of Campanian– Complete left forlimb superbus Chubut Group the Río Chico, near Maastrichtian (holotype) Pampa Pelada, northeast of Lake Colhué Huapi, Chubut Province, Argentina Antarctosaurus MLP 26-316 Plottier Formation, Aguada del Caño, Coniacian– Two femora, two giganteus Neuquén Subgroup, Neuquén Province, Santonian fragments of a pubis, Neuquén Group Argentina distal end of a tibia, two incomplete caudal vertebrae as well as indeterminate fragments (holotype) Lithostrotia indet. MLP 11-II-20-1 Santa Marta Formation Santa Marta Cove, Upper Incomplete caudal northern James Ross Campanian vertebra Island, Antarctica Neuquensaurus MLP-Ly 1/2/3/4/5/6/7 Anacleto Formation Neuquén Province Lower Sacrum and caudal australis Campanian vertebrae (holotype) Neuquensaurus MLP-CS 1095, MLP- Anacleto Formation Neuquén Province Lower Right ulna, left ulna, robustus nomen CS 1480, MLP-CS Campanian left radius, left femur dubium 1171, MLP-CS 1094 (lectotype) The purpose of this contribution is to release BRIEF HISTORY an accurate, figured, and updated commented cat- After the creation of the Museo de La Plata in alogue of the type material and Antarctic dinosaurs 1884, its director, Dr. Francisco Pascasio Moreno, housed at the collection of the División Paleon- invited the Argentinean naturalist Florentino tología de Vertebrados at Museo de La Plata. Ameghino to work in the Institution. Between his According to the Recommendation 72F of the private collection (which was moved to La Plata), International Code of Zoological Nomenclature there were few bones collected from the current (ICZN), the objective of this paper is to ensure an city of General Roca (Río Negro Province). Those explicit labeling with an accurate format. bones, later attributable to the genus “Titanosau- rus,” constituted the first dinosaurs remains housed 3 OTERO & REGUERO: MUSEO DE LA PLATA CATALOGUE TABLE 1 (continued). Type/referred Systematic rank Collection number Horizon Locality Age material Theropoda Genyodectes MLP 26-39 Cerro Barcino Formation Cañadón Grande, Aptian-Albian Incomplete portions serus Department of Paso de of premaxillae, Indios, Chubut maxillae, dentaries, Province, Argentina supradentaries, splenial, and tooth (holotype) Ornithischia Ankylosauria Antarctopelta MLP 86-X-28-1 Gamma Member of the Santa Marta Cove, Upper Partial skeleton, oliveroi Santa Marta Formation, North James Ross Campanian including cranial Marambio Group Island, Antarctica remains (holotype) Ornithopoda Hadrosauridae MLP 99-I-10-1 Sandwich Bluff Member of Eastern flank of Upper-lower Cheek tooth* indet. the López de Bertodano Sandwich Bluff, Vega Maastrichtian Formation island, Antarctica Hadrosauridae MLP 96-I-6-2 Unit K1B 9 of the López Seymour (Marambio) Upper-lower Distal end of indet. de Bertodano Formation Island, Antarctica Maastrichtian metatarsal Ichnospecies Theropoda Wildeichnus MLP 60-X-31-5 La Matilde Formation Laguna Manantiales Middle Jurassic- Cast of an isolated navesi ranch, Santa Cruz lower Upper left pes (holotype) Province, Argentina Jurassic Sarmientichnus MLP 60-X-31-1A La Matilde Formation Laguna Manantiales Middle Jurassic- Impression of an scagliai ranch, Santa Cruz lower Upper isolated right foot Province, Argentina Jurassic (holotype) Ornithischia Delatorrichnus MLP 60-X-31-6 La Matilde Formation Laguna Manantiales Middle Jurassic- Trackway with manus goyenechei ranch, Santa Cruz lower Upper and pes impressions Province, Argentina Jurassic (holotype) in a South American scientific institution (Salgado, Lydekker were “Titanosaurus” australis 2007, p. 5). (=Neuquensaurus
Recommended publications
  • Del Cretácico Superior Del Norte De Patagonia: Descripción Y Aportes Al Conocimiento Del Oído Interno De Los Dinosaurios
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 44 (1): 109-120. Buenos Aires, 30-3-2007 ISSN 0002-7014 Un basicráneo de titanosaurio (Dinosauria, Sauropoda) del Cretácico Superior del norte de Patagonia: descripción y aportes al conocimiento del oído interno de los dinosaurios Ariana PAULINA-CARABAJAL1 y Leonardo SALGADO2 Abstract. A TITANOSAUR (DINOSAURIA, SAUROPODA) BRAINCASE FROM THE UPPER CRETACEOUS OF NORTH PATAGONIA: DESCRIPTION AND CONTRIBUTION TO THE KNOWLEDGE OF THE DINOSAUR INNER EAR. The braincase of a sauropod dinosaur from the Upper Cretaceous of Río Negro, Argentina, is described. The material is as- signed to the clade Titanosauria and some characters that resemble the condition present in the genus Antarctosaurus such as the presence of short and wide frontals and parietals, supraoccipital knob lacking a medial groove, reduced and dorsally exposed supratemporal fenestrae, frontals fused on the midline, and a single interfrontal medial knob are discussed. These characters are not diagnostic and they can be found in other titanosaurs such as Rapetosaurus, Nemegtosaurus, Saltasaurus and Bonatitan. The braincase, although incomplete, is well preserved, allowing the examination of certain delicate internal structures li- ke the inner ear, which has been exposed through bone fractures. The titanosaurian inner ear is described here for the first time: it is morphologically similar to that of other sauropods such as Diplodocus and Brachiosaurus, mainly in the spatial disposition of the semicircular canals, although showing a proportio- nally more robust lagena. The angle between the planes on which the anterior and posterior semicircular canals lie is greater than 90º, as in other herbivorous dinosaurs, and different from the theropod Allosaurus, where that angle is smaller.
    [Show full text]
  • A Reassessment of the Phylogenetic Position of Cretaceous Sauropod Dinosaurs from Queensland, Australia
    Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 139-144.Buenos Aires, 30-6-2001 A ReasSessmenT of the phylogenetic position of CretaceoUS SaUROPOd dinosaURS from Queensland, Australia Ralph E. MOLNAR1 Abstract. The Cretaceous sauropod material from Queensland, Australia, has been regarded as pertaining to a persistently primitive sauropod lineage (e.g., Coombs and Molnar). The specimens derive from the Toolebuc and Allaru (Albian marine) and Winton (Cenomanian continental) Formations. Recent phyloge- netic analyses carried out by workers in Argentina, the USA and England permit a reassessment of this fragmentary material. As far as can be ascertained from the material, there is no indication from the char- acter states that more than a single taxon is represented. Character states diagnostic of the Titanosauriforrnes, the Titanosauria, the Somphospondyli and the Titanosauridae are present. Thus the Queensland material does not pertain to cetiosaurids but belongs to titanosaurs, extending their range in- to Australia Key words. Sauropods. Austrosaurus. Titanosaurs. Cretaceous. Paleozoogeography. IntroductioN (1998),has made it possible to reassess the phyloge- netic affinities of the Australian Cretaceous sauropod By the 1950's titanosaurs were widely recognized material and address the anomalous absence of ti- both as the latest sauropod group to diversify and as tanosaurs. This paper looks specifically at pre-eminently the sauropods of Gondwanaland.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • El Carnotaurus Boletín Del Museo Argentino De Ciencias Naturales Bernardino Rivadavia-Año V -Número 53- Agossto 2004
    ma cn El Carnotaurus Boletín del Museo Argentino de Ciencias naturales Bernardino Rivadavia-Año V -Número 53- Agossto 2004 Taller de arte para chicos Indice Con motivo del festejo del día del Taller de arte para niño, el domingo 8 de agosto, en el chicos salón de actos del entrepiso se Fuga Jurásica 6 realizó esta actividad, que fue Investigadores que coordinada en forma conjunta entre honran a nuestro Museo el área de comunicación institucio- Dinosaurios, huevos y nal y prensa del MACN y el pichones CONICET. Curso de nomenclatura Zoológica Interesados por la novedosa pro- Reacondicionamiento en puesta didáctica, una gran concu- el laboratorio de química rrencia de público infantil acompañado por sus padres respondieron a esta convo- Florentino Ameghino: catoria. Entre las 14 y las 19 partici- 150 años de su natalicio paron más de 120 niños en la confec- La música llega a la sala de aves ción de títeres de papel o cartón que tenían forma de dinosaurios. Para este Notas de personal entretenimiento fueron contratadas Decreto 1022/2004 por el CONICET dos docentes de Propiedad, posesión y tenencia en la ley artes plásticas quienes daban pautas 25.743 de protección al para la confección de los títeres. patrimonio arqueológico Como este programa fue totalmente y paleontológico gratuito para los niños, esta fue una nacional manera de homenajearlos en su día. Disposiciones Efemérides: Citas Fuga Jurásica 6 Agenda Museando en la Web Informacion General [ El Carnotaurus [ 2 ] Dentro del marco de las salas de este Museo, el Eduardo Saperas, Alina Schwartz, Diego Tabakman, desarrollo de actividades artísticas llegó a un punto Ana Tonelli, Alejandra Urresti, Marina Vaintroib.
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria
    RESEARCH ARTICLE A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria Rubén D. F. Martínez1*, Matthew C. Lamanna2, Fernando E. Novas3, Ryan C. Ridgely4, Gabriel A. Casal1, Javier E. Martínez5, Javier R. Vita6, Lawrence M. Witmer4 1 Laboratorio de Paleovertebrados, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina, 2 Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States of America, 3 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina, 4 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America, 5 Hospital Regional de Comodoro Rivadavia, Comodoro Rivadavia, Chubut, Argentina, 6 Resonancia Magnética Borelli, Comodoro Rivadavia, Chubut, Argentina * [email protected] OPEN ACCESS Citation: Martínez RDF, Lamanna MC, Novas FE, Ridgely RC, Casal GA, Martínez JE, et al. (2016) A Basal Lithostrotian Titanosaur (Dinosauria: Abstract Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria. PLoS We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dino- ONE 11(4): e0151661. doi:10.1371/journal. saur from the Upper Cretaceous (Cenomanian—Turonian) Lower Member of the Bajo Bar- pone.0151661 real Formation of southern Chubut Province in
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
    The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales.
    [Show full text]