Bulletin 63 New Mexico Museum of Natural History & Science A

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin 63 New Mexico Museum of Natural History & Science A Bulletin 63 New Mexico Museum of Natural History & Science A Division of the DEPARTMENT OF CULTURAL AFFAIRS ANALYSIS OF INTRASPECIFIC AND ONTOGENETIC VARIATION IN THE DENTITION OF COELOPHYSIS BAURI (LATE TRIASSIC), AND IMPLICATIONS FOR THE SYSTEMATICS OF ISOLATED THEROPOD TEETH by LISA G. BUCKLEY and PHILIP J. CURRIE Albuquerque, 2014 Bulletin 63 New Mexico Museum of Natural History & Science A Division of the DEPARTMENT OF CULTURAL AFFAIRS ANALYSIS OF INTRASPECIFIC AND ONTOGENETIC VARIATION IN THE DENTITION OF COELOPHYSIS BAURI (LATE TRIASSIC), AND IMPLICATIONS FOR THE SYSTEMATICS OF ISOLATED THEROPOD TEETH by LISA G. BUCKLEY and PHILIP J. CURRIE New Mexico Museum of Natural History & Science Albuquerque, 2014 STATE OF NEW MEXICO Department of Cultural Affairs Veronica Gonzales, Secretary NEW MEXICO MUSEUM OF NATURAL HISTORY AND SCIENCE Charles Walter, Executive Director BOARD OF TRUSTEES Susanna Martinez, Governor, State of New Mexico, ex officio Charles Walter, Executive Director, ex officio Gary Friedman, President Deborah Dixon Maya Elrick, Ph.D. Peter F. Gerity, Ph.D. Laurence Lattman, Ph.D. Morton Lieberman, Ph. D. Imogene Lindsay, Emerita Viola Martinez Marvin Moss John Montgomery, Ph.D. Jennifer Riordan Laura Smigielski-Garcia David Smoak Steve West Cover illustration: NMMNH P-42200, skull of Coelophysis bauri in left lateral view. Original Printing ISSN: 1524-4156 Available from the New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104; Telephone (505) 841-2800; Fax (505) 841-2866; www.nmnaturalhistory.org NMMNH Bulletins online at: http://nmnaturalhistory.org/bulletins BULLETIN OF THE NEW MEXICO MUSEUM OF NATURAL HISTORY AND SCIENCE EDITORS Spencer G. Lucas New Mexico Museum of Natural History and Science, Albuquerque, NM, USA (NMMNHS) Robert Sullivan NMMNHS Lawrence H. Tanner Le Moyne College, Syracuse, NY, USA PRODUCTION EDITOR Asher J. Lichtig NMMNHS ASSOCIATE EDITORS Guillermo Alvarado Asociación Costarricense de Geotecnica, San José, Costa Rica Marco Avanzini Museo Tridentino di Scienze Naturali, Trento, Italy David Berman Carnegie Museum of Natural History, Pittsburgh, PA, USA Brent Breithaupt Laramie, WY, USA William DiMichele National Museum of Natural History, Washington, D.C., USA John R. Foster Museum of Western Colorado, Grand Junction, CO, USA Gerard Gierlinski Polish Geological Institute, Warsaw, Poland Jean Guex University of Lausanne, Lausanne, Switzerland Jerald D. Harris Dixie State College, St. George, UT, USA Andrew B. Heckert Appalachian State University, Boone, NC, USA Adrian P. Hunt Flying Heritage Collection, Everett, WA, USA Hendrik Klein Neumarkt, Germany Karl Krainer University of Innsbruck, Innsbruck, Austria Martin G. Lockley University of Colorado at Denver, Denver, CO, USA Claudia Marsicano Universidad de Buenos Aires, Buenos Aires, Argentina Gary S. Morgan NMMNHS Donald R. Prothero Occidental College, Los Angeles, CA, USA Silvio Renesto Università degli Studi dell’Insubria, Varese, Italy Joerg W. Schneider Technical University BergAkademie of Freiberg, Freiberg, Germany Jingeng Sha Nanjing Institute of Geology and Palaeontology, Nanjing, China Sebastian Voigt Urweltmuseum GEOSKOP/Burg Lichtenburg, Thallichtenberg, Germany Ralf Werneburg Naturhistorisches Museum Schloss Bertholdsburg, Schleusingen, Germany Richard S. White, Jr. International Wildlife Museum, Tucson, AZ, USA NEW MEXICO MUSEUM OF NATURAL HISTORY AND SCIENCE BULLETINS 26. Paleogene Mammals, 2004. edited by Spencer G. Lucas, Kate E. Zeigler, and Peter E. Kondrashov, 230 pp. 27. Late Triassic microvertebrates from the lower Chinle Group (Otischalkian-Adamanian: Carnian), 2004. by Andrew B. Heckert, 170 pp. 28. New Mexico’s Ice Ages, 2005. edited by Spencer G. Lucas, Gary S. Morgan, and Kate E. Zeigler, 300+ pp. 29. Vertebrate Paleontology in Arizona, 2005. edited by Andrew B. Heckert & Spencer G. Lucas, 210 pp. 30. The Nonmarine Permian, 2005. edited by Spencer G. Lucas & Kate E. Zeigler, 362 pp. 31. Permian of Central New Mexico, 2005. edited by Spencer G. Lucas, Kate E. Zeigler & Justin A Spielmann, 176 pp. 32. Genética y Mamíferos Mexicanos: Presente y Futuro, 2006. edited by Ella Vázquez-Domínguez and David J. Hafner, 73 pp. 33. Skeletal Impact of Disease, 2006. by Bruce M. Rothschild and Larry D. Martin, 226 pp. 34. America’s Antiquities: 100 Years of Managing Fossils on Federal Lands, 2006. edited by Spencer G. Lucas, Justin A. Spielmann, Patricia M. Hester, Jason P. Kenworthy and Vincent L. Santucci, 185 pp. 35. Late Cretaceous Vertebrates from the Western Interior, 2006. edited by Spencer G. Lucas and Robert M. Sullivan, 410 pp. 36. Paleontology and Geology of the Upper Jurassic Morrison Formation, 2006. edited by John R. Foster and Spencer G. Lucas, 249 pp. 37. The Triassic-Jurassic Terrestrial Transition, 2006. edited by Jerry D. Harris, Spencer G. Lucas, Justin A. Spielmann, Martin G. Lockley, Andrew R.C. Milner and James I. Kirkland, 607 pp. 38. Pennsylvanian-Permian Fusulinaceans of the Big Hatchet Mountains, New Mexico, 2006. by Garner L. Wilde, 331 pp. 39. Upper Aptian-Albian Bivalves of Texas and Sonora: Biostratigraphic, Paleoecologic and Biogeographic Implications, 2007. edited by Robert W. Scott, 39 pp. 40. Triassic of the American West, 2007. edited by Spencer G. Lucas and Justin A. Spielmann, 247 pp. 41. The Global Triassic, 2007. edited by Spencer G. Lucas and Justin A. Spielmann, 415 pp. 42. Cenozoic Vertebrate Tracks and Traces, 2007. edited by Spencer G. Lucas, Justin A. Spielmann and Martin G. Lockley, 330 pp. 43. The Late Triassic archosauromorph Trilophosaurus, 2008. by Justin A. Spielmann, Spencer G. Lucas, Larry F. Rinehart and Andrew B. Heckert, 177 pp. 44. Neogene Mammals, 2008. edited by Spencer G. Lucas, Gary S. Morgan, Justin A. Spielmann and Donald R. Prothero, 442 pp. 45. The Paleobiology of Coelophysis bauri (Cope) from the Upper Triassic (Apachean) Whitaker quarry, New Mexico, with detailed analysis of a single quarry block, 2009. by Larry F. Rinehart, Spencer G. Lucas, Andrew B. Heckert, Justin A. Spielmann and Matthew D. Celeskey, 260 pp. 46. The taxonomy and paleobiology of the Late Triassic (Carnian-Norian: Adamanian-Apachean) drepanosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha, 2010. by Silvio Renesto, Justin A. Spielmann, Spencer G. Lucas and Giorgio Tarditi Spagnoli, 81 pp. 47. Ichnology of the Upper Triassic (Apachean) Redonda Formation, east-central New Mexico, 2010. by Spencer G. Lucas, Justin A. Spielmann, Hendrik Klein and Allan J Lerner, 75 pp. 48. New Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: Implications for taxonomy, biostratigraphy and biogeography, 2010. by James F. Jenks, Arnaud Brayard, Thomas Brühwiler and Hugo Bucher, 41 pp. 49. Carboniferous-Permian transition in Cañon del Cobre, northern New Mexico, 2010. edited by Spencer G. Lucas, Jörg W. Schneider and Justin A. Spielmann, 229 pp. 50. Review of the tetrapod ichnofauna of the Moenkopi Formation/Group (Early-Middle Triassic) of the American Southwest, 2010. by Hendrik Klein and Spencer G. Lucas, 67 pp. 51. Crocodyle tracks and traces, 2010. edited by Jesper Milàn, Spencer G. Lucas, Martin G. Lockley and Justin A. Spielmann, 244 pp. 52. Selachians from the Upper Cretaceous (Santonian) Hosta Tongue of the Point Lookout Sandstone, central New Mexico, 2011. by Jim Bourdon, Keith Wright, Spencer G. Lucas, Justin A. Spielmann and Randy Pence, 54 pp. 53. Fossil Record 3, 2011. edited by Robert M. Sullivan, Spencer G. Lucas and Justin A. Spielmann, 736 pp. 54. Ichnology of the Mississippian Mauch Chunk Formation, eastern Pennsylvania, 2012. by David L. Fillmore, Spencer G. Lucas and Edward L. Simpson, 136 pp. 55. Tetrapod fauna of the Upper Triassic Redonda Formation, east-central New Mexico: The characteristic assemblage of the Apachean land-vertebrate faunachron, 2012. by Justin A. Spielmann and Spencer G. Lucas, 119 pp. 56. Revision of the Lower Triassic tetrapod ichnofauna from Wióry, Holy Cross Mountains, Poland, 2012. by Hendrik Klein and Grzegorz Niedzwiedzki, 62 pp. 57. Vertebrate Coprolites, 2012. edited by Adrian P. Hunt, Jesper Milàn, Spencer G. Lucas and Justin A. Spielmann, 387 pp. 58. A new archaic basking shark (Lamniformes: Cetorhinidae) from the late Eocene of western Oregon, U.S.A., and description of the dentition, gill rakers and vertebrae of the recent basking shark Cetorhinus maximus (Gunnerus), 2013. by Bruce J. Welton, 48 pp. 59. The Carboniferous-Permian transition in central New Mexico, 2013. edited by Spencer G. Lucas, W. John Nelson, William A. DiMichele, Justin A. Spielmann, Karl Krainer, James E. Barrick, Scott Elrick and Sebastian Voigt, 389 pp. 60. The Carboniferous-Permian transition, 2013. edited by Spencer G. Lucas, William A. DiMichele, James E. Barrick, Joerg W. Schneider and Justin A. Spielmann, 465 pp. 61. The Triassic System: New Developments in Stratigraphy and Paleontology, 2013. edited by Lawrence H. Tanner, Justin A. Spielmann and Spencer G. Lucas, 612 pp. 62. Fossil Footprints of Western North America, 2014. edited by Martin G. Lockey and Spencer G. Lucas, 508 pp. Buckley and Currie, 2014, Variation in the Dentition of Coelophysis bauri. New Mexico Museum of Natural History and Science Bulletin 63. v TABLE OF CONTENTS Abstract 1 INTRODUCTION 1 Documentation of Theropod Tooth Morphology 1 Individual Variation in Theropod Teeth 2 Ontogenetic Variation in Theropod Teeth 2 Wrinkles, Ridges, and Tooth Crowns 2 RATIONALE FOR STUDY 2 BACKGROUND TO COELOPHYSIS BAURI 2 Taxonomy of the Ghost
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • A Comprehensive Anatomical And
    Journal of Paleontology, Volume 94, Memoir 78, 2020, p. 1–103 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.14 A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona Adam D. Marsh1,2 and Timothy B. Rowe1 1Jackson School of Geosciences, the University of Texas at Austin, 2305 Speedway Stop C1160, Austin, Texas 78712, USA <[email protected]><[email protected]> 2Division of Resource Management, Petrified Forest National Park, 1 Park Road #2217, Petrified Forest, Arizona 86028, USA Abstract.—Dilophosaurus wetherilli was the largest animal known to have lived on land in North America during the Early Jurassic. Despite its charismatic presence in pop culture and dinosaurian phylogenetic analyses, major aspects of the skeletal anatomy, taxonomy, ontogeny, and evolutionary relationships of this dinosaur remain unknown. Skeletons of this species were collected from the middle and lower part of the Kayenta Formation in the Navajo Nation in northern Arizona. Redescription of the holotype, referred, and previously undescribed specimens of Dilophosaurus wetherilli supports the existence of a single species of crested, large-bodied theropod in the Kayenta Formation. The parasagittal nasolacrimal crests are uniquely constructed by a small ridge on the nasal process of the premaxilla, dorsoventrally expanded nasal, and tall lacrimal that includes a posterior process behind the eye.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • A New Crested Theropod Dinosaur from the Early Jurassic of Yunnan
    第55卷 第2期 古 脊 椎 动 物 学 报 pp. 177-186 2017年4月 VERTEBRATA PALASIATICA figs. 1-3 A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China WANG Guo-Fu1,2 YOU Hai-Lu3,4* PAN Shi-Gang5 WANG Tao5 (1 Fossil Research Center of Chuxiong Prefecture, Yunnan Province Chuxiong, Yunnan 675000) (2 Chuxiong Prefectural Museum Chuxiong, Yunnan 675000) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (4 College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049) (5 Bureau of Land and Resources of Lufeng County Lufeng, Yunnan 650031) Abstract A new crested theropod, Shuangbaisaurus anlongbaoensis gen. et sp. nov., is reported. The new taxon is recovered from the Lower Jurassic Fengjiahe Formation of Shuangbai County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, and is represented by a partial cranium. Shuangbaisaurus is unique in possessing parasagittal crests along the orbital dorsal rims. It is also distinguishable from the other two lager-bodied parasagittal crested Early Jurassic theropods (Dilophosaurus and Sinosaurus) by a unique combination of features, such as higher than long premaxillary body, elevated ventral edge of the premaxilla, and small upper temporal fenestra. Comparative morphological study indicates that “Dilophosaurus” sinensis could potentially be assigned to Sinosaurus, but probably not to the type species. The discovery of Shuangbaisaurus will help elucidate the evolution of basal theropods, especially the role of various bony cranial ornamentations had played in the differentiation of early theropods.
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]
  • Preliminary Description of Coelophysoids (Dinosauria:Theropoda) from the Upper Triassic (Revuletian:Early-Mid Norian) Snyder Quarry, North-Central New Mexico
    Lucas, S.G., and Heckert. A.B., eds., 2000, Dinosaurs of New Mexico. New Mexico Museum of Natural History and Science Bulletin No. 17. 27 PRELIMINARY DESCRIPTION OF COELOPHYSOIDS (DINOSAURIA:THEROPODA) FROM THE UPPER TRIASSIC (REVULETIAN:EARLY-MID NORIAN) SNYDER QUARRY, NORTH-CENTRAL NEW MEXICO ANDREW B. HECKERT!, KATE E. ZEIGLER!, SPENCER G. LUCAS2, LARRY F. RINEHARP, and JERALD D. HARRIS2 'Deparbnent of parth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-1116; 'New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104 Abstract-The Upper Triassic Snyder quarry is the second-most productive theropod locality in the Chinle Group. Skull and postcranialelements, particularly tibiae, collected from the Snyder quarry during the last three field seasons demonstrate the presence of at least four individuals of two taxa. The smaller theropod strongly resembles, but is distinct from, the holotype of Eucoelophysis baldwini Sullivan and Lucas and represents either a sexual dimorph or, more likely, a new species of Eucoelophysis. The larger theropod is represented by a single, incomplete fused tibia-fibula-astragalus-calcaneum. Most striking about this taxon is the proximal fusion of the tibia and fibula. These theropods are a small fraction of a rich and diverse assemblage of Upper Triassic vertebrates and invertebrates from the most productive Chinle Group vertebrate fossil assemblage discovered in the last 50 years. INTRODUCTION In 1998, Mark Snyder of Del Mar, California, discovered a spectacular assemblage of fossil vertebrates in the badlands of the Upper Triassic Petrified Forest Formation near Ghost Ranch, north-central New Mexico (Fig. 1).
    [Show full text]
  • Coossified Tarsometatarsi in Theropod Dinosaurs and Their Bearing on the Problem of Bird Origins
    HALSZKA OSM6LSKA COOSSIFIED TARSOMETATARSI IN THEROPOD DINOSAURS AND THEIR BEARING ON THE PROBLEM OF BIRD ORIGINS OSM6LSKA, H. : Coossified tarsometatarsi in theropod dinosaurs and their bearing on the problem of bird origins, Palaeontologia Polonica, 42, 79-95, 1981. Limb remains of two small theropod dinosaurs from the Upper Cretaceous deposits of Mongolia display fused tarsometatarsi. Presence of fusion in the tarsometatarsus in some theropods is consi­ dered as additional evidence for the theropod origin of birds. E/misaurus rarus gen. et sp. n. is described based upon a fragmentary skeleton represented by limbs. Family Elmisauridae novo is erected to include Elmisaurus, Chirostenotes GlLMORE and Ma crophalangia STERNBERG. Key words: Dinosauria, Theropoda, bird origins, Upper Cretaceous, Mongolia. Halszka Osmolska , ZakladPaleobiologii, Polska Akademia Nauk, Al. Zw irki i Wigury 93,02-089 War­ szawa, Po/and. Received: June 1979. Streszczenie. - W pracy opisano szczatki malych dinozaur6w drapieznych z osad6w gornokredo­ wych Mongolii . Stopa tych dinozaur6w wykazuje obecnosc zrosnietego tarsomet atarsusa. Zrosniecie to stanowi dodatkowy dow6d na pochodzenie ptak6w od dinozaur6w drapieznych, Opisano nowy rodzaj i gatunek dinozaura drapieznego E/misaurus rarus, kt6ry zaliczono do nowej rodziny Elmisau­ ridae . Do rodziny tej, opr6cz Elmisaurus, naleza: Chirostenotes GILMORE i Macr opha/angia STERNBERG. Praca byla finansowana przez Polska Akademie Nauk w ramach problemu rniedzyresorto­ wego MR 11-6. INTRODUCTION During the Polish-Mongolian
    [Show full text]
  • From the Early Cretaceous of Laos
    Naturwissenschaften DOI 10.1007/s00114-012-0911-7 ORIGINAL PAPER The first definitive Asian spinosaurid (Dinosauria: Theropoda) from the early cretaceous of Laos Ronan Allain & Tiengkham Xaisanavong & Philippe Richir & Bounsou Khentavong Received: 25 November 2011 /Revised: 19 March 2012 /Accepted: 22 March 2012 # Springer-Verlag 2012 Abstract Spinosaurids are among the largest and most spe- from Asia. Cladistic analysis identifies Ichthyovenator as a cialized carnivorous dinosaurs. The morphology of their member of the sub-clade Baryonychinae and suggests a crocodile-like skull, stomach contents, and oxygen isotopic widespread distribution of this clade at the end of the Early composition of the bones suggest they had a predominantly Cretaceous. Chilantaisaurus tashouikensis from the Creta- piscivorous diet. Even if close relationships between spino- ceous of Inner Mongolia, and an ungual phalanx from the saurids and Middle Jurassic megalosaurs seem well estab- Upper Jurassic of Colorado are also referred to spinosaurids, lished, very little is known about the transition from a extending both the stratigraphical and geographical range of generalized large basal tetanuran to the specialized morphol- this clade. ogy of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Keywords Cretaceous . Savannakhet basin . Theropoda . Europe, and South America. Here, we report the discovery Spinosauridae . Asia of a new spinosaurid theropod from the late Early Creta- ceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new Introduction taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. The spinosaurids are among the most bizarre dinosaurs. The Although possible spinosaurid teeth have been reported morphology of their superficially crocodile-like skull from various Early Cretaceous localities in Asia, the new (Taquet 1984; Charig and Milner 1997; Sereno et al.
    [Show full text]
  • Paleoecology of the Lowermost Part of the Jurassic Carmel Formation, San Rafael Swell, Emery County, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1969 Paleoecology of the Lowermost Part of the Jurassic Carmel Formation, San Rafael Swell, Emery County, Utah R. Joseph Dover Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Dover, R. Joseph, "Paleoecology of the Lowermost Part of the Jurassic Carmel Formation, San Rafael Swell, Emery County, Utah" (1969). All Graduate Theses and Dissertations. 1676. https://digitalcommons.usu.edu/etd/1676 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PALEOECOLOGY OF THE LOWERMOST PART OF THE JURASSIC CARMEL FORMATION, SAN RAFAEL SWELL, EMERY COUNTY, UTAH by R. Joseph Dover A thesis submitted in partial fulfullment of the requirements for the degree of MASTER OF SCIENCE in Geology AooJ?t)\1ed: Major Professor ;Dea~ tf Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 1969 ii ACKNOWLEDGMENTS This thesis was made possible by Mr. and Mrs. H.C. Dover, whose moral and monetary support are gratefully acknowledged. Field work was greatly enhanced by Dr. Robert Q. Oaks, Jr., the author's major professor, who supplied transportation to otherwise inaccessible sections, aid in measuring sections, inspiration and motivation, and critical discussion of ideas contained herein. Aid was given by Mr. Kelly of Castle Dale, Utah, who described orally characteristics of the Carmel Formation at several localities not visited.
    [Show full text]
  • A Juvenile Coelophysoid Skull from the Early Jurassic of Zimbabwe, and the Synonymy of Coelophysis and Syntarsus
    A juvenile coelophysoid skull from the Early Jurassic of Zimbabwe, and the synonymy of Coelophysis and Syntarsus Anthea Bristowe* & Michael A. Raath Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS, 2050 South Africa Received 23 September 2004. Accepted 5 December 2004 Several authors have drawn attention to the close similarities between the neotheropod dinosaurs Coelophysis and Syntarsus. Recon- struction and analysis of a skull from a juvenile specimen of Syntarsus (collected from the Forest Sandstone Formation of Zimbabwe) show that cranial characters previously used to distinguish these taxa and justify their generic separation (namely the presence of a ‘nasal fenestra’ in Syntarsus and the length of its antorbital fenestra), were based on erroneous reconstructions of disassociated cranial elements. On the basis of this reinterpretation we conclude that Syntarsus is a junior synonym of Coelophysis. Variations are noted in three cranial characters – the length of the maxillary tooth row, the width of the base of the lachrymal and the shape of the antorbital maxillary fossa – that taken together with the chronological and geographical separation of the two taxa justify separation at species level. Keywords: Dinosaurs, Neotheropoda, Coelophysoid, taxonomy, Triassic, Jurassic. INTRODUCTION Following the work of Gauthier (1986), these taxa were Ever since the theropod Syntarsus rhodesiensis was first suggested to belong to a monophyletic clade known as described (Raath 1969), a succession of authors have Ceratosauria. However, more recent works by a number commented on the close morphological similarity be- of authors (Sereno 1997, 1999; Holtz 2000; Wilson et al. tween it and Coelophysis bauri (Raath 1969, 1977; Paul 1988, 2003; Rauhut 2003) have re-evaluated theropod interrela- 1993; Colbert 1989; Rowe 1989; Tykoski 1998; Downs tionships.
    [Show full text]
  • Tyrannosaurus
    Natural Sciences 360 Legacy of Life Lecture 16 Dr. Stuart S. Sumida Theropoda (Including Birds) Recall: Crocodylomorpha Pterosauria Eoraptor Herrerasauridae Saurischia Ornithischia Dinosauria Archosauria THEROPODA •Pronograde bipeds. •Pneumatic (hollow) bones. •Enlarged hand. •Vestigial digits IV and V on hand. •Highly extendable digits I-III on hand. •Compact, elongate, narrow foot – usually missing digit V. Theropod Feet: Note missing V. I IV II III CERATOSAURIA: COELOPHYSOIDEA Difficult to diagnose, as they retain many primitive features: •Pronograde bipeds. •Relatively small. •Skulls are narrow, not boxy in shape. •Many undifferentiated teeth. Best known taxa: Coelophysis Dilolphosaurus “Syntarsus” Dilophosaurus: a crested ceratosaur (No, they didn’t spit.) Coelophysis, skull Coelophysis: reconstructed in northern New Mexico Sauropodomorpha THEROPODA Coelophysoidea Saurischia * Abelisauridae Theropoda Spinosauroidea Allosauroidea Tetanurae Compsognathidae Tyrannosauroidea Coelurosauria Ornithomimosauria Oviraptorisauria Maniraptora Dromaeosauridae Ceratosauria * Troodontidae Avialae CERATOSAURIA: ABELISAURIDAE •Bony outgrowths over the orbits. •Relatively short skull compared to Coelophysoidea. •Blunt snout. •Ornamentation on skull •Reduced forelimbs (like T. rex), but retain a well-developed pectoral girdle. Bony outgrowths over the orbits. Blunt snout. Relatively short skull compared to Coelophysoidea. Carnotaurus Majungatholus Sauropodomorpha THEROPODA Coelophysoidea Saurischia * Abelisauridae Theropoda Spinosauroidea Allosauroidea
    [Show full text]
  • Cranial Ontogenetic Variation in Early Saurischians and the Role of Heterochrony in the Diversification of Predatory Dinosaurs
    A peer-reviewed version of this preprint was published in PeerJ on 18 January 2016. View the peer-reviewed version (peerj.com/articles/1589), which is the preferred citable publication unless you specifically need to cite this preprint. Foth C, Hedrick BP, Ezcurra MD. 2016. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589 https://doi.org/10.7717/peerj.1589 Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs Foth Christian, Brandon P Hedrick, Martin D Ezcurra Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in Coelophysis, to short and box-shaped skulls, such as in Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as a major factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we have analysed five ontogenetic trajectories using two-dimensional geometric PrePrints morphometrics in a phylogenetic framework. This allowed for the evaluation of how heterochrony affected overall skull shape through both ontogenetic and phylogenetic trajectories and how it impacted modular changes within the skull. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories in light of heterochrony. The results recovered here indicate that taxa underwent a combination of local paedomorphosis and peramorphosis within the skull along individual ontogenies and phylogenies, but that either peramorphosis or paedomorphosis dominated when the skull was considered as a whole.
    [Show full text]