Grøn profil for kommunale skibe

Miljøprojekt nr. 1580, 2014

Titel: Redaktion:

Grøn profil for kommunale skibe Thomas Odgaard, Incentive Michael Henriques, Incentive Martin Bøge, Incentive Frank Stuer-Lauridsen, Litehauz Svend Overgaard, Litehauz Ditte Kristensen, Litehauz Amir Maleki, Litehauz

Udgiver:

Miljøstyrelsen Strandgade 29 1401 København K www.mst.dk

År: ISBN nr.

2014 978-87-93178-62-5

Ansvarsfraskrivelse:

Miljøstyrelsen vil, når lejligheden gives, offentliggøre rapporter og indlæg vedrørende forsknings- og udviklingsprojekter inden for miljøsektoren, finansieret af Miljøstyrelsens undersøgelsesbevilling. Det skal bemærkes, at en sådan offentliggørelse ikke nødvendigvis betyder, at det pågældende indlæg giver udtryk for Miljøstyrelsens synspunkter. Offentliggørelsen betyder imidlertid, at Miljøstyrelsen finder, at indholdet udgør et væsentligt indlæg i debatten omkring den danske miljøpolitik.

Må citeres med kildeangivelse.

Grøn profil for kommunale skibe 3

Indhold

1. Indledning ...... 5 2. Kommunale ruter og færger ...... 6 2.1 Kommunale færgeruter ...... 6 2.2 Kommunale færger og eksempelfærger ...... 6 3. Miljømål og teknologier ...... 8 3.1 Tilgængelige teknologier...... 8 3.2 Teknologibeskrivelser ...... 10 3.2.1 Udstødningsbehandling ...... 10 3.2.2 Motormodifikationer ...... 10 3.2.3 Alternative brændstoffer og batteridrift ...... 11 3.2.4 Operationelle metoder ...... 12 3.3 ”Bløde” ikke-teknologiske virkemidler ...... 12 4. Gevinster og omkostninger ...... 14 4.1 Tilgang ...... 14 4.2 Teknologier målrettet CO2-reduktion ...... 15 4.3 Teknologier målrettet SOX-reduktion ...... 16 4.4 Teknologier målrettet NOX-reduktion ...... 16 5. Referencer ...... 17

Bilag 1 Færger og færgeruter ...... 18 Bilag 2 Bruttoliste over teknologier ...... 24 Bilag 3 Plots over færger ...... 26

Bilag 4 Technical review – Catalogue of reduction technologies Litehauz 2013 .... 27

4 Grøn profil for kommunale skibe

1. Indledning

De danske kommuner har en række færgeruter, som de enten driver selv eller udbyder driften af. Vi ønsker med denne rapport at introducere kommunerne til mulighederne for at gøre færgedriften grønnere.

Generelt forventer vi ikke at kommunerne vil foretage udskiftninger af deres færger inden for de næste 5 år,1 og derfor ser vi i denne rapport på mulighederne for miljøforbedringer på eksisterende færger.

Med rapporten ønsker vi at tydeliggøre for kommunerne, hvilke muligheder de har for at indfri en målsætning om grønnere færgedrift af netop deres færger. Og vi håber med rapporten at give kommunerne inspiration til at øge deres fokus på mulighederne for en grønnere færgedrift.

Rapporten giver en oversigt over tilgængelige teknologier, som kan hjælpe kommunerne til at opnå en miljømæssig målsætning om fx reduceret CO2. For alle teknologierne har vi angivet, hvilke typer af færger teknologien egner sig til. Og vi har opgjort budgetøkonomien forbundet med de forskellige teknologier. Det har vi gjort med udgangspunkt i eksempelberegninger for en lille og en stor dansk kommunal færge.

I afsnit 2 giver vi en kort introduktion til de kommunale ruter og færger. I afsnit 3 ser vi på forskellige miljømålsætninger og de teknologiske muligheder for at indfri dem. Vi samler trådene i afsnit 4, hvor vi ser nærmere på omkostningerne og gevinsterne ved de tilgængelige teknologier.

De teknologiske muligheder er beskrevet i detaljer i bilag 4 (Litehauz, 2013).

Rapporten er udarbejdet for Miljøstyrelsen af Incentive og Litehauz.

1 Med undtagelse af Næssund færgen

Grøn profil for kommunale skibe 5

2. Kommunale ruter og færger

Vi har gennemgået alle kommunale færgeruter i Danmark og identificeret de færger, som er relevante i forhold til de identificerede grønne teknologier. Vi har frasorteret færger, som ikke medtager personbiler eller har meget lav personkapacitet. På den baggrund har vi identificeret 39 kommunale færgeruter, som potentielt kunne gøres grønnere.

Vi har kortlagt, hvornår driften af ruterne og nybyggeri af færger kommer i udbud næste gang ved at kontakte de relevante kommuner og Transportministeriet. Billedet var meget entydigt, at kommunerne ikke påtænker at bygge nye færger inden for 5 år, med undtagelse af Næssund færgen. På den baggrund er fokus i rapporten på at gøre eksisterende færger grønnere og ikke på indkøb af nye grønne færger.

2.1 Kommunale færgeruter I tabel 1 har vi samlet en række nøgletal for de 39 kommunale færgeruter samlet set. I bilag 1 findes de samme informationer opdelt på de enkelte færgeruter.

TABEL 1 UDVALGTE NØGLETAL FOR DE 39 KOMMUNALE FÆRGERUTER, ÅR 2011

Rute Dobbeltture Passagerer Personkm Biler (1.000) (1.000) (1.000) (1.000)

I alt 216 9.400 176.000 3.100 Kilde: (Danmarks Statistik, 2013) og kontaktpersoner i kommuner med færgeruter.

På de 39 færgeruter blev der i 2011 sejlet næsten 216.000 dobbelture og fragtet over 9 mio. passagerer.

2.2 Kommunale færger og eksempelfærger Vi har identificeret 52 færger, som opererer på de 39 færgeruter. Færgerne har vi inddelt i to grupper, og for hver gruppe har vi gennemført eksempelberegninger af omkostningerne og gevinsterne for en repræsentativ færge ved de mulige teknologivalg. Eksempelberegningerne findes i afsnit 4. I bilag 1 findes en tabel med de 52 færger inddelt i de to grupper og med en række nøgletal for de enkelte færger.

Eksempelberegningerne giver en indikationen af omkostningsniveauet, der er forbundet med teknologierne. Det er dog vigtigt at indskærpe, at valget af optimal teknologi og omkostningerne herved altid vil bero på en konkret vurdering af den enkelte færge.

Inddelingen af de to færgegrupper er primært baseret på en analyse af installeret motoreffekt, men også alder og sejllængde er vurderet. Færgerne falder overordnet i de to følgende grupper:

6 Grøn profil for kommunale skibe

 Små ældre færger med kort sejllængde  Store nyere færger med lang sejllængde

Med udgangspunkt i analyse af plots af de 52 færger over installeret effekt, byggeår og sejllængde, er følgende kvantitative fordelingskriterier fundet:

1. Installeret effekt: større eller mindre end 5.000 kW (primær fordelingsparameter) 2. Overfartslængde større eller mindre end 30 sømil 3. Bygget før eller efter 1995

Plots kan findes i bilag 3.

Fra hver af de to grupper har vi valgt en repræsentativ færge. Begge færger sejler på brændstoffet MDO (Marine Diesel Oil).

Vi har foretaget gennemsnitsberegninger for de respektive færger i de to grupper og valgt to eksempelfærger ud fra størst lighed med de respektive gruppers gennemsnit. De valgte færger er Odin Sydfyen (små færger), der sejler på ruten Bøjden-Fynshav og Kattegat2 (store færger), der sejler på ruten Århus-Kalundborg. I tabel 2 ses de relevante data for de to eksempelfærger.

TABEL 2 RELEVANT DATA FOR EKSEMPELFÆRGER

Driftsparameter Odin Sydfyen Kattegat (Lille færge) (Stor færge)

Årstal 1.982 1.996

Maks. effekt [kW] 1.280 11.700

Antaget driftseffekt [kW] 896 8.190

Overfartslængde [km] 14 85

Antal sejltimer per år [timer] 613 4.160

Specifikt brændstofforbrug [g/kWh] 175** 175

Brændstof kapacitet [m3] 20 500*

* Er estimeret på basis af lignende færger. ** SFOC er baseret på (Friis, 2002) og repræsenterer den lave SFOC værdi for fire-takst motorer (range 175-195 ved MCR 80%). Der er ikke angivet nogen relationelle forhold i forhold til motorstørrelse, og SFOC kan for mindre skibsmotorer potentielt set ligge højere (190 g/kWh, pers. kom. Hans Otto Kristensen) end de angivne 175. Ved en højere SFOC vil emissionsreduktionen være forholdsmæssig den samme. Installationsomkostningerne for teknologierne vil være de samme mens driftsomkostninger for teknologierne er større, i og med at forbruget af brændstofforbruget er højere.

2 I den afsluttende fase af denne rapport blev valget af Kattegat overhalet indenom af virkeligheden, idet ruten bliver nedlagt den 12. Oktober 2013.

Grøn profil for kommunale skibe 7

3. Miljømål og teknologier

I dette afsnit har vi set nærmere på de teknologiske muligheder for at gøre færgedriften grønnere, samt bløde ikke-teknologiske virkemidler til at øge miljøpræstationer.

Vi har inddelt teknologierne i grupper efter deres primære evne til at reducere emission. Det har vi gjort for at gøre det nemt for kommunerne at identificere teknologier, som harmonerer med deres miljømålsætning. En miljømålsætning kunne fx være reduceret CO2-emission.

I rapporten operere vi med tre mulige miljømålsætninger om reduceret emission til luft.

1. Klima (CO2)

2. Svovl (SOX)

3. Nitrogenoxider (NOX)

Flere af teknologierne vil medvirke til at reducere to eller flere emissioner, og dermed bidrage til at opfylde flere miljømål. For hver af teknologierne har vi angivet de typer af færger, som teknologien vil kunne være relevant for. Derudover har vi angivet estimater for omkostningerne og gevinsterne, der er forbundet med teknologierne.

3.1 Tilgængelige teknologier Vores udgangspunkt har været en bruttoliste af mulige teknologier med varierende grad af reduktionspotentiale, se bilag 2. Vi har reduceret bruttolisten til en nettoliste, som kun omfatter teknologier, der er tilgængelige og relevante for kommunernes færger, og som kan tilbyde et højere reduktionspotentiale end den gældende lovgivning kræver. For hver af teknologierne har vi angivet estimater for installationsomkostninger og driftsomkostninger samt teknologiens reduktionspotentiale.

Det er valgt også at medtage en beskrivelse batteridrift og motormodifikationer, men omkostningsberegninger og emissions reduktioner for disse teknologier er ikke foretaget. I den tekniske baggrundsrapport findes mere uddybende beskrivelser af batteridrift og motormodifikationer samt danske og internationale erfaringer.

TABEL 3 TEKNOLOGIER RETTET MOD CO2-REDUKTION

Installations- CO2- Teknologi Driftsomkostning omkostning reduktionspotentiale

Slow steaming Ingen Ingen 10%* (uden motormodifikationer)

Slow steaming 477 DKK/kW Ingen 10%* (med motormodifikationer)

*ved 5% reduktion af fart

8 Grøn profil for kommunale skibe

TABEL 4 TEKNOLOGIER RETTET MOD SOX-REDUKTION

Teknologi Installations- Driftsomkostning SOX- omkostning reduktionspotentiale

3% af Scrubber 2.089 DKK/kW 90-95% brændstofforbrug 8-11% af 1.194 brændstofforbrug samt DKK/m3 tank Biodiesel (100%) 45 DKK/ton biodiesel i 20-100% kapacitet meromkostning 3,2% af LNG 2.589 DKK/kW brændstofforbrug 90-100% [kg/kWh]

TABEL 5 TEKNOLOGIER RETTET MOD NOX REDUKTION

Teknologi Installations- Driftsomkostning NOX-reduktionspotentiale omkostning

5-8% af EGR* 343-410 DKK/kW 35-80% brændstofforbrug

26-31 DKK/MWh SCR 448-746 DKK/kW samt 1-2 g Op til 95% brændstof/kWh

IEM (Basic) 2-15 DKK/kW - 20 %

IEM (Advanced) 45-224 DKK/kW - 30-40% *Kun ved installation af ny motor.

TABEL 6 TEKNOLOGIER MED TVÆRGÅENDE REDUKTIONTIONSPOTENTIALER

Teknologi CO2- NOX- SOX- reduktionspotentiale reduktionspotentiale reduktionspotentiale

-14,1 til -47,1% Biodiesel (100%) 40-85% 100% (stigning)

LNG 22,5% 60*-90% 90-100%

Slow steaming** 10% 10%*** 10%

Batteridrift (hybrid)**** Følger reduktion i brændstofforbrug

Batteridrift (100%)***** 100 % 100 % 100 % *Ved dual-fuel opnås kun 10-15% reduktion (pers. com. Hans Otto Kristensen) **Ved 5% reduktion af operationel motoreffekt og korrigeret for ekstra sejltid. ***Ved større fartreduktion kan det være nødvendigt at modificere motoren da der eller kan opstå ufuldstændig forbrænding og en relativ stigning af NOX. **** Afhængig af specifik hybridkonfiguration. *****Når batteriet oplades med el fra fornybare energikilder, som fx vindkraft.

Grøn profil for kommunale skibe 9

3.2 Teknologibeskrivelser Teknologierne i nettolisten kan opdeles i fire kategorier:

1. Udstødningsbehandling 2. Motor modifikationer 3. Alternative brændstoffer og batteridrift 4. Operationelle metoder

Alle teknologier på nettolisten kan som udgangspunkt installeres på de danske færger, men det må pointeres, at de enkelte teknologier i praksis kan have begrænsende faktorer, som potentielt kan betyde at installering på visse færger er uladsiggørlig, typisk relateret til pladsbegrænsninger. Det ligger dog uden for dette studie at vurdere hver enkelt færges specifikke karakteristika. I de næste underafsnit er teknologierne kort beskrevet, samt de tilfælde hvor der er særlige begrænsninger, der skal tages højde for.

3.2.1 Udstødningsbehandling Selective Catalytic Reduction (SCR) SCR er en efterbehandling af udstødningsgas, hvor et additiv, urea, sprøjtes ind i udstødningen, som derefter bliver ført gennem en katalysator. Dette resulterer i, at NOX emissioner omdannes til frit kvælstof samt vanddamp. Ved højt indhold af svovl i brændstoffet kan levetiden af katalysatoren begrænses, men da færger allerede sejler på lavsvovlsbrændstof, eller kommer til det fra 2015, udgør dette et mindre problem. Den primære begrænsende faktor ved installation af SCR er den ekstra plads, der skal bruges for at opbevare urea til SCR enheden. SCR katalysatorer, der kan anvendes ved højt svovlindhold, er stadig under udvikling.

Scrubber

En scrubber er en efterbehandling af udstødningsgas, hvor SOX reduceres ved at blive vasket ud. Der findes både havvands- og ferskvands-scrubbere i både lukkede og åbne systemer. Ferskvands- scrubbere skal have tilført natriumhydroxid (NaOH), og der skal derfor være plads til en ekstra lagringstank om bord på færgen. Der er ingen særlige begrænsende faktorer, men der bliver dannet slam under drift af anlægget som skal bortskaffes ved særlige modtageranlæg i havnene.

Exhaust Gas Recirculation (EGR) Denne teknologi omfatter recirkulation af røggassen ind i brændkammeret, hvorved mængden af oxygen mindskes, hvilket resulterer i en reduktion af NOX. I praksis kan EGR ikke retrofittes på eksisterende motorer, da det er en integreret teknologi, og EGR er derfor ikke behandlet videre i denne undersøgelse. Vi har dog taget den med i omtalen her, da en række af de færger, der optræder på listen, har fået nye motorer og derfor stadig er i drift længe efter en normal levetid for kommercielle skibe (ca. 25-30 år). Hvis man påtænker at skifte motor for at forlænge en færges levetid, er en motor med EGR formodentlig en løsning, der fremover kan komme i betragtning for at overholde kravene til NOX-udledning også for firetaktsmotorer. Det skal dog pointeres, at hvis der sættes ny motor i et eksisterende skib, skal den nye motor jf. MARPOL Annex VI overholde de regler, der er gældende installationstidspunktet, med mindre der er tale om en identisk motor.

3.2.2 Motormodifikationer Internal Engine Modifications (IEM) IEM omfatter en række forskellige modifikationer, der foretages i motoren med henblik på at reducere NOX udledningen til at leve op til Tier II kravene. Oftest er modifikationerne rettet mod at optimere forbrændingen, forbedre kvaliteten af indsugningsluften eller foretage konstruktionsændringer i indsprøjtningssystemet. Den mest brugte modifikation er brug af slide valves, som forbedrer forstøvningen af brændstoffet i forbrændingskammeret. Eksempler på mere avancerede modifikationer er elektrisk kontrol af indsprøjtningstimingen, øget kompression og geometriske ændringer af forbrændingskammeret. NOX reduktionspotentialet ligger typisk på

10 Grøn profil for kommunale skibe omkring 20% men ved den rigtige kombination af de mere avancerede modifikationer, forventes reduktionen at kunne nå over 30%.

3.2.3 Alternative brændstoffer og batteridrift Biobrændstof (B20) Brændstofskifte til biodiesel kan foretages med ingen eller minimale ændringer lavet på skib, motor etc., hvis indholdet af biobrændstoffet ikke er for højt. Der findes en række forskellige typer på markedet med 5-100% indhold af biobrændstof (B5-B100). Ved brug af biodiesel med over 5% indhold af biobrændstof (B5) kræver det afrensning af tank inden brug. Hvis man bruger biodiesel med højt indhold af biobrændstof, vil man skulle installere varmesystem til at opvarme brændstoffet, da det har en højere viskositet. Det kan fx resultere i tilstopning af filtre og udskiftning af kobber- og messingkomponenter, samt pakninger, der er i kontakt med biodiesel.

Vi vurderer, at brug af B20 er en sandsynlig kandidat som alternativt brændstof på det nuværende marked. Ved brug af biodiesel reduceres udledning af CO2 og SOX, hvorimod der forekomme en mindre stigning af NOX-udledning i størrelsesordenen 1.5%-6.9%, (Hajbabaei, 2012). Dette kan dog afværges ved at kombinere brug af biodiesel med SCR eller EGR, selvom sidstnævnte vil kræve installation af ny motor. Brug af split injektion (i motorer med direkte indsprøjtning) og forsinkelse af indsprøjtning er også rapporteret at kunne reducere NOX og SOX, (Hajbabaei, 2012).

Liquefied Natural Gas (LNG)

Brændstofskifte til LNG er en potentiel løsning til at reducere både CO2, NOX og SOX, men der kan være risiko for udslip af metan, der er en drivhusgas 25 gange mere potent end CO2. Metanudslip kan begrænses med tekniske tiltag, fx mere hensigtsmæssig design af forbrændingskammeret. På sigt må der forventes trav til metanudledning til nye LNG-motorer. Begrænsende faktorer for installation på skibe er tilstrækkelig plads til LNG-tanke, idet brændstoffet optager omkring dobbelt så meget plads som konventionelt brændstof, samt plads til køleanlæg fordi LNG skal holdes på - 162 grader celsius.

LNG-bunkering er i dag ikke tilgængelig i danske havne, og der må påregnes yderligere investeringer i infrastruktur ud over de installationsomkostninger, der skal foretages på færgerne, før det er muligt at bruge LNG. I en rapport fra Søfartsstyrelsen (Danish Maritime Authority, 2012) er prisen for en relativt lille bunkerstation estimeret til 15 millioner € (årlig kapacitet på 52.000 m3), samt årlige driftsomkostninger på 3 millioner €. Selvom om dette estimat relaterer sig til en bunkerstation, der væsentligt overstiger det forventede forbrug af LNG af de to eksempelskibe (ca. 220 m3 og 15.000 m3 respektivt for Odin Sydfyen og Kattegat) må man altså påregne væsentlige investeringer i infrastruktur.

Batteridrift Der er typisk to måder at anvende batterier på til drift af færger. En færge kan være 100% batteridrevet, og der ikke er nogen dieselmotor til fremdrift af færgen (undtagen af sikkerhedsmæssige årsager). Hvis batteriet oplades af fornybare energikilder, som fx vindkraft, opnås der 100 % reduktion af CO2, NOX og SOX. Der er indenfor nærmere fremtid planer om, at investere i denne type batterikonstellation på færger flere steder i Danmark.

Den anden metode, er at anvendelse af et hybridsystem, hvor der både er en dieselmotor og et batteri installeret på færgen. Ved hybridsystemet opererer motoren hele tiden ved den mest effektive belastning, og overskydende energi lagres på batteriet, når færgen sejler langsommere eller ligger i havn og derved ikke har brug for al den producerede energi. Når færgen har brug for mere energi, end motoren leverer, hentes den nødvendige energi fra batteriet. Ved brug af hybridsystemet reduceres brændstofforbruget og der opnås en renere og mere effektiv forbrænding, som reducerer

Grøn profil for kommunale skibe 11 udledningen af CO2 ca. 15-18%3, og reducerer NOX og SOX. Scandlines har på nuværende tidspunkt taget hybridløsningen i brug på nogle af deres danske færger.

3.2.4 Operationelle metoder Slow steaming Slow steaming er en af de lavt hængende frugter i rækken af emissionsreducerende ’teknologier’. Det er en operationel metode der indebærer, at farten sættes ned. Derved sparer man brændstof, og der opnås derved reduktioner både i CO2, NOX og SOX. Metoden er effektiv, da brændstofforbruget er proportionelt med motoreffektforbruget i tredje potens. Dvs. at hvis man reducerer farten med 5%, vil man kunne opnå 9,8% reduktion af brændstofforbrug. Figur 1 viser sammenhængen mellem motorbelastning og brændstofforbrug for henholdsvis mekanisk og elektronisk kontrollerede to- takts motorer (IMarEST, 2010). For fire-takts motorer vil kurven ligge ca. 5% højere. Den mindre belastning af motor ved reduceret fart kan medføre, at forbrændingen bliver ufuldstændig, og der vil forekomme en relativ stigning af emissioner. Hvor stor emissionsstigning der er tale om er dog afhængig af motortypen og hvor langt uden for optimal belastningsområde motoren opererer.

Grundlæggende vil emissionen af NOX og SOX stige jo lavere procent af MCR (motoren maksimale ydelse) der opereres på.

Den relative stigning i emissioner opvejes dog af det minskede brændstofforbrug, selvom den totale reduktionen ikke er så optimal, som den kunne være. For at opnå optimal forbrænding skal motorer justeres (de-rating/de-tuning), så den passer til det nye driftsniveau, og der skal installeres elektronisk styring af brændstofpumper i stedet for mekaniske. Man Diesel og Turbo har oplyst , at der med tuning af motor ikke i sig selv kan opnås reduktioner i

CO2-udledning, der opfylder kravet FIGUR 1 SPECIFIC FUEL CONSUMPTION OF der træder i kraft i 2015 om 10 % CO2 MECHANICALLY CONTROLLED AND ELECTRONICALLY reduktion for nye skibe. CONTROLLED DIESEL ENGINES

Hvis man ønsker at overholde samme sejlplan, vil den længere rejsetid skulle opvejes af effektiviseringer af af- og pålæsning.

3.3 ”Bløde” ikke-teknologiske virkemidler De tekniske muligheder for at reducere emissioner er ofte relativt synlige for ejer eller operatør. Omend der bestemt kan være økonomiske udfordringer, så er den umiddelbare barriere ofte i højere grad manglende adgang til opdateret viden om ny teknologi end det er vanskeligheder med at løse tekniske forhold.

Skibsoperatører med en vilje til at engagere sig i initiativer til reduktion af udslip har stor glæde af de faglige selskaber og ikke mindst spydspidsprojekter f.eks. via eksisterende partnerskaber, som er effektiv vidensdeling. Præstationen på miljøområdet øges typisk i et samarbejde mellem vidensinstitutioner, eksterne konsulenter og virksomhedens egne ressourcer og der er til stadighed interesse i at indgå i disse samarbejder og netværk. Ny teknologi og viden er ofte formidlet og støttet gennem diverse programmidler og der kan fokuseres på at:

3

12 Grøn profil for kommunale skibe

 få opdateret (også mere international information) i de faglige netværk,  øge mulighederne for fast-track projekter på aktuelle skibe.

Samarbejde med ligesindede firmaer kan også give bedre forretningsmuligheder og mindske investeringsbyrden gennem at:

 dele udgifter til essentiel kundskab, som ellers ville blive afholdt af det enkelte firma,  forhandle fælles indkøb af for eksempel alternative brændsler, og  indgå fælles serviceaftaler for vedligeholdelse af ny teknologi.

Endelig kan det lette overgangen til grønnere operationer på danske færger, hvis der udvikles en fælles standard og rapportering hvor operatører kan sammenligne deres egne operationer med ”naboens”. Benchmarking er et kerneelement i systemer til performancemonitering og vil bidrage til at identificere optimeringspotentialer med hensyn til brændstofeffektivitet, installering af udslips- reducerende teknologier, osv. Standarden kunne f.eks. udvikles under det kommende færgesekretariat som er planlagt oprettet i foråret 2014.

Grøn profil for kommunale skibe 13

4. Gevinster og omkostninger

I afsnit 2 identificerede vi to eksempelfærger hhv. en større og en mindre kommunalfærge, og i afsnit 3 opstillede vi nettolister med teknologier, som kan bruges til at realisere forskellige miljømålsætninger.

I forlængelse heraf har vi opgjort omkostningerne og gevinsterne, der er forbundet med at implementere teknologierne for de to eksempelfærger. Det skal indskærpes, at der er tale om eksempelberegninger, som ikke er valideret i praksis på de udvalgte eksempelfærger og at de enkelte teknologiers anvendelighed forholder sig til typen af færge (lille og stor færge med udgangspunkt i maskinstørrelse og sejlafstand). De enkelte teknologiers direkte anvendelighed på de to eksempelfærger er ikke undersøgt.

Eksempelberegningerne giver en indikation af de omkostningsniveauer, der er forbundet med de forskellige teknologier for færger i de to grupper. Valget af optimal teknologi og omkostningerne herved vil dog altid bero på en konkret vurdering af den enkelte færge.

4.1 Tilgang Vi har vurderet teknologierne ud fra en budgetøkonomisk skyggepris, dvs. vi betragter størrelsen af investerings- og driftsomkostningerne i forhold til den reducerede emission set over teknologiens levetid4. Beregningerne er foretaget med antagelse af at begge eksempelfærger har samme emissionsprofil (emissionsfaktorer er benyttet, der knytter sig til ”medium speed” motorer) for at kunne sammenligne forskelle mellem de fleste store og små færger med store og små motorer. 5

I analysen har vi taget udgangspunkt i et årligt afkastkrav på 10%. For hver teknologi opgør vi de budgetøkonomiske omkostninger, der er forbundet med at reducere mængden af emission med 1 kg. Det gør vi for begge eksempelfærgerne.

For nogle teknologier har vi fundet negative skyggepriser. Det betyder, at der vil være driftsøkonomiske besparelser over tid forbundet med at implementere teknologien.

For at få en indikation af, om det ud fra et samfundsøkonomisk perspektiv giver en gevinst at investere i de relevante teknologier, har vi sammenhold de budgetøkonomiske omkostninger med enhedsomkostningerne for emissioner, se (DTU Transport, 2013).

Man skal dog være opmærksom på, at dette ikke giver det samlede billede af de samfundsøkonomiske effekter – men kun en indikation.

4 Bemærk, at der ikke er tale om en samfundsøkonomisk skyggepris, som er baseret på de samfundsøkonomiske omkostninger og gevinster, og derfor fx også omfatter værdien af reduktion af andre luftemissioner. 5 I virkeligheden har Kattegat en ”low speed” motor, hvilket ikke er typisk for større færger og reduktionen af NOx emission vil være højere. Som konsekvens vil det for netop Kattegat færgen betyde, at skyggeprisen er lavere end angivet. dvs. omkostningen forbundet med at reducere mængden af emission med et kg er lavere.

14 Grøn profil for kommunale skibe

TABEL 7 ENHEDSPRISER FOR LUFTEMISSION I 2013, 2013-PRISER, [KR./KG]

Emission By Land

Klima (CO2) 0,16 0,16

Svovl (SOX) 238 205

Nitrogenoxider (NOX) 52 52 Kilde: (DTU Transport, 2013)

Hvis den budgetøkonomiske enhedsomkostning for en teknologi er lavere end den tilhørende enhedsomkostning, indikerer det, at samfundets gevinster ved at implementere teknologien er større end de omkostninger, kommunen har ved installationen. Vær igen opmærksom på, at vi sammenholder kommunale omkostninger med gevinster for hele samfundet.

Nogle af teknologierne bidrager til at reducere flere emissioner. Her bør man have de samlede gevinster med i betragtningen og ikke alene fokusere på reduktionen af en enkelt emission.

4.2 Teknologier målrettet CO2-reduktion

Vi har identificeret en række teknologier, som egner sig til reduktion af CO2-emission, og vi præsenterer de budgetøkonomiske skyggepriser i tabel 8.

TABEL 8 BUDGETØKONOMISKE SKYGGEPRISER, [KR./KG]

Odin Sydfyen Kattegat (Lille færge) (Stor færge)

LNG uden forsyningsinfrastruktur 2 Negativ

Biodiesel 3 – 6 0-1

SCR/Biodiesel 6 – 10 1-2

Slow steaming (motor ikke modificeret) Negativ Negativ

Slow steaming (motor modificeret) Negativ Negativ

De budgetøkonomiske enhedspriser i tabellen skal ses i forhold til en enhedspris for CO2-emission på 0,16 kr./kg, jf. tabel 7. Husk, at vi sammenholder samfundsøkonomiske gevinster med kommunale omkostninger. Derfor bør sammenligningen kun bruges som en indikator og ikke som et strengt kriterium for, hvilke teknologier man bør overveje.

Der er en indikation af, at for små færger kunne slow steamning være en mulighed, som man bør undersøge nærmere. For store færger er der ikke billede af en klart foretrukket teknologi.

Grøn profil for kommunale skibe 15

4.3 Teknologier målrettet SOX-reduktion I tabel 9 præsenterer vi de budgetøkonomiske skyggepriser for teknologier, der er målrettet reduktion i SOX-emission.

TABEL 9 BUDGETØKONOMISKE SKYGGEPRISER, [KR./KG]

Odin Sydfyen Kattegat (Lille færge) (Stor færge)

LNG uden forsyningsinfrastruktur 586 – 651 Negativ

Biodiesel 3.390 – 3.593 388 – 495

SCR/Biodiesel 5.605 – 7.878 948 – 1.815

Slow steaming (motor ikke modificeret) Negativ Negativ

Slow steaming (motor modificeret) Negativ Negativ

Scrubber 1.925 – 2.052 245 − 261

Igen sammenholder vi de budgetøkonomiske skyggepriser i tabellen med enhedsprisen for SOX- emission på 205-238 kr./kg, jf. tabel 7.

For den lille færge er slow steaming eneste teknologi, som umiddelbart vil være velbegrundet set i forhold til enhedsprisen for SOX. For den store færge er der flere teknologier, som kunne være værd at overveje.

4.4 Teknologier målrettet NOX-reduktion

Slutteligt ser vi på teknologier, der er målrettet NOX-emission. I tabel 10 har vi præsenteret de budgetøkonomiske skyggepriser for teknologier, målrettet reduktion i NOX-emission.

TABEL 10 BUDGETØKONOMISKE SKYGGEPRISER, [KR./KG]

Odin Sydfyen Kattegat (Lille færge) (Stor færge)

LNG uden forsyningsinfrastruktur 23 – 35 Negativ

SCR/Biodiesel 39 – 52 7 – 12

Slow steaming (motor ikke modificeret) Negativ Negativ

Slow steaming (motor modificeret) 10 Negativ

SCR 14 – 26 4 – 8

Den samfundsøkonomiske enhedspris for NOX er 52 kr./kg.

For både den lille og den store færge finder vi, at de kommunale omkostninger opgjort pr. kg reduceret emission er lavere end den samfundsøkonomiske omkostning ved emissionen. Det gælder for alle teknologierne.

16 Grøn profil for kommunale skibe

5. Referencer

Danish Maritime Authority. (2012). North European LNG Infrastructure Project - A feasibility study for an LNG filling station infrastructure and test of recommendations. Danmarks Statistik. (20. August 2013). SKIB31: Indenrigs færgetransport efter færgerute og enhed. Hentet fra Stastikbanken.dk: http://www.statistikbanken.dk/statbank5a/default.asp?w=1920 DTU Transport. (26. August 2013). DTU Data- og Modelcenter. Hentet fra Transportøkonomiske Enhedspriser: http://www.modelcenter.transport.dtu.dk/Publikationer/Transportoekonomiske- Enhedspriser Friis, A. (2002). Ship Design Part 1. Technical University of , Department of Mechanical Engineering, Coarsta, Martitime and Structural Engineering. Hajbabaei, M. (2012). Evaluation of the Impacts of Biodiesel and Second Generation Biofuels on NOx Emissions for CARB Diesel Fuels. Environ. Sci. Technol. IMarEST. (2010). Reduction Of Ghg Emissions From Ships. Marine Environment Protection Committee. Institute of Marine Engineering, Science and Technology . Litehauz. (2013). Technical review - catalogue of reduction technologies.

Grøn profil for kommunale skibe 17

Bilag 1 Færger og færgeruter

Med udgangspunkt i (Danmarks Statistik, 2013) har vi opbygget en database over danske færger og færgeruter. Vi har suppleret databasen med data fra de enkelte færgers hjemmesider og med informationer indsamlet gennem telefonisk kontakt til relevante medarbejdere i de enkelte kommuner. I de tilfælde, hvor længden af færgeruterne ikke har været tilgængelig, har vi opmålt ruten vha. Google Earth, så der er tale om cirkaopmålinger.

I den samlede database har vi identificeret 39 kommunale færgeruter, som er relevante i forhold til de tilgængelige teknologier. Det er de 39 færgeruter, som danner grundlag analysen.

I tabel 11 præsenterer vi de 39 ruter med udvalgte nøgletal.

TABEL 11 RELEVANTE RUTER OG UDVALGTE NØGLETAL (PR. ÅR)

Rute Dobbeltture Passagerer Person-km Biler (1,000) (1,000) (1,000)

Assens-Baagø 1.662 21 128 3.378

Ballebro- 10.239 273 546 161.301 Hardeshøj

Bandholm-Askø 2.791 39 313 19.066

Branden-Fur 26.280 721 721 286.986

Bøjden-Fynshav 3.351 356 4.988 139.990

Esbjerg-Fanø 14.762 1.690 6.760 334.248

Feggesund 13.886 137 137 71.113 overfart

Fejø-Kragenæs 6.408 159 478 83.435

Femø-Kragenæs 2.284 45 587 19.883

Frederikshavn- 1.453 263 7.363 70.531 Læsø

Fåborg- 2.213 77 918 16.240 Avernakø-Lyø

Fåborg-Søby 1.613 79 1.420 33.663

Grenaa-Anholt 249 28 1.331 1.339

Hals-Egense 26.636 268 268 136.372

Havnsø-Sejerø 1.670 81 1.456 31.748

Holbæk-Orø 3.530 95 663 24.474

Hov-Samsø 2.576 385 8.078 130.026

Hov-Tunø 680 48 814 504

Hundested- 5.881 323 1.938 111.222 Rørvig

Hvalpsund- 10.024 129 259 72.057 Sundsøre

18 Grøn profil for kommunale skibe

Rute Dobbeltture Passagerer Person-km Biler (1,000) (1,000) (1,000)

Kalundborg- 919 155 6.337 46.186 Samsø

Kalundborg- 1.158 142 12.625 77.633 Aarhus

Kleppen-Venø 19.200 237 237 116.964

Køge-Rønne 365 57 9.753 17.823

Næssund overfart 13.820 83 167 37.130

Rudkøbing- 1.859 157 2.663 50.548 Marstal

Rudkøbing- 2.418 64 509 16.563 Strynø

Sjællands Odde- 1.960 700 29.381 244.560 Ebeltoft

Sjællands Odde- 2.796 1.203 56.542 454.967 Aarhus

Snaptun- 1.041 55 1.657 17.444 Endelave

Stigsnæs-Agersø 5.227 102 306 38.633

Stigsnæs-Omø 2.613 50 699 18.442

Stubbekøbing- 1.291 26 79 3.534 Bogø

Svendborg- 1.497 41 811 16.799 Skarø-Drejø

Svendborg- 1.975 293 6.745 71.922 Ærøskøbing

Søby-Fynshav 1.311 64 1.082 23.657

Thyborøn-Agger 5.553 140 280 60.460

Tårs-Spodsbjerg 6.185 425 6.377 182.340

Aarø-Aarøsund 6.517 139 139 44.980

Grøn profil for kommunale skibe 19

I tabel 12 og tabel 13 har vi samlet udvalgte nøgletal for de 52 færger som betjener de 39 ruter. I tabel 12 har vi samlet de små færger og i tabel 13 de store færger.

TABEL 12 RELEVANTE FÆRGERUTER (SMÅ FÆRGER) OG UDVALGTE NØGLETAL.

Rute Skib Rederi Byggeår Motoreffekt Rutelængde [kW] [km] Aarø- Aarø Aarø 1999 480 1 Aarøsund Færgefart (Haderslev Kommune)

Assens-Baagø Baagø- Assens-Baagø 1976 254 7 Færgen Færgen Aps.

Ballebro- Bitten Hardeshøj - 2001 602 2 Hardeshøj Clausen Ballebro Færgefart (Sønderborg Kommune) Bandholm- Askø Lolland 1993 452 6 Askø Færgefart (Lolland Kommune)

Bøjden- Spodsbjerg Færgen 1972 882 14 Fynshav

Bøjden- Thor Sydfyn Færgen 1978 1.177 14 Fynshav

Bøjden- Frigg Sydfyn Færgen 1984 1.280 14 Fynshav Bøjden- Odin Sydfyn Færgen 1982 1.280 14 Fynshav Branden-Fur Sleipner-Fur Fursund 1996 458 0.5 Færgefart (Skive Kommune) Branden-Fur Mjølner-Fur Fursund 2011 772 0,5 Færgeri (skive kommune)

Esbjerg-Fanø Sønderho Færgen 1962 235 3

Esbjerg-Fanø Fenja Færgen 1998 863 3

Esbjerg-Fanø Menja Færgen 1998 863 3

20 Grøn profil for kommunale skibe

Rute Skib Rederi Byggeår Motoreffekt Rutelængde [kW] [km] Fåborg- Faaborg III Ø-færgen A/S 2012 748 8 Avernakø-Lyø

Fåborg-Søby Skjoldnæs Ærøfærgerne 1979 442 20

Feggesund Sallingsund I/S Mors-Thy 1958 157 0,8 overfart Færgefart

Feggesund Feggesund I/S Mors-Thy 2012 736 0,8 overfart Færgefart

Fejø- Christine Lolland 2002 740 3 Kragenæs Færgefart (Lolland Kommune)

Femø- Femøsund Lolland 1996 618 14 Kragenæs Færgefart (Lolland Kommune)

Frederikshav Ane Læsø ex Færgeselskab 1995 1.770 28 n-Læsø Vesborg et Læsø K/S

Frederikshav Margrethe Færgeselskab 1996 2.800 28 n-Læsø Læsø et Læsø K/S

Grenaa- Anholt Grenå - 2003 1.290 50 Anholt Anholt Færgefart (Norddjurs Kommune) Hals-Egense Egense Hals-Egense 1955 187 0,5 Færgefart (Aalborg Kommune)

Hals-Egense Hals-Egense Hals-Egense 1961 670 0,5 Færgefart (Aalborg Kommune)

Havnsø- Sejerøfærgen Færgeselskab 1998 2.552 19 Sejerø et Bjergsted (Kalundborg Kommune)

Grøn profil for kommunale skibe 21

Rute Skib Rederi Byggeår Motoreffekt Rutelængde [kW] [km] Hou-Tunø Tunøfærgen Hov-Tunø 1993 442 14 Færgefart (Odder Kommune)

Hundested- Nakkehage* Hundested - 1955 221 6 Rørvig Rørvig Færgefart

Hundested- Skansehage* Hundested - 1959 224 6 Rørvig Rørvig Færgefart

Hvalpsund- Mary Hvalpsund - 2006 588 2 Sundsøre Sundsøre Færgefart (Skive Kommune) Kalundborg- Kyholm Danske 1998 2.940 45 Samsø Færger A/S Kleppen-Venø Venø Færgen Venø 2010 512 0,3 Færgefart (Struer Kommune) Næssund Næssund Mors - Thy 1964 154 1 overfart Færgefart (Morsø Kommune) Rudkøbing- Strynø Strynø - 2013 736 7 Strynø Rudkøbing Færgefart (Langeland Kommune) Snaptun- Endelave Endelave 1996 1.272 17 Endelave Færgefart (Horsens Kommune) Søby-Fynshav Skjoldnæs Ærøfærgerne 1979 442 20

Stigsnæs- Agersø III Agersø - Omø 2012 748 3 Agersø Færgerne (Slagelse Kommune)

Stigsnæs- Omø Agersø - Omø 2004 734 3 Omø Færgerne (Slagelse Kommune) Stubbekøbing Ida Bogø - 1959 154 2 -Bogø Stubbekøbing Overfarten (Vordingborg Kommune) Svendborg- Ærøskøbing Ærøfærgerne 1999 1.980 24 Ærøskøbing

22 Grøn profil for kommunale skibe

Rute Skib Rederi Byggeår Motoreffekt Rutelængde [kW] [km] Svendborg- Marstal Ærøfærgerne 1999 1.980 16 Ærøskøbing

Svendborg- Højestene Rederiet 1997 748 15 Skarø-Drejø Højestene (Svendborg Kommune) Tårs- Lolland Færgen 2012 4.100 14 Spodsbjerg Tårs- Langeland Færgen 2012 4.100 14 Spodsbjerg Thyborøn- Kanalen Thyborøn 1975 610 2 Agger Færgefart (Lemvig Kommune)

* Ny færge i 2013 (pers. comm. Hans Otto Kristensen)

TABEL 13 RELEVANTE FÆRGERUTER (STORE FÆRGER) OG UDVALGTE NØGLETAL

Rute Skib Rederi Byggeår Motoreffekt Rutelængde [kW] [km]

Hou-Samsø Kanhave Færgen 2009 5.000 20

Kalundborg- Kattegat Kattegatruten 1996 11.700 85 Aarhus A/S

Kalundborg- Dolphin Jet Kattegatruten 2004 32.800 85 Aarhus* A/S

Køge-Rønne Hammerode Færgen 2005 8.640 170

Køge-Rønne Dueodde Færgen 2005 8.640 170

Sjællands Max Mols Mols Linien 1998 28.800 72 Odde-Aarhus

Sjællands KatExpress1 Mols Linien 2009 36.000 72 Odde-Ebeltoft

Sjællands KatExpress 2 Mols Linien 2013 36.000 72 Odde-Ebeltoft

* Nedlagt den 12. oktober, 2013.

Grøn profil for kommunale skibe 23

Bilag 2 Bruttoliste over teknologier

Bruttolisten er blevet udviklet på baggrund af en lang række studier, videnskabelige udgivelser og større teknologi-reviews og repræsenterer en væsentlig samling af resultater fra den tilgængelige litteratur. Referencer til de enkelte reduktionspotentialer og kan findes i den tekniske rapport (bilag til denne rapport).

TABEL 14 BRUTTOLISTE TECHNOLOGIER: ALTERNATIVE BRÆNDSTOFFER. NA= NO INFORMATION AVAILABLE.

Technology NOX SOX CO2

Biofuel -47.1 to -1.6% 20 – 100% 40-85%*

Dimethyl Ether (DME) 35% - 95%*

Fuel cells/Hydrogen < 100% 100% 20 - 100%

Liquefied Natural Gas (LNG) 60-90% 90-100% 22.5%

Batteries - Renewable energy from shore (REFS) 100% 100% 100%

Batteries - Hybrid Follow fuel consumption reducion

Solar energy 8-17% 8-17% 8-17%

Ultra Low Sulfur Diesel Fuel (ULSDF) - 90% -

Wind power 10-35% 10-35% 10-35%

Wave power NA NA NA

24 Grøn profil for kommunale skibe

TABEL 15 BRUTTOLISTE TECHNOLOGIER: UDSTØDNINGSBEHANDLING, MODIFIKATION AF FORBRÆNDING, SAMT OPERATIONELLE METODER

Technology NOX SOX CO2

Efterbehandlingsteknologier af udstødning

Diesel Particle filter (DPF) 0% 0% -3.5%

Exhaust Gas Recirculation (EGR) 35 -80% 0-19% -1-3%

Plasma Assisted Catalytic Reduction (PACR) 80-97% - -

Scrubber Low Sulfur (SLS) Yes, No 90-95%* -3%

Scrubber High Sulfur (SHS) Yes, No 90-95%* -3%

Selective Catalytic Reduction (SCR) <95% 0 NR

Selective Non Catalytic Reduction (SNCR) 50% - -

Modifikation af forbrænding

Combustion Air Saturation System (CASS) 30-60% - -

Direct Water Injection (DWI) 42-60% - -2-0%

Fluidized Bed Combustion (FBC) - - -

Humid Air Motors (HAM) 30 – 70% - -

Internal Engine Modifications - Slide Valves 30% - 0%

Intercooler Recuperative gas turbine (ICR) - - -

Limestone - 50-60% -

Water in Fuel (WIF) 20-55% Yes 0%

Operational measures

Slow steaming(c) (no derating/re-tuning) - - 7-25%

Slow steaming(c) (with derating/re-tuning) - - 7-30%

Grøn profil for kommunale skibe 25

Bilag 3 Plots over færger

26 Grøn profil for kommunale skibe

Bilag 4 Technical review – Catalogue of reduction technologies Litehauz 2013

Grøn profil for kommunale skibe 27

Technical review – Catalogue of reduction technologies

This technical review is the appendix 2 to the report “Grøn Profil for Kommunale Færger” (Green Profile for Municipal ). It considers air emission technologies and their applicability to Danish ferries. It reviews abatement technologies and presents cost calculations for installment, operation and the associated reduction potential for the respective technologies.

Danish Environmental Protection Agency

Picture: Kai W. Mosgaard Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 1 LITEHAUZ December 2013

ABBREVIATIONS ...... 2 1 INTRODUCTION ...... 3 2 LONG LIST ...... 4 3 SHORT LIST CRITERIA ...... 6 3.1 Existing Regulation on Air Emissions for Ships Trading in Danish Waters ...... 6 3.1.1 Regulation of NOx ...... 6 3.1.2 Regulation of SOx ...... 7 3.1.3 Ozone Depleting Substances ...... 7

3.1.4 CO2 emissions ...... 7 3.2 Technology Availability ...... 8 3.3 Short List of Technologies ...... 9 3.3.1 NOx Reduction Technologies ...... 9 3.3.2 SOx Reduction Technologies ...... 9

3.3.3 CO2 reduction technologies ...... 10 3.3.4 Other emission parameters ...... 10 3.3.5 Operational measures ...... 10 4 TECHNOLOGY DESCRIPTION AND COST ...... 12 4.1 Selective Catalytic Reduction (SCR) ...... 12 4.2 Exhaust Gas Recirculation (EGR) ...... 13 4.3 Scrubbers ...... 14 4.4 Biofuel ...... 14 4.5 Liqified Natural Gas (LNG) ...... 16 4.6 Slow steaming ...... 17 5 ADDITIONAL TECHNOLOGIES ...... 19 5.1 Battery power ...... 19 5.1.1 Current status in Denmark ...... 20 5.1.2 International experience ...... 21 5.2 Internal enigne modifications ...... 22 6 SOFT INSTRUMENTS FOR ENHANCING ENVIRONMENTAL PERFORMANCE ...... 24 7 EXAMPLES OF TECHNOLOGY APPLICATION ...... 25 7.1 Choice of ferries ...... 25 7.2 Feasibility of technologies for example ferries ...... 26 7.3 Cost Calculations ...... 27 7.4 Emission reductions ...... 28 8 REFERENCES ...... 31 APPENDIX A - LONG LIST ...... 36 APPENDIX B – PLOT OF FERRIES ...... 40

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 2 LITEHAUZ December 2013

Abbreviations

BC Black carbon B20 Conventional fuel blended with 20% biodiesel B100 100% biofuel CAPEX Capital expenditures CASS Combustion Air Saturation System

CO2 Carbon dioxide DME Dimethyl ether DWI Direct Water Injection DPF Diesel particulate filters ECA Emission control area EEDI Energy Efficiency Design Index EGR Exhaust Gas Recirculation FBC Fluidized Bed Combustion GHG Green House Gases HAM Humid Air Motors HFC Hydrofluorocarbons HFO Heavy fuel oil ICR Intercooler Recuperative gas turbine IEM-ADV Internal engine Modifications - Advanced IEM-SV Internal engine Modifications - Slide Valves IMO International Maritime Organization LNG Liquefied Natural Gas MARPOL International Convention for the Prevention of Pollution From Ships MDO Marine distillate oil MEPC Marine Environment Protection Committee MCR Maximum Capacity Rating MW Megawatt NA Not available NECA Nitrogen oxides Emission Control Area NOx Nitrogen oxides NR Not reported ODS Ozone Depleting Substances OPEX Operating expenditures PACR Plasma assisted Catalytic Reduction PM Particulate matter REFS Renewable Energy from Shore SCR Selective catalytic reduction SECA Sulphur Oxide Emission Control Area SEEMP Ship Energy Efficiency Management Plan SFOC Specific fuel oil consumption SHS Scrubber High Sulphur SLS Scrubber Low Sulphur SOx Sulphur oxides SNCR Selective Non Catalytic Reduction SSDR Slow-steaming de-rating ULSD Ultra-low sulphur diesel VOC Volatile organic compound WIF Water in Fuel systems or Water in Fuel Emulsions

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 3 LITEHAUZ December 2013

1 Introduction

This technical report is the appendix 2 to the report “Grøn profil for kommunale skibe” (Green profile for municipal ships). It considers air emission technologies and their applicability to Danish ferries. It reviews abatement technologies and presents cost calculations for instalment, operation and the associated reduction potential for the respective technologies. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 4 LITEHAUZ December 2013

2 Long List

A number of scientific articles and reviews have been investigated to produce a long list of abatement technologies for reducing emissions to air in ships. The long list is presented in Table 2. The technologies on the Long List are given colour codes according their ability to generate reductions beyond the current compliance level, see Table 1. Category 1 is the category where the largest reductions are achieved. In this category the technologies comply with more than what is or will be required. The technologies, which fall into category 4 reduce emissions but not enough to comply

with the existing or upcoming regulations, e.g. CO2 has to be reduced by 10% by 2015. Category 2 and 3 fall in between. In general, no regulations regarding Particulate matter (PM), Black carbon (BC), Volatile organic compounds (VOC), or Green House

Gasses (GHGs) (except CO2) exist, and categorisation of these compounds have been decided based on what is realistic with the available technology. Reduction of emissions of noise to air or water has not been a part of the study. A full long list with references is given in the Appendix.

Table 1 Color codes for long list technologies, where green Cat. 1 is the Cat. 1 Cat. 2 Cat. 3 Cat. 4

best category and orange Cat. 4 is the >0-20% (does ≥80% (comply 50-80% (comply 20-50% (comply category with the lowest reductions NOx not comply with with Tier III) with Tier II) with Tier II) achieved. Tier II) SOx >90 % 60-90 % 40-60% >0-40 %

CO2 >30% 20-30% 10-20% >0-10% PM >80% 60-80% 25-60% >0-25% BC >80% 60-80% 30-60% >0-30% VOC >80% 60-80% 30-60% >0-30% GHG >50% 30-50% 10-30% >0-10%

For all emissions, red indicates an increase in emissions or no change.

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 5 LITEHAUZ December 2013

Table 2 Long List of reduction technologies (R= retrofit, N= newbuild), simplified version. The full long list with references is presented in Appendix A. NR = not reported Fuel Availa Retofit VOC NOx CO GHG PM BC Technology savings SOx 2 ble <5 newbui (%) (%) (%) (%) (%) (%) (%) years ld Post engine technologies

Diesel Particle filter (DPF) - - 0 0 -3.5 - 85 85-99 No R & N Exhaust Gas Recirculation (EGR) -4 - 35 -80 0-19 -1-3 - 40 - 58 0 Yes N Plasma Assisted Catalytic Reduction (PACR) - - 80-97 - - - - - No - Scrubber Low Sulfur (SLS) - - Yes, No 90-95(a) -3 - 75(a)-80 37.5 Yes R & N Scrubber High Sulfur (SHS) - - Yes, No 90-95(a) -3 - 75(a)-80 60 Yes R & N Selective Catalytic Reduction (SCR) - - < 95 0 NR - 25 - 45 >35 Yes R & N Selective Non Catalytic Reduction (SNCR) - - 50 - - - - - Yes R & N Fuel switching

-47.1 to 20 - (d) Biofuel - - 40-85 - 25 - Yes R & N -1.6 100 Dimethyl Ether (DME) - - 35 - 95(d) - 97 - No R & N 20 - Fuel cells/Hydrogen - < 100 100 - 100 100 No - 100 0- Liquefied Natural Gas (LNG) - 50 10(e)-90 90-100 22.5 < 99 93.5 Yes R & N 25(b) Batteries – Renewable energy from shore - - 100 100 100 - - - Yes R & N Follow Follow Follow (f) fuel fuel fuel Batteries – Hybrid - - - - - Yes R & N consump consum consum tion ption ption Solar energy Few % - - - 1-2 - - - NR R & N

Ultra Low Sulfur Diesel Fuel (ULSDF) - - - 90 - - - - NR R & N

Wind power 5 -20 ------NR R & N

Wave power Limited ------NR -

Combustion modification

Combustion Air Saturation System (CASS) - - 30-60 - - - - - No -

Direct Water Injection (DWI) - - 42-60 - -2-0 - < 50 - Yes R & N

Fluidized Bed Combustion (FBC) ------No -

Humid Air Motors (HAM) - - 30 - 70 - - - < 50 - NR R & N

Internal Engine Modifications - Slide Valves - 50 30 - 0 - 80 25 Yes R & N

Intercooler Recuperative gas turbine (ICR) 25-30 ------NR N

Limestone 50-60 NR -

Water in Fuel (WIF) - - 20-55 Yes 0 - 30 70 Yes R & N

Operational measures

Slow steaming(c) (no derating/re-tuning) 7-25 7-25 -30 - 0 Yes R & N

Slow steaming(c) (with derating/re-tuning) 7-30 7-30 0-30 Yes R & N a Only stated for scrubber in general b) Risk of methane slip c) Engine load reduced from 100% to 40%. d) If produced from biomass e) Some dual fuel systems only 10-15%, f) Reduction potential is dependent on specific configuration of system Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 6 LITEHAUZ December 2013

3 Short List Criteria

The technologies on the long list are evaluated with regards to reduction potential, maturity and uptake time. In order to be shortlisted:

• The reduction potential will have to exceed the required compliance levels in existing regulation (and near future compliance requirements, i.e. SOx in

2015, Tier III NOx reduction in 2016 and CO2 reduction in 2015)

• The technology needs to be commercially available and implementable within a five-year timeframe.

Internal Engine Modifications (IEM) are also included on the short list, though it is not possible to be in compliance with Tier III from application of EIM methods. IEM will allow vessels built before 2000 to comply with Tier I, as recently required by the Danish Ministry of Transport.1

3.1 Existing Regulation on Air Emissions for Ships Trading in Danish Waters

The existing and planned regulations on air emissions, for ships trading in Danish waters, are governed by the IMO International Convention for the Prevention of Pollution from Ship (MARPOL 73/78), which entered into force in May 2005. MARPOL comprises six Annexes with Annex VI covering the prevention of air pollution from ships. There is a number of specific provisions in MARPOL relating to the area to which the regulation applies (e.g. within or outside of 12 nm, in special areas, in ports with reception facilities) and to the timing of the implementation as governed e.g. by the ship’s year of build and size class.

The emission parameters, which are regulated comprise: nitrogen oxides (NOx),

sulphuric oxides (SOx), ozone depleting substances ODS and CO2. There is currently no direct regulation in Denmark concerning particulate matter (PM)2 in emissions from ships or volatile organic compounds (VOC)3 as well as green house gasses (GHG) apart from those covered under ODS, SEEMP and EEDI (see section 3.1.4).

3.1.1 Regulation of NOx

NOx reduction from shipping is addressed in Regulation 13 under MARPOL Annex VI. The regulation applies a three-levelled tiered approach, where compliance requirements with Tier I and Tier II are already in force. Tier III requirements will enter into force in 2016, however the compliance date is subject to a technical review (to be concluded 2013) and could be delayed. Tier III applies for ships operating in NOx Emission Control Areas (NECAs) that fall under the following categories: 1) built on or after the 1st of January 2016, 2) of 400 gross tonnage or above and 3) with an engine power output of more than 130 kW.

1 Ships operating on Bøjden-Fynshav and Ballen-Kalundborg 2 PMs are indirectly addressed under SOx regulation. 3 Except for tankers under MARPOL Annex VI Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 7 LITEHAUZ December 2013

The Danish waters comprise parts of the OSPAR and HELCOM areas (North Sea and Baltic Sea4). The OSPAR and HELCOM areas do not have NECA status, though work is being undertaken to apply for such in both areas. There is at this point no affirmative information on when and if the status for these areas will change in the near future following the discussion of NECAs at MEPC 65 in May 2013.

In 2009, MEPC approved an application from USA and Canada to designate North American waters as SECA and NECA from 2016.

3.1.2 Regulation of SOx

SOx reduction is addressed in Regulation 14 under MARPOL Annex VI. The emission requirements are linked to the sulphur content in fuels. From 2012 is the sulphur content limit in fuels globally <3.5% and from 2010 <1% in SOx Emission Control Areas (SECAs). Both the North Sea and the Baltic Sea have status as SECA (from 2007 and 2006, respectively (IMO, 2013b)).

Specifically, ships at berth in EU harbours and in canals have been regulated since 2010 and must comply with a 0.1% sulfur limit (EU directive 2005/33/EC, 2005). The same sulfur content limit of 0.1% will apply also for SECA waters in 2015.

3.1.3 Ozone Depleting Substances

The use of ODS is addressed in Regulation 12 under MARPOL Annex VI and applies to all equipment not permanently sealed. Installation of equipment containing ODS (except HCFCs) on ships constructed on or after May 19th 2005 is prohibited. HCFCs will be prohibited on ships constructed on or after 2020.

Coming EU legislation will from 2014 strengthen ODS regulation on EU flagged ships prohibiting service on equipment containing ODS, though still allowing the equipment to stay on board.

3.1.4 CO2 emissions

Regulation of CO2 emissions is included in MARPOL Annex VI under the Energy Efficiency Design Index (EEDI) and the Ship energy Efficiency Management Plan (SEEMP). The regulation applies to all new ships constructed on or after 1st of January 2013 as well as for existing ships, which undergo a major conversion.

EEDI regulates new ships to be more energy efficient (less polluting) with regards to design, equipment and engines. The EEDI provides a specific figure for an individual 5 ship design, expressed in grams of carbon dioxide (CO2) per ship’s capacity-mile (Resolution MEPC.212(63), 2012). The EEDI requires step-wise improvements to the

4 The Baltic Sea are in the context of HELCOM understood as also comprising Kattegat and Belt Sea 5 For bulk carriers, tankers, gas tankers, ro-ro cargo ships, general cargo ships, refrigerated cargo carrier and combination carriers deadweight is to be used as capacity. For passenger ships and ro-ro passenger ships, gross tonnage should be used as capacity. For containerships, 70 per cent of the deadweight is used as capacity Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 8 LITEHAUZ December 2013

energy efficiency of new build ships, starting at 10% reduction in CO2 per tonne-mile from 2015, increasing to 20% and 30% from 2020 and 2025, respectively.

The Ship energy Efficiency Management Plan (SEEMP) is mandatory for all existing and new ships over 400 GT from January 2013 (MEPC.203(62), 2011). The SEEMP is an operational measure that establishes a mechanism to improve the energy efficiency of a ship in a cost-effective manner; however, it does not apply any reductions requirements.

In June 2013 the European Commission set out a strategy to integrate maritime emissions into the EU’s policy in June 2013. The first step of the strategy is a legislative proposal to establish a EU system for monitoring, reporting and verification (MRV) of

CO2 emissions from large ships on voyages to, from and between European ports. There is a debate as to how the system should be implemented, but it is expected that the MRV system will apply to shipping activities carried out from 1 January 2018 (European Commission, 2013; Danmarks Rederiforening, 2013).

Table 3 Emission Applicable 1/1/2013 1/1/2015 1/1/2016 1/1/2020 1/1/2025 Existing regulation on air emissions for NOx NECA Tier II, 20% Tier III, trading in Danish waters. reduction - 80% - - reduction Global Tier II, 20% - - - - reduction SOx SECA – <0.1% berth/ sulfur - - - canals content in fuel SECA – <1% sulfur <0.1% open content in sulfur - - - waters fuel content in fuel* ODS Global ODS HFCs* prohibited prohibited - - - except HFCs** Denmark All ODS

prohibited

CO2 EEDI EEDI: - EEDI: 20% EEDI: (baseline) 10% reduction 30% SEEMP reduction reduction MRV in 2018 PM No specific regulation (indirectly regulated under SOx) VOC No regulation GHG Follow EEDI and SEEMP. MRV in 2018 *Alternatively exhaust gas cleaning **HFCs: Hydrofluorocarbons

3.2 Technology Availability

The technologies are assessed with regards to commercial availability and with an implementation horizon within five years. Prior use as abatement technologies in the maritime sector is also a necessity, as maritime applications need to be type approved prior to use. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 9 LITEHAUZ December 2013

3.3 Short List of Technologies

The following technologies listed below are chosen for further assessment, based on the Short List criteria described in section 3. The shortlisted technologies are all suited for being installed as either newbuilds or retrofits, except EGR, which is integrated into the engine and is therefore only installed on new engines. Though slow steaming is not a technology but an operational measure, it is also included as a significant reduction of emissions is obtained as a consequence of less use of fuel. Engine modifications are not addressed as separate abatement measures, as none of the

modifications can reach or exceed emission compliance levels for NOx, SOx or CO2 by themself.6 In the cases where an abatement technology on the short list results in a rise in other emissions, potential mitigating engine modifications are mentioned. A description of the selected technologies are given in section 0.

• SCR • ERG • Scrubber • LNG • Biofuel • Slow steaming

3.3.1 NOx Reduction Technologies

The short listed NOx reducing technologies are presented in Table 4. Though EGR currently does not exceed the compliance requirements of an 80% reduction (Tier III) at least not in four stroke engines an initial assessment is included, as it is uncertain when (and if) the waters, in which the Danish ferries trade, are assigned status as NECA. The technology will in the meantime reduce NOx more than required (-20%) and at the same time be sufficient to comply with Tier III. The technology can, however, not be retrofitted and is only considered applicable when a new engine is installed. Newer two stroke engines may have EGR integrated. No calculations are therefore included with regards to EGR.

Table 4 Technology NOx reduction potential Available <5 years Short listed NOx reduction technologies. EGR 35-80% Yes SCR Up to 95% Yes LNG 60*-90% Yes * Some dual fuel systems only 10-15%.

3.3.2 SOx Reduction Technologies

The Baltic Sea and the North Sea have status as SECAs and the current sulphur content limit in fuels is limited to 1% when sailing in open waters. As the sulphur limit of 0.1% applies from January 1st 2015 only the technologies that performs better than the 2015 requirement are included. The shortlisted SOx reduction technologies are presented in Table 5.

6 Pers. Com. Man Diesel Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 10 LITEHAUZ December 2013

Table 5 Technology SOx reduction potential Available <5 years Short listed SOx reduction technologies. Scrubbers 90-95% Yes Biofuel 20- 100% Yes LNG 90-100% Yes

3.3.3 CO2 reduction technologies

The EEDI requires a 10% reduction of CO2 by 2015 compared to the 2013 baseline,

which will increase to 30% by 2025. All the CO2 reduction abatement technologies, which live up to the short list criteria could be included, however, the requirements do

only apply for new ships. In order to include CO2 reducing technologies that comply with the 2020 target are chosen for the short list. These are presented in Table 6. A number of other measures to optimize the ship’s design and operation to achieve

reduction in CO2 also exist, hereunder better paint types, propulsion improving devices, new propeller types, and optimisation of aerodynamics etc. It is beyond the

scope of this study to elaborate further on other EEDI CO2 reducing measures.

DME, which is not included, is a promising technology currently under testing for merchant ships. It has been assessed that it will not be available in commercial form in less than five years. It may, however, be available for pilot tests.

Table 6 Technology CO2 reduction potential Available <5 years

Short listed CO2 reduction technologies. Biofuel 40-85% Yes LNG 22.5% Yes

3.3.4 Other emission parameters

Particulate matter (PM) is also an emission of concern and PM is briefly covered here as it is addressed indirectly under MARPOL SOx regulation. SOx constitute a large fraction of the PM emission and can therefore be reduced by use of scrubbers (see technology description on scrubbers in section 4.3) and with a more general technology, the diesel particulate filters (DPFs). DPF systems are very efficient at the removal of PM as well as BC and the use has been successful on inland waterway vessels and on highway trucks (LITEHAUZ, 2012). However, commercial use of DPFs on the open water fleet has yet to be seen. Reductions of PM emissions are not assessed further as a separate emission parameter in the present report since it is not regulated for ships. DPF may reduce PMs up to 85% and up to 80% may be achieved when using scrubbers.

3.3.5 Operational measures

Slow steaming is not a technology as such, but it should be considered a “low hanging fruit” with regards to reduction of emissions, as even a small reduction in speed will contribute positively to most of the emissions, hereunder specifically SOx, NOx and

CO2. However, the effects of slow steaming are heavily influenced by; the actual engine, its condition, and the load during operation. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 11 LITEHAUZ December 2013

Table 7 CO reduction Available <5 Technology NOx SOx 2 Reduction potentials from slow potential years Follow fuel Follow fuel Follow fuel steaming Slow steaming Yes reduction* reduction reduction** * Can result in a slight increase due to incomplete combustion, however this is dependent on level of reduction and specific engine. ** A 10% reduction in speed results in 20-25% reduction in CO2 (pers. com Hans Otto Kristensen) Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 12 LITEHAUZ December 2013

4 Technology Description and Cost

The technology descriptions were compiled from a host of pier reviewed and official reports, as well as information from manufacturers. The website retro-fitting.dk has also been consulted. Once installed, the abatement measures do not require additional crew competencies, except LNG for which an estimated 10% additional crewing cost is required due to the complexity and safety requirements of the systems.

4.1 Selective Catalytic Reduction (SCR)

Selective catalytic reduction (SCR) is a NOx reduction technology that treats the exhaust gas with an additive. The additive is ammonia or urea, which is fed through a catalytic converter at a temperature of 300 to 400 oC. The chemical reaction is selective and reduces the NOx with more than the required 80%. The side effects such as oxidation of sulphur dioxide to sulphur trioxide will be suppressed in the catalytic process (MAN Diesel & Turbo, 2013). About fifteen gram of urea is needed per kWh energy from the engine to obtain a 90% NOx reduction (EEB et al., 2004; Andreoni et al., 2008). The catalyst will also reduce noise with up to 10 – 35 dBA (Lövblad and Fridell, 2006). The equipment comprises a catalyst reactor and a urea storage tank as well as premixing and injection systems, with a footprint of around 50 – 100 m3 (Lövblad and Fridell, 2006), though primarily associated with the urea tank.

The lifetime of the SCR catalyst depends on the sulphur content of the fuel. SO3 is formed during combustion, which combined with ammonia creates ammonium bisulphate that sticks to the surface of the catalyst and air heater. This causes major clogging problems of the catalyst (Gutberlet et al., no date) greatly affecting the lifetime of the technology. In general the case is that the higher the sulphur content, the shorter the lifetime of the catalyst. SCR Systems treating exhaust gasses, from engines running on heavy fuel oil, may need replacement of the catalyst after approximately 40,000 hours of operation (4.5 years) (Andreoni et al., 2008). Even systems treating exhaust gas from fuel containing 1.5% sulphur could require catalyst replacement every five years (Lövblad & Fridell 2006). Low sulphur systems (max 0.2%) may run for a considerably longer time without replacement of the catalyst; e.g. the ship Aurora of Helsingborg in Sweden operated with the same SCR catalyst installed in 1992 using fuel with sulfur content of <0.1% (SMA, 2006). SCR catalysts, which operate with high sulphur content, are in the development phase. The estimated lifetime of other components than the catalyst itself ranges from to 12.5 years (Entec, 2005), up to 15-25 years (Wärtsilla in Kali et al., 2010). Usually more than 20,000 hours of SCR operation are guarantied (Lövblad and Fridell, 2006).

For a retrofit, the capital expenditures are estimated to range between 60 to 100 EUR/kW (Lövblad and Fridell, 2006). The highest cost burden lies within the operational cost, which is around 2.7-7.2 EUR/kWh (MST, 2012). The cost is mainly related to the procurement of urea. Urea is a common commodity and therefore Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 13 LITEHAUZ December 2013

easily obtainable. The specific Fuel Oil Consumption (SFOC) penalty is 1-2 g/kWh (MST, 2012). See table below for an overview of costs.

Cost SCR (4stroke) Table 8 Unit Medium rpm range Cost of selective catalytic reduction as Capital expenditure (retrofit) 60-100 EUR/kW abatement technology. Operational expenditure 2.7-7.2 EUR/kWh SFOC penalty 1-2 g/kWh

4.2 Exhaust Gas Recirculation (EGR)

Exhaust gas recirculation (EGR) is an after-treatment of emissions that recirculates the exhaust gas into the charge air. The process lowers the oxygen content in the cylinder and increases the specific heat capacity of the air, which results in a reduction of the amount of NOx generated during combustion (MAN Diesel & Turbo 2013). There is certain limitations associated with the technology: EGR is only available for ships using 0.2% sulphur marine distillate (Andreoni et al., 2008), unless a SOx scrubber is also installed before the EGR, but most important with regards to applicability to Danish ferries, the EGR cannot in practice be retrofitted and may be installed with a new EGR fitted engine. It should be noted that in the case were a new engine is installed it should following MARPOL Annex VI and comply with the NOx emission requirements which is applicable at the time of installation. There is a minor increase in fuel consumption associated with the technology.

The lifetime is estimated to 30 years (interview with MAN Diesel and Turbo7, CIMAC, 2012; Khalilarya et al., 2012).

The cost of the EGR equipment ranges from 32-39 EUR/kW (for use on a 4-stroke engine at 400-1,600 rpm) and an installation cost of 10 EUR/kW. This gives a total capital expenditure of 46-55 EUR/kW. Operational expenditures are estimated to 5-8% of the fuel cost, which comes from the SFOC penalty (MST, 2012).

Table 9 EGR Amount Unit Cost of EGR as abatement technology. Capital expenditure 46-55 EUR/kW Equipment 36-45 EUR/kW Installation 10 EUR/kW Operational expenditure 5-8 % of fuel costs

SFOC penalty See operational expenditures

7 Interview with Fahimi, Sulai, cited in icct (2012). Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 14 LITEHAUZ December 2013

4.3 Scrubbers

Scrubbing is an after-treatment of emissions reducing SOx by washing it out of the exhaust gas. Several types of scrubbers exist, hereunder seawater scrubbers and freshwater scrubbers in different constellations; open loop systems, closed loop systems, hybrids (both closed and open).

Seawater water scrubbers use no additives when in open loop mode, but utilize the - alkalinity (HCO3 ) in the seawater to neutralise the sulphur oxides in the exhaust gas.

The chemical reactions between SO2 and the bicarbonate result in formation of sulphates, which are re-circulated back into the sea with the scrubber water. When trading in low alkaline water or in freshwater, a closed loop scrubber may be used adding a caustic soda (NaOH) solution to aid the neutralization of the sulphur (CNSS, 2011). Sludge is generated during the operation of the scrubber, which will need to be handled, i.e. delivered to a port reception facility.

The SOx reduction is almost proportional to the sulphur content of the fuel used (Hansen, 2012) and up to a 95% reduction can be obtained. Reductions of PMs are also obtained (up to 80%) as well as reduction of black carbon of over 30%. According

to Hansen (2012): “The CO2 content in the exhaust gas is almost constant (4.3%), though a slight increase (+3%) has been seen” (Litehauz, 2012).

The cost of installing a scrubber is highly dependent on ship and engine type and type of scrubber. Scrubber cost for a retrofit case is estimated to 280 EUR/kW for a retrofit case incl. offhire and drydocking (Litehauz, 2012). Operational costs are estimated to 3% of newbuild cost for small ships (<6,000kW), 2% for medium ships (≥6,000 to <15,000 kW) and 1% for large ships (≥15,000 kW) (Entec, 2005).

Table 10 Scrubber Amount Unit Cost of scrubber as abatement Scrubber cost (newbuild) 250* EUR/kW technology. Scrubber cost (retrofit) 280* EUR/kW Operational costs – ships <6000kW 3 % of newbuild Operational costs – ships ≥6,000 to <15,000 2 % of newbuild kW Operational costs – ships ≥15,000 kW 1 % of newbuild

*Based on 2012 figures. The technology is developing fast and costs decrease as a consequence. Very recent figures indicate cost levels of 90-200 EUR/kW for newbuilds and 200-400 EUR/kW for retrofits for 40MW to 10MW respectively. A rule of thumb: installation cost is x2 of component cost.

4.4 Biofuel

Biofuel can be used as a fuel switch option. There are basically two types of biofuels on the market, “first generation” biofuels and “second generation” biofuels. The first generation biofuels are produced from vegetable crops, sugar starch, or animal fats, which in many cases may otherwise be used as foodstuffs. The second generation biofuels are made from lignocellulosic biomass (dry biomass such residual non-food crops, non-food parts of current crops (leaves, stems), and industry waste. First- Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 15 LITEHAUZ December 2013

generation biofuels have been criticized for being unsustainable because the production threatens food supply, water resources and biodiversity (IMO, 2009). A “third- generation” biofuel is under way using algae as basis but this technology is still in the development phase (IMO, 2009).

Biofuels can be used as fuel in ships with no or minimal adjustment of the engine. However, biodiesel and crude vegetable oil seem to be the most promising. Potential alternatives could be pyrolysis oil, rape oil, soya oil, residual oils, palm oil or sunflower oil. For replacing marine distillates, biodiesel is most suitable, while for replacing residual fuels (e.g. HFO) vegetable oil is most suitable (Opdal and Hojem, 2007). Thorough cleaning and gas freeing of fuel tanks is necessary when using blends of 5% biofuel or more.

100% biofuel (B100) require special handling and fuel management and potentially also additional equipment and modifications to the engine, such as the use of heaters and new seals and gaskets that come in contact with the fuel. One of the drawbacks of B100 is that it gels at lower temperatures than most diesel fuels, meaning a rise in viscosity, which can lead to clogging of the filters or eventually cause problems with the pumping of fuel from the tank to the engine (Nayyar, 2010). It is estimated that it is not economically realistic to substitute conventional fuels with 100% biofuel within a timeframe of 5 years. It is considered more realistic that a 20% (B20) biofuel blend with conventional fuel (MDO) may be used at present time.

Biofuels are classified to be carbon-free in the EU emissions trading scheme and the use of B20 will therefore act to comply with requirements under the EEDI scheme

(10% reduction of CO2 for new ships in 2015). In 2020 where a 20% reduction is needed it may be possible to raise the biofuel content further to exceed compliance with 2020 requirements. A B20 mix will not comply with the coming SOx limits (<0.1%) when mixed with HFO but may be used in combination with a fuel that complies with the existing regulations to exceed compliance levels. The use of biofuels has been reported to lead to an increase in NOx emissions; however, NOx generation can be reduced with engine optimisation such as fuel injection rate and timing, (IMO, 2009), split injection (Hajbabaei et al., 2012), and EGR, though the latter will require a instalment of new engine. According to Nayyar (2010) the effect of biodiesel on NOx emissions can vary with engine design, calibration and test cycle. At present time the data available indicates that a rise in NOx emissions are between 1.5%-6.9% (Hajbabaei et al., 2012) when using B20.

The capital expenditures related to biofuels are limited and comprise an initial cleaning of the tank. “The Washington State Ferries Biodiesel Research and Demonstration Project” has tested cleaning by wiping the tank walls with B100. The costs reported were 160 EUR/m3 of tank capacity (WST, 2004). For a B20 mix, instalment of heaters and change of seals and gaskets is not considered to be a requisite.

Microbial growth leading to formation of sludge, clogging the filtration system, was experienced on B20 blend trials of three ferries. The sludge problem was solved by application of a biocide in the fuel (WST, 2004).

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 16 LITEHAUZ December 2013

The added operational expenditures from the B20 biofuel compared to MDO are 6 EUR/tonnes.8 In addition are maintenance costs, as well as the potential adding of biocides, however there is not sufficient data available to quantify maintenance costs. It is, though, expected that maintenance costs will increase significantly in commercial marine applications where biofuels are used (Nayyar, 2010). B100 biodiesel contains 8 – 11% less energy than conventional diesel (Petzold et al., 2011; Wue et al., 2011, US- EPA, 2002, Jayaram et al., 2011) and fuel consumption will therefore increase by the same amount.

Table 11 Cost of switching to biofuel Biofuel Amount Unit MDO 818 EUR/tonnes Biodiesel (B20) 824 EUR/tonnes Price difference from MDO 6 EUR/tonnes Tank cleaning 160 EUR/m3 tank capacity SFOC penalty (B100) 8 - 11 %

4.5 Liqified Natural Gas (LNG)

Liquefied natural gas (LNG) is an alternative fuel, which mainly reduces emission of

NOx, SOx and CO2. As a natural gas, it is comprised of methane (predominant component), ethane and small amounts of heavy hydrocarbons. LNG is stored as a liquid at -162°C. The LNG engines for ships are either mono-type engines, which solely use LNG as fuel, or dual fuel-type engines that can switch between conventional fuel and LNG. However, the dual fuel engine requires a small amount of diesel as pilot fuel for the combustion of LNG. LNG dual fuel systems, with diesel electric propulsion units for better efficiency, are used on vessels with short journey times such as e.g. ferries, cruise liners, and supply vessels. LNG tankers commonly use dual fuel system on 4- stroke engines. Two-stroke engines are a recent contribution where both MAN Diesel and Wärtsilä have announced that they have LNG-powered two-stroke engines available for marine propulsion (Litehauz, 2012).

9 SOx can be reduced by up to 100%, NOx by 90% and CO2 by approximately 20%. Other emission parameters include reduction of PM, black Carbon (BC), VOC and other GHGs. There is however the potential risk of methane slip, a GHG that is 20 times

more potent than CO2 (Litehauz, 2012). Risk of release of un-combusted methane can be mitigated with technical measures, e.g., better design of combustion chamber. It is expected that requirements for methane leakage from new LNG engines will be included in future regulation.

MAN Diesel advises that an LNG retrofit is not possible on a two-stroke, mechanically controlled fuel system and that a conversion to an electro-hydraulic common rail fuel system (ME-B) is required.10 Though LNG has higher energy content than MDO and less fuel is needed, it requires close to double the fuel tank volume compared to fuel

8 Pers. Com. Peter Christoffersen, Head of Sales, Q8, Includes, blending and delivery 9 The new engine by Wärtsilä (RT-flex 50DF) reportedly reduces NOx with 90% without use of SCR and EGR (Maskinmesteren, 2013). 10 The CAPEX can be reduced by 20% if the vessel has an electrohydraulic common rail fuel system (ME-B, ME-C or RT-Flex) already installed. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 17 LITEHAUZ December 2013

oils due to pressure, insulation and gas handling equipment, which is a challenge for vessels with limited or no deck space. Furthermore, the availability of fuel in ports limits the use of LNG (CNSS, 2011). Cost estimates for LNG fuel tanks range from USD 1,000/m3 - USD 5,000/m3 (Litehauz, 2012). Additional crew competencies are also needed due to the complexity and safety requirements of the systems. 10% additional crewing cost is assumed.

Table 12 Cost of switching to LNG LNG Amount Unit Cryogenic plant 1,140,000 EUR LNG tank cost 760 EUR/m3 LNG tank capacity 2,000 m3 LNG machinery conversion 32 EUR/kW NORD Butterfly ME-B conversion* 9,480 kW CAPEX* 610,000 EUR ME-B conversion cost* 64 EUR/kW Total Engine LNG conversion cost (excl. inst.) 96 EUR/kW Total Engine LNG conversion cost (incl. inst.) 347 EUR/kW Pilot fuel consumption penalty 2.0% kg/kWh Cryogenic pump fuel penalty 1.2% kg/kWh Total penalty 3.2% kg/kWh

4.6 Slow steaming

Slow steaming is an operational measure to reduce fuel consumption when speed is reduced from full ship speed to a lower speed. A crude approximation is that fuel consumption increases in the 3rd to the power of speed (Harvald, S., 1977) for large reductions in speed and up to 4-5 for smaller reductions in speed. A slower vessel speed will therefore have reducing effect on emissions.

Figure 1 shows the connection between maximum continuous rating (MCR) and fuel consumption for mechanical and electronically controlled two-stroke engines (MEPC 61/INF.18, 2010). For four-stroke engines the curve lies approximately 5% higher.

Figure 1 Specific Fuel Consumption of mechanically controlled and electronically controlled diesel engines. The curves can be individually tailored according to customer’s requirement. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 18 LITEHAUZ December 2013

It is possible to just reduce speed without adjusting the engine to the new load (re- tuning/derating), but the emission reductions will not be as high as when the engine is tuned correctly to the new operating load. In addition, low load operation on conventional engines may lead to problems with e.g. loss of main engine turbocharger and propeller efficiency, hull fouling, and economizer soot build up. In order to remedy e.g. loss of turbo chargers, one of more may be cut out or use of variable nozzles is applied. According to MAN Diesel & Turbo it is not possible to reach Tier III compliance levels with tuning/derating alone.

Electronic engines (ME, ME-B and RT-FLEX) are flexible with regards to low load operation and thus more suitable for slow steaming. It is therefor recommended to convert all mechanical injection main engines to electronically controlled engines (Litehauz, 2012).

An increase in the voyage time, may lead to a reduced capacity to move goods, passengers and to maintain delivery schedules. However, in case of ferries, an increased voyage time may be counterbalanced by a shorter turnaround time, if it is possible to optimize the transfer of goods and passengers. If a lost capacity is remedied by the operation of additional ships, the added cost reduces or completely removes the benefit of slow steaming. In practice, it is seen that a 10% reduction in speed results in a net 20% reduction in fuel consumption overall when adjusted for loss of capacity (Maersk, 2010).

The capital expenditures comprise the conversion cost to ME-B, which is estimated to 64 EUR/kW11 (Litehauz, 2012). If a vessel already has an electronic engine installed, the CAPEX will be reduced by approximately 45-50%.

Table 13 Amount Unit Cost of changing to slow steaming. Capital expenditures (incl. conversion) 610,000 EUR

Capital expenditures (ex. conversion) 274,000-305,000 EUR

Cost for ME-B conversion 64 EUR/kW

SFOC penalty* -5% %

* With a 10% speed reduction and adjusted for loss of capacity.

11 Conversion was done from a 6S50MC-C (9,480 kW) motor to a 6S50ME-B motor with the same effective power Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 19 LITEHAUZ December 2013

5 Additional technologies

Two additional technologies have additionally been included in this study: the use of batteries for operation and Internal Engine Modifications (IEM). The use of batteries is already being applied as a hybrid solution in connection with a diesel powered generator, and plans on fully battery-powered ferries are emerging. Smaller ferries may be particularly adapted for batteries and the technology may present a promising way forward for new ferries or retrofit.

IEM is included, as compliance method for Tier I, as ferries operating on the route Bøjden-Fynshav and Kalundborg-Samsø must comply with Tier I from 1st of May 2014 (stipulated by the Danish Ministry of Transport), even though the ferries are constructed before 2000, the year of construction for vessel for which Tier I is mandatory. Comprehensive cost calculations and reductions for these technologies have not been conducted.

5.1 Battery power

The use of batteries is slowly gaining a foothold on the market of green technologies

for ferries as means of supplying power for propulsion and as a method to reduce CO2, NOx and SOx emissions.

There are two main applications of batteries for operation: 1. The vessel is fully electrical and the energy used to propel and otherwise operate the vessel comes solely from batteries. With this solution no diesel engine is installed and the batteries are charged from a land based power source either between voyages and/or during the night (Boye et al., 2013). Costs of electricity to power the battery could be as low as one fourth of the cost of energy from marine diesel (Haram, undated). Close to zero emissions of air pollutants are achieved when the electricity used to charge the batteries is obtained from renewable energy sources only. 2. The vessel applies a so-called hybrid solution where a diesel generator, as well as a battery package, is installed onboard. The diesel generator always operates at its most optimal load, so when the is moored or sailing slowly excess energy will be stored in the batteries. When the ferry needs more energy than what the diesel generator supplies the energy stored in the batteries is used (Marfelt, 2013).

There are in general three options regarding recharge of batteries. The simplest solution is a battery design that can provide energy for a full day’s schedule and recharges during the night. A benefit is that electricity is often cheaper during night, while the drawback is the weight of the oversized battery. Another option is to design smaller batteries, which are recharged in short intervals when the ferry is moored and then fully recharge the battery pack over night. Depending on the specific technology the fast, small recharges may influence the battery lifetime. The lastly option is to use mobile batteries, which are changed after a given number of trips and recharged on land (Boye, et al, 2013). According to Jens Otto Sørensen from Danish Yachts (pers. comm., 2013) the battery lifetime may vary since the size of the battery is Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 20 LITEHAUZ December 2013

dimensioned based on how long the ship owners want to keep the same configuration. Many types of batteries are competing on price, performance and weight, and the technology is developing very fast (Boye et al., 2013).

Electricity delivered from land to commercial vessels when berthed is subject to a tax not applied to electricity produced on board the ship. This may currently influence which type of battery solution is chosen. However, a proposal for a new act is to be proposed in 2014 by the Danish Ministry of Taxation which lowers the tax placed on land based power delivered to cruise ships and other commercial vessels (Nordjyske, 2013).

5.1.1 Current status in Denmark

In Denmark, 54 inland ferries operate whereof 30-36 are proposed as candidates for changing to battery driven ferries (Østergaard, 2013). According to Østergaard (2013) this could be done quite easily, since many of the ferries today are produced with a hybrid motor. The following sections provide an overview of the different approaches, experiences and achievements gained by battery-operated ferries in Denmark.

Fully battery driven ferries There is currently no public ferry in Denmark, which is fully battery driven, but a number of communities are planning on implementing the technology. Three plans within the near future of fully battery driven ferries have been identified. They comprise the ferries operating on the island Ærø, the Næssund ferry, and the Endelave ferry. Experiences from the Canal Tours boats in Copenhagen, which already include two fully battery driven boats, are also included.

In southern Denmark, on the island Ærø, a steering group is working on a green strategy for the island ferries with a goal to achieve zero emissions by replacing conventional ferries with vessels powered by batteries. One ferry will be a hybrid ferry and three ferries will be powered only by batteries charged from windmills on land,

thus eliminating emissions of CO2, SOx and NOx. Preliminary studies show that the use

of electric ferries can reduce up to 9 million kilos of CO2 and cut energy costs by 50%. The ferries can be supplied by the energy produced from two windmills (2.3 MW) with a cost of DKK 23 million each (Mikkelsen, 2013). In the future the aim is to buy shares of windmill farms, but the current cost calculations are based on wind energy purchased on the spot market. It is expected that the hybrid ferry will be financed over 15 years and the three new built electric ferries over 25 years. It has not yet been decided, which specific battery technology the Ærø ferries will use and the ships are therefore designed in such a way that the most beneficial technology can be applied allowing for alternative battery solutions in the future (Boye et al., 2013).

The project regarding the ferry sailing between Endelave and Snaptun is still in the development phase, which should be finalised by April 2014. The battery pack is proposed charged in both Endelave and Snaptun, but the frequency of charging is not determined, i.e. between every round trip or only during the night and different options for choice of battery solution are being examined. The main challenge is the dimension of the battery and thus the deadweight of the vessel (Pers. Comm. Damskier, 2013, Head of innovation, Horsens Kommune). According to the first Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 21 LITEHAUZ December 2013

analyses, the investment will be DKK 26 million, with a payback time of 13 years (Østergaard, 2013).

The construction of the Næssund ferry is anticipated to be complete in 2014 and to begin operation in 2015.12 The vessel is to be constructed by Danish Yachts and made from composite lightweight materials. The batteries will be dimensioned for a lifetime of approximately 10 years with a payback time depending on how often the ship sails. In a pre-project made by Danish Yachts the breakeven was 8 years for a ferry with only one round-trip a day and a lifetime of 20 years. With more trips the breakeven would occur earlier (pers. com, Sørensen, 2013, Danish Yachts.)

Strömma, which is the Operator of the Canal Tours boats in Copenhagen launched their first fully battery driven and emission free tour boat in 2009 in connection with COP15. In 2013 the second electric boat started operating and it is the plan that all conventional tour boats are replaced by battery driven boats in the future. The operating costs are lower than for the conventional tour boats, but the investments costs are approximately 30 % higher. The boats charge during night and Strömma pays for renewable energy (Pers. Comm. Berthelsen, 2013, manager, Strömma).

Hybrid Ferries The shipping company Scandlines has already installed battery technology on one of four ferries operating on the route Rødby-Puttgarden. The company received DKK 48 million from the European Commission TEN-T program for their pilot project “Sustainable Traffic Machines – On the way to greener shipping”. The project will

reduce the CO2 emission by combining traditional diesel engines with batteries in a so- called Energy Storage System (hybrid). A reduction in fuel consumption of 15 - 18% is expected (Hviid, 2013), which will lead to same emission reductions of SOx, NOx and

CO2. In combination with the use of batteries, Scandlines also plans to install scrubbers to reduce the SOx emissions. Due to the more efficient operation of the diesel engine when running in hybrid mode, the scrubber capacity can be significant smaller than if running the ferries conventionally (Marfelt, 2013).

5.1.2 International experience

In Norway, battery power is considered profitable on one third of the ferry routes and may be relevant for another third in the future (Nøland, undated.). Four hybrid vessels will start to sail in 2013/2014 including an offshore vessel operated by Eidesvik Offshore. The payback time for the offshore vessel may be as low as down to two years (Haram, undated). The company Norled will build and operate the World’s largest fully electric ferry, ZeroCat, which will start working in 2015 (DNV, 2013). ZeroCat will have a 800 kW battery weighting 11 tons installed, which will be recharged from high capacity batteries at each port during a 10 minutes turnaround while the ship is loading and unloading cars and passengers (Barry, 2013). The battery will replace a 2000-hp diesel engine that consumes nearly 1,000 m3 of fuel each year

and reduce CO2 emission by nearly 3,000 tons.

In Scotland, France and China electric ferries have also emerged. In Scotland, the world’s first hybrid ferry started operating in 2012 and another in 2013. The ferries are

12 Project was put on hold in December 2013 due to problems with financing. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 22 LITEHAUZ December 2013

powered by small diesel engines and lithium ion batteries, which reduce the fuel consumption and CO2 emissions by at least 20% (Ship-technology, 2013). The batteries are charged overnight from the mains, but the use of renewable energy such as either wind, solar or wave power is also considered (CMAL, 2011). In China, BTM Nigel Gee, won a contract in 2011 to build a ferry with vanadium redox batteries charged from solar panels mounted on the roof of the ferry. The battery is a flow-type battery that can also be recharged by simply replacing the electrolyte (Barry, 2011). In France, a zero emission electric ferry has been built, which uses super capacitors to store the electrical energy instead of the normal battery system. The ferry is recharged between every round trip. Solar panels are installed on the deck to complement the capacitor power and a diesel generator has been added to make the ferry more flexible (Maritime Journal, 2012).

Table 14 Summary table with notes Type Costs Reduction potential Fuel CO2 NOx SOx about costs and reduction potential Fully Investments are higher than for 100% 100% 100% 100% battery conventional ferries, but the powered operational costs are less. The payback time depends on how often the ferry sail. CAPEX of 26 million kroners, and payback time of 13 years have been estimated for the Endelave ferry. Hybrid Investments are higher than for Follow fuel consumption conventional ferries, but the reduction* operational costs are less. The payback time depends on how often the ferry sails. Payback time of 15 years has been estimated for the Ærø hybrid ferry. The investment costs of the conversion to hybrid power on the Scandlines ferry “Prinsesse Benedicte” is app. 4 million euros (Hviid, 2013).

5.2 Internal enigne modifications

The emissions of NOx can be reduced to meet IMO Tier I and II by different modifications of the engine, either through optimization of the combustion, improvements of the air charge characteristics or by changing the fuel injection system. The most appropriate methods to use depend on the engine type (Entec, 2005; CNSS, undated).

Table 15 Modification grouping Specific modification Basic and advanced IEM divided in the Combustion Fuel injection timing and electric control, combustion groupings “combustion optimization, optimisation chamber geometry, compression ratio, valve timing, swirl improving air charge characteristics, and Improving charge air Improvements in after-coolers fuel injection (Entec, 2005, based on USA characteristics EPA, 2003). Fuel injection pressure, nozzle geometry (including slide valves), controlling the timing and rate of injection, Fuel injection common rail, electronic-hydraulic control of fuel injection and exhaust valve actuation Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 23 LITEHAUZ December 2013

The most common engine modification, which is also known as basic IEM, is the use of slide valves, which optimize spray distribution in the combustion chamber. The use of slide valves compared to conventional fuel valves reduces NOx emissions by approximately 20% and indications of reduction of PM and VOC emissions of up to 50%, but the latter results are unconfirmed (Entec, 2005). Slide valves are installed as standard on new 2-stroke engines and are easy and relatively cheap to retrofit on existing engines. The retrofit costs have been estimated to 0.3-2 EUR/kW (CNSS, undated).

The remaining technologies (Table 16), known as advanced IEM, could be combined in different ways to achieve the larger reductions for specific engine types. Entec (2005) reports that NOx reductions between 30% and 40%. Effects on PM and VOC are unknown. For a Caterpillar engine, which several of the Danish ferries use, the combination of higher compression ratio, higher cylinder pressure, higher charge pressure and flexible injection system are expected to result in a 33% NOx emission reduction (Entec, 2005). The costs of applying advanced IEM are estimated to be 6-30 EUR/kW (CNSS, undated).

Table 16 Costs LNG NOx VOC PM SFC (CO2) Cost and reduction potentials for IEM (Euros/kW) Basic IEM (Slide 0.3-2 - 20% Probably Probably 0% Advanced IEMvalves) 0.3-2 - 30-40% Unknownreduced Unknownreduced Unknown

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 24 LITEHAUZ December 2013

6 Soft instruments for enhancing environmental performance

The technical opportunities to reduce emissions are often relatively apparent for the ship owner or operator. Though economical challenges certainly exist the immediate barrier is often lack of access to updated knowledge on new technologies than challenges in solving technical matters.

Ship operators with a will to engage themselves in initiatives to reduce emissions benefit from professional associations and not the least cutting edge projects e.g. via existing partnerships which is an effective knowledge sharing mechanism involving both the equipment manufacturers and the users.

Environmental performance improves typically in co-operation between knowledge institutions, equipment manufacturers, external consultants and by applying company resources, and the participation in these co-operations and networks is of continuous interest. New technology and knowledge are often communicated through various programmes and focus may be directed at:

• Update of professional network (also more on the international information) • Increase opportunities for fast-track projects for relevant ships

Co-operation between likeminded companies may also improve business opportunities and lessen the burden of investment by:

• Sharing expenses of obtaining essential knowledge, which otherwise would be borne by one company • Negotiate common purchase agreements of e.g. alternative fuels, and • Inter into common service agreements on maintenance of new technology

Finally, a common standard and reporting could ease the transition to a greener operation of Danish ferries where the operators may compare their own operations with the other operators. Benchmarking is a core element in systems monitoring for performance and it will contribute to identify optimisation potentials with regards to fuel efficiency, instalment of emission reduction technologies etc. A standard could e.g. be developed under the upcoming ferry secretariat (to be formed in spring 2014).

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 25 LITEHAUZ December 2013

7 Examples of technology application

7.1 Choice of ferries

The considered ferries includes 39 vessels (Danish ferries from Danmarks Statistik, 2013. Ferries are often bought or built to the specific route and ports of call and the ferries are typically kept in operation for much longer than is the case for other commercial vessels. The vessels engines may though be replaced during its lifetime. Approximately one third (12) of the +30 year old ferries on the list have had new engine(s) installed at some point (and sometimes more than once – e.g. M/F Egense). Whereas it would be a very serious concern in the merchant fleet if a particular abatement technology required substantial changes to the engine or even a new engine this may not necessarily be the case for all ferries.

Examples of ferries more than 30 years with the same engine include M/F Ida (Bogø- Stubbekøbing), M/F Næssund (Mors-Thy) and Sønderho (Esbjerg – Fanø). The installed effect on these smaller ferries range from 150 to 250 kW, which is typical for inshore ferries.

In order to select two ferries for example calculations an analysis of the aforementioned list of Danish ferries where conducted. The analysis comprised making plots of installed effect vs. numbers of ferries, travel distance vs. number of ferries etc. From these plots the ferries were divided into two distinct groups, see Appendix B.

The first group comprises ships that have an installed power smaller than 5,000 kW, with a travel distance shorter than 30 km and built before 1995. The second group comprises ships that have an installed power larger than 5,000 kW, with a travel distance longer than 30 km and built after the 1995. The groups are termed “small ferries” and “large ferries” respectively. Average values for travel distance and installed power were assessed within each group and used to single out two ferries, one for each group, that best represent the groups. For small ferries, Odin Sydfyen was chosen, which operates the Bøjden - Fynshav route and for large ferries, Kattegat,13 which has operated the Århus – Kalundborg route. The base data used in calculations for the ferry Odin Sydfyen is presented in Table 17.

The specific fuel oil consumption (SFOC) for four-stroke diesel engines is based on Friis et al. (2002) and represents the lower SFOC value (range 175-195 g/kWh at 80% MCR). SFOC may therefore potentially be larger than the used 175 g/kWh for smaller engines (190 g/kWh, Hans Otto Kristensen). If a higher SFOC is applied changes in the emission pattern will be proportional. The capital investments will be the same, but operational expenditures will be higher, as the fuel consumption is higher.

13 During the finalisation of this report it was announced that the route on which the ferry Kattegat is operating will be terminated on the 12th October 2013. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 26 LITEHAUZ December 2013

Table 17 Odin Sydfyen (Small ferry) Amount Unit Data for Odin Sydfyen. Year of built 1982 - Engine 2 x B&W Alpha - Max power output 1280 kW Assumed operating power 896 kW

Travel distance (back and forth) 14 NM

Travel distance (back and forth) 26.5 km

Travel time in a year 613 hours

Assumed SFOC 175* g/kWh

Fuel capacity 20 m3

* May be up to 190 g/kWh, due to engine size, pers. comm. Hans Otto Kristensen).

The data for the ferry Kattegat is presented in Table 18.

Table 18 Kattegat (Large ferry) Amount Unit Data for Kattegat. Year of built 1996 - Engine 2 x B&W/MAN - Max power output [kW] 11700 kW

Assumed operating power 8190 kW

Travel distance (back and forth) 85 NM

Travel distance (back and forth) 157 km Travel time in a year 4160 hours Assumed SFOC 175 g/kWh Fuel capacity 500 m3

7.2 Feasibility of technologies for example ferries

The short listed technologies described in section 3 and 0 where assessed with regards to applicability on the example ferries, as well as if combinations of the short listed technologies where feasible. This led to the inclusion of an SCR/Biofuel combination. All other combinations were deemed to be unsuitable or excessive. EGR is not considered as this technology only are relevant when installing a new engine.

It should be noted that the application of the shortlisted technologies on the example ferries are theoretical to illustrate the costs and reduction potential. Investigating the feasibility of technologies that can be installed on the actual ferries is beyond the scope of this study. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 27 LITEHAUZ December 2013

7.3 Cost Calculations

An overview of installation and operational costs for the respective ferries are given in Table 19 and Table 20. It is seen that the use of biodiesel (B20) and slow steaming (with no engine modifications) do not result in any significant investments, however there is OPEX associated with biodiesel and savings with slow steaming. The CAPEX ranges from approx. DKK 600,000 to DKK 3.3 mill. for Odin Sydfyen and from DKK 600,000 to DKK 30 mill. for Kattegat. LNG14 is the most expensive investment, however considerable saving may be gained from the use of the alternative fuel. The missing infrastructure is, however, not considered and should be taken into account. The Danish Maritime Authority has estimated the costs of installing a relative small bunkering station to 15 mill. € (yearly capacity 52,000 m3), and OPEX of 3 mill. €. Though this estimate relates to a LNG bunker station, which are far more capacity than needed for both example ferries (approx. 220 m3 and 15,000 m3 respectively for Odin Sydfyen and Kattegat), considerable additional investments have to be considered if LNG is to be used. This will have a large impact on the individual business case. For all other technologies, except slow steaming and LNG, the OPEX is higher than when MDO is used. For the slow steaming scenarios a 5% reduction in speed will result in loss of turn-around time in the order of 2-3 minutes for Odin Sydfyen and approx. 20 minutes for Kattegat. Change of time schedule has not been considered in the calculations.

Apart from the specific cost profile of and the reduction potential of the technologies, also combinations have been investigated. E.g. SCR biodiesel, seem to be a good combination due to reduction of NOx which may rise from the use of biodiesel. Obviously slow steaming can be combined with all the other shortlisted technologies, and also SCR/scrubber combination may be feasible, however, these combinations are not investigated further.

CAPEX OPEX Table 19 Odin Sydfyen [DKK] [DKK/year] Cost associated with installment of Low High Low High technologies for Odin Sydfyen SCR 570,000 960,000 13,000 34,000 Slow steaming (excl.)* 0 -65,000 Slow steaming (incl.)* 610,000 -65,000 Scrubber 2,700,000 70,000 Biodiesel 25,000 145,000 150,000 LNG (incl. inst.)** 3,300,000 -215,000 SCR/ Biodiesel 600,000 980,000 155,000 180,000 * 5% reduction in speed. “excl.” No modification of motor. “incl.” includes modification of engine. **Investments in infrastructure is not included

14 It should be noted that older ferries would most probably not come into consideration for LNG due to their construction and limited space for LNG tanks. Odin Sydfyn would in this respect in itself not come into consideration for LNG, but other similar ferries could, e.g. the ferries on the route Spodsborg-Tårs. The Kattegat ferry could potentially use LNG. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 28 LITEHAUZ December 2013

Table 20 CAPEX OPEX Costs associated with installment of Kattegat [DKK] [DKK/year] technologies on Kattegat Low High Low High SCR 5,200,000 8,700,000 858,000 2,287,000 Slow steaming (excl.)* 0 -2,200,000 Slow steaming (incl.)* 5,600,000 -2,200,000 Scrubber 24,400,000** 440,000 Biodiesel 595,000 1,100,000 1,300,000 LNG (incl. inst.)*** 30,300,000 -14,700,000 SCR/ Biodiesel 5,800,000 9,300,000 1,926,000 3,630,000 * 5% reduction in speed. “excl.” No modification of motor. “incl.” includes modification of engine. ** Based on an average investment cost of 280 EUR/kW, regardless of engine size. Recent unpublished data indicate a range between 200-400 EUR/kW for 40MW to 10MW engines respectively, resulting in an approximate investment of 34 million for Kattegat if this approach is taken. ***Investments in infrastructure are not included

7.4 Emission reductions

Emission factors used are for medium speed engines (Friis et al., 2002) and these are directly applicable for Odin Sydfyn. The Kattegat ferry has a low speed engine installed and thus the correct emission factors are for low speed included in the table below. However, it is chosen to also use emission factors for medium speed engines since low speed engines are not very common on larger ferries. In the main report “Grøn profil for kommunale færger” the reductions from the medium speed emission factors forms the basis of the calculations of cost shadow prices.

Table 21 emission factors from MDO. From MDO From MDO Reference is Friis et al. (2002) unless Emission type Medium speed engines Low speed engines other is specified [kg/tonnes fuel] [kg/tonnes fuel] NOx 59 100* SOx 2.1 2.1 CO2 3,250 3,200* * Pers. comm. Hans Otto Kristensen

The yearly reduction profiles of CO2, NOx and SOx of the respective ferries are given in

Table 23, Table 24 and Table 25. The largest CO2 reductions are obtained from LNG, slow steaming and biodiesel, as well as from the combination of SCR and biodiesel. For

SCR and scrubbers can be seen a rise in CO2 emissions, due to energy consumption from the use of the technologies which only addresses NOx and SOx emissions. Obviously, the highest NOx reductions are found from the use of SCR, as well as LNG, as LNG has higher energy content than MDO15 and less fuel is needed. A smaller rise in emissions is seen from biodiesel for the reversed reason as it has lower energy content. The largest SOx reduction comes from use of scrubber and LNG, as well as a smaller reduction from use of biodiesel and combination technologies, which comprise biodiesel. The scrubber washes the SOx from the exhaust whereas the reduction seen from LNG and biodiesel is due to no sulphur content in these alternative fuels. The reduction from use of biodiesel may therefore be larger if e.g.

15 MDO 44 MJ/kg compared to 50 MJ/kg for LNG. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 29 LITEHAUZ December 2013

B30 or higher is used instead. The emission scenario from use of MDO is presented in Error! Reference source not found. for comparison.

Table 22 Estimated emissions from Emissions from use of MDO CO2 NOx SOx use of MDO operating the two – medium speed engine [tonnes/year] [tonnes/year] [tonnes/year] example ferries using medium and Odin Sydfyen 357 6.5 0.2 Kattegat 24,200 440 15.7 low speed emission factors

Emissions from use of MDO CO2 NOx SOx – low speed engine [tones/year] [tonnes/year] [tonnes/year] Kattegat 23,800 745 15.7

Table 23 Odin Sydfyen - CO [tonnes/year] NOx [tonnes/year] SOx [tonnes/year] Yearly emission reductions for Odin Medium speed 2 Low High Low High Low High Sydfyen - medium speed engine engine SCR -2 -4 6.2 6.2 0 0 Slow steaming* 34.8 0.6 0 Scrubber -7.1 -10.7 -0.1 -0.2 0.2 Biodiesel 23.3 54.2 -0.2 0 LNG 80.4 3.9 5.8 0.2 SCR/ Biodiesel 23.3 54.2 6.0 0 * 5% reduction in speed. The given reductions for slow steaming relates to fuel consumption and an eventual impure combustion is not considered her, which may give a lesser reduction. This is, however, linked to some degree of uncertainty as it is marginal reduction of speed and it is an assessment, which should be done on a case by case. The reduction potential may be used fully with re-tuning and modification of engine.

Table 24 Kattegat – NOx SOx CO2 [tonnes/year] Yearly emission reductions for Kattegat Medium speed [tonnes/year] [tonnes/year] Low High - medium speed engine engine Low High Low High SCR -138 -277 420 423 -0.1 -0.2 Slow steaming* 1,150 20.8 0.7 Scrubber -484 -727 -8.8 -13.2 14.4 15.3 Biodiesel 1,580 3,630 -16.0 -18,7 2.9 LNG 5,450 264 396 14.1 15.7 SCR/ Biodiesel 1,580 3,630 405 2.8 2.7 * 5% reduction in speed. The given reductions for slow steaming relates to fuel consumption and an eventual impure combustion is not considered her, which may give a lesser reduction. This is, however, linked to some degree of uncertainty as it is marginal reduction of speed and it is an assessment, which should be done on a case by case. The reduction potential may be used fully with re-tuning and modification of engine.

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 30 LITEHAUZ December 2013

Table 25 Kattegat – CO [tonnes/year] NOx [tonnes/year] SOx [tonnes/year] Yearly emission reductions for Kattegat – Low speed 2 Low High Low High Low High low speed engine engine SCR -136 -273 712 716 0 Slow steaming* 1,130 35.3 0.7 Scrubber -477 -715 -14.9 -22.4 14.4 15.3 Biodiesel 1,560 3,570 -27.1 -31.6 2.9 LNG 5,370 447 671 14.1 15.7 SCR/ Biodiesel 1,560 3,570 686 2.8 2.7 * 5% reduction in speed. The given reductions for slow steaming relates to fuel consumption and an eventual impure combustion is not considered her, which may give a lesser reduction. This is, however, linked to some degree of uncertainty as it is marginal reduction of speed and it is an assessment, which should be done on a case by case. The reduction potential may be used fully with re-tuning and modification of engine. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 31 LITEHAUZ December 2013

8 References

Alfa Laval, 2011, Reduktion af NOx og svovl - Sådan håndterer vi luftforurening i skibsfarten, presentation at Danish Shipowner Association: available at. http://www.tinv.dk/public/dokumenter/tinv/Konferencer%20og%20arrangementer/A fholdte%20arrangementer/A6%20CSR/111122%20- %20Reduktion%20af%20NOx%20og%20SOx/13%2015%20%20%20Alfa%20Laval%20A alborg_Jens%20Peter%20Hansen.pdf

Andreoni, V., Miola, A., Perujo, A., 2008, Cost Effectiveness Analysis of the Emission Abatement in the Shipping Sector Emissions, European Commission, viewed 17/1/2013, http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/7978/1/reqno_ jrc49334_eur_report_cost_effectiviness.pdf%5B1%5D.pdf

Barry, 2011, Electric Ferry Is A Solar Boat To China, WIRED, assessed 9/12/2013, http://www.wired.com/autopia/2011/08/electric-ferry-is-a-solar-boat-to-china/

Barry, 2013, World’s First Electric Car Ferry Recharges in 10 Minutes, WIRED, assessed 9/12/2013, http://www.wired.com/autopia/2013/02/electric-ferry/

Boye, F., Falkenberg R., Jensen, L., Jensen, NA., Jensen, P., Kristensen, J., Kroman, B., Mikkelsen, HH. and Strojek, J., 2013, Vision Grønne Færger, assessed 5/12/2013, http://www.marstallere.dk/groenne-faerger_fuld-rapport_20130118.pdf

CMAL, 2011, Hybrid Ferries Project, Caledonian Maritme Assets, assessed 9/12/2013, http://www.cmassets.co.uk/en/our-work/projects/current-projects/hybrid-ferries- project.html

CNSS, 2011, Air pollution Technologies, viewed 8/1/2013, http://cleantech.cnss.no/air-pollutant-tech/

CNSS (undated), Internal engine modification, Clean North Sea Shipping, assessed online 12/12/2013, http://cleantech.cnss.no/air-pollutant-tech/nox/internal-engine- modification/

Corbett, J. J., Winebrake, J. J. and Green, E. H., 2010, An Assessment of Technologies for Reducing Regional Short-Lived Climate Forcers Emitted by Ships with Implications for Arctic Shipping, Carbon Management 1(2): 207-225 10.4155/cmt.10.27

Danmarks Rederiforening, 2013, Hedegaard: MRV-forslag baner vejen for globalt system, Danmarks Rederiforening, online 17/12/2013

Danmarks Statistik, 2013, SKIB31: Indenrigs færgetransport efter færgerute og enhed. Hentet fra Stastikbanken.dk: http://www.statistikbanken.dk/statbank5a/default.asp?w=1920 (20. August 2013)

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 32 LITEHAUZ December 2013

Dieselnet, 2008, IMO adopts Tier II/III emission standadrs and fuel requirements for ships, dieselnet, viewed 8/1/2013, http://www.dieselnet.com/news/2008/10imo.php

DNV, 2013, Norway is teaming up in pole position for battery-powered ships, Det Norske Veritas, assessed 6/12/2013, http://www.dnv.com/press_area/press_releases/2013/norway_is_teaming_up_in_po le_position_for_battery_powered_ships.asp

EMSA (2007), Possible technical modifications on pre-2000 marine diesel engines for NOx reductions, Report no. MPU 2008.017, European Maritime Safety Agency, assessed online 13/12/2013, http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQF jAA&url=http%3A%2F%2Femsa.europa.eu%2Fabout%2Fdownload%2F1017%2F604%2 F23.html&ei=6c2qUpK-K-fL4ATQr4Aw&usg=AFQjCNFEcnTRIwNOu- JIEU4Pun6MbLAyVQ&bvm=bv.57967247,d.bGE

Entec (2005), Service Contract on Ship Emissions: Assignment, Abatement and Market- based Instruments, European Comission, assessed online 11/12/2013, http://ec.europa.eu/environment/air/pdf/task2_nox.pdf

EU directive 2005/33/EC, 2005, Directive 2005/33/EC of the European Parliament and of the Council of 6 July 2005 amending Directive 1999/32/EC

EU, no date, Abatement Technology, viewed 1/8/2013, http://www.google.dk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDcQFjA A&url=http%3A%2F%2Fec.europa.eu%2Fenvironment%2Fair%2Ftransport%2Fpdf%2F Abatement%2520technology.xls&ei=JEH5UN76G- eD4ATr4YDQCA&usg=AFQjCNEbf_QFVR1fpHjXM2xfFQG0zvrvvg&bvm=bv.41248874,d. bGE

European Commission, 2013, Climate Action, Reducing emissions from the shipping sector, European Commission, online the 17th of December 2013 at [http://ec.europa.eu/clima/policies/transport/shipping/index_en.htm]

Faber, J., Nelissen, D., Hon, G., Wang, H. and Tsimplis, M., 2012, Regulated Slow Steaming in Maritime Transport: An Assessment of Options, Costs and Benefits

Fellowship, n.d., Technology, viewed 17/1/2013, http://vikinglady.no/technology/

Friis A. M., Andersen P., og Jensen J. J., 2002, Ship Design Part 1, Technical University of Denmark, Department of Mechanical Engineering, Coarsta, Martitime and Structural Engineering, ISBN 978-87-707-800-49

Gutber H. Schlüter A., and Licata A., nd, Deactivation of SCR catalyst. Availbale at: http://www.netl.doe.gov/publications/proceedings/00/scr00/LICATA.PDF

Hansen J. P., 2011, Svovlreduktion med havvands- og ferskvandsscrubbere - Udfordringer og erfaringer fra DFDS skibet Ficaria Seaways, presentation at the conference “Reduktion af NOx og svovl - Sådan håndterer vi luftforurening i Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 33 LITEHAUZ December 2013

skibsfarten”, Alfa Laval, Aalborg, at the Danish Shipowner Association, 22nd of November 2011.

Hansen, J., P., 2012, Exhaust Gas Scrubber Installed Onboard MV Ficaria Seaways, Public Test Report, Environmental Project No. 1429, 2012, Danish Ministry of the Environment.

Haram, undated, Batteridrift av skip, Shortsea TV, assessed 6/12/2013, http://www.shortsea.tv/SitePages/News.aspx?t=Batteridrift+av+skip

Harvald, S., 1977, Prediction of Power of Ships, Lyngby, Denmark: Department of Ocean Engineering, Technical University of Denmark.

Hviid, 2013, Scandlines’ hybrid-færge klar om en måned, Søfart, assess online 11/12/2013, http://www.soefart.dk/?art=3030

IACCSEA White Paper Dec. 2012 – viewed 20/08/13

icct, 2012, Marine Black Carbon Emissions Reduction Strategies and Technologies, The International Council on Clean Transportation, access: http://www.theicct.org/blogs/staff/edit-blog-post-arctic-maritime-shipping-and-black- carbon

IMO, 2009, Second IMO Greenhouse Study 2009, viewed 8/1/2013, http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyF INAL.pdf

IMO, 2011a, MARPOL 2011, fifth edition, IMO publication, London

IMO, 2011b, Air Pollution and Greenhouse Gas Emissions, IMO, viewed 7/1/2013, http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Pages/ GHG-Emissions.aspx

IMO, 2013a, International Convention for the Prevention of Pollution from Ships (MARPOL), Adoption: 1973 (Convention), 1978 (1978 Protocol), 1997 (Protocol - Annex VI); Entry into force: 2 October 1983 (Annexes I and II)., online the 15th of May 2013. http://www.imo.org/About/Conventions/ListOfConventions/Pages/International- Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx

IMO, 2013b, Special Areas under MARPOL, viewed 24/7/2013, http://www.imo.org/ourwork/environment/pollutionprevention/specialareasunderm arpol/Pages/Default.aspx

Jayaram, V., Agrawal, H., Welch, W. A., Miller, J. W. and Cocker, D. R., 2011, Real-Time Gaseous, PM and Ultrafine Particle Emissions from a Modern Marine Engine Operating on Biodiesel, Environmental Science & Technology 45(6): 2286-2292 10.1021/es1026954.

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 34 LITEHAUZ December 2013

LITEHAUZ, 2012, Investigation of appropriate control measures (abatement technologies) to reduce Black Carbon emissions from international shipping, IMO, viewed June 18th 2013, http://www.imo.org/ourwork/environment/pollutionprevention/airpollution/docume nts/air%20pollution/report%20imo%20black%20carbon%20final%20report%2020%20 november%202012.pdf

Lloyds, 2010, Maersk and Lloyd’s Register team up for marine engine bio-fuel tests, http://www.lr.org/news_and_events/press-releases/181528-maersk-and-lloyds- register-team-up-for-marine-engine-biofuel-tests.aspx

Lövblad, G., Fridell, E., 2006, Experiences from use of some techniques to reduce emissions from ships, Göteborg: Swedish Maritime Administration and Region Västra Götaland.

Maersk, 2010, Slow Steaming Here to Stay

MAN Diesel & Turbo, 2013, Secondary Measures, viewed 17/1/2013, http://www.mandieselturbo-greentechnology.com/0000489/Technology/Secondary- Measures.html

Marfelt, 2013, Scandlines-færger sejler grønnere med dieseldrevne batterier, Ingeniøren, assessed 6/12/2013, http://ing.dk/artikel/scandlines-faerger-sejler- groennere-med-dieseldrevne-batterier-164442

Maritime Journal, 2012, Zero emission ferry nears completion in France, Maritime Journal, assessed 9/12/2013, http://www.maritimejournal.com/news101/power-and- propulsion/zero-emission-ferry-nears-completion-in-france

Maskinmesteren, 2013, Ny dual-fuel totakstmotor varsler LNG-æra for store skibe, December udgave, Grøn teknologi af Joel Goodstein. p7-9.

MEPC.203(62)add.1, 2011, Amendments To The Annex Of The Protocol Of 1997 To Amend The International Convention For The Prevention Of Pollution From Ships, 1973, As Modified By The Protocol Of 1978 Relating Thereto (Inclusion of regulations on energy efficiency for ships in MARPOL Annex Vi, Annex 19, The Marine Environment Protection Committee, IMO

Mikkelsen, 2013, The Green Ferry Vision, Ship Management International, assessed 6/12/2013, http://www.allaboutshipping.co.uk/2013/05/06/the-green-ferry-vision/

MST, 2012, Economic Impact Assessment of a NOx Emission Control Area in the North Sea, Environmental Project no. 1427, 2012, Incentive Partners and Litehauz, published by Danish Ministry of Environment. ISBN: 978-87-92903-20-4

Nayyar, 2010, The use of biodiesel fuels in the U.S: Marine Industry

Nordjyske, 2013, Ny lov renser luften omkring krydstogtskibe, Nordjyske.dk, assessed online 16/12/2013, http://nordjyske.dk/nyheder/ny-lov-renser-luften-omkring- krydstogtskibe/efe5482b-a8bf-44b6-bd8b-d1782c278c51/4/1513

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 35 LITEHAUZ December 2013

Nøland, undated, Kartleggning av potensialet for batteridrift på ferger I Norge, ZERO Emission Resource Organisation, assessed 6/12/2013, http://www.zero.no/publikasjoner/kartlegging_av_potensialet_for_batteridrift_paa_f erger_i_norge.pdf

Opdal O. A. and Hojem J. F., 2007, Biofuels in ships, ZERO-REPORT - December 2007 ZERO – Zero Emission Resource Organisation.

Petzold, A., Lauer, P., Fritsche, U., Hasselbach, J., Lichtenstern, M., Schlager, H. and Fleischer, F., 2011, Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects, Environ. Sci. Technol. 45(24): 10394 - 10400 10.1021/es2021439

Resolution MEPC.212(63), 2012, 2012 Guidelines On The Method Of Calculation Of The Attained Energy Efficiency Design Index (EEDI) For New Ships, Annex 8, The Marine Environment Protection Committee, IMO.

Scrubbers for the Baltic Sea – B-M Kullas-Nyman, Wärtsilä p. 6. Viewed 16/08/13

Shiptechnology, 2013, MV Hallaig Hybrid ferry, Scotland, Ship-technology, assessed 9/12/2013, http://www.ship-technology.com/projects/mv-hallaig-hybrid-ferry/

Swedish Maritime Administration (SMA), 2006, Certified NOx Measures in Ships, Sweden (cited in icct, 2007, Air Pollution and Greenhouse Gas Emissions from Ocean- going Ships: Impacts, Mitigation Options and Opportunities for Managing Growth)

U.S. Department of Energy, 2013, Clean Cities Alternative Fuel Price Report, viewed June 17th 2013, http://www.afdc.energy.gov/uploads/publication/alternative_fuel_price_report_jan_ 2013.pdf

US-EPA, 2002, A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions - Draft Technical Report. EPA420-P-02-001, http://www.epa.gov/oms/models/analysis/biodsl/p02001.pdf

Xue, J., Grift, T. E. and Hansen, A. C., 2011, Effect of biodiesel on engine performances and emissions, Renewable and Sustainable Energy Reviews 15(2): 1098-1116 10.1016/j.rser.2010.11.016

Østergaard, 2013, Danske indlandsfærger kan få stor gevinst ved eldrift, Ingeniøren, assessed online 11/12/2013, http://ing.dk/artikel/danske-indlandsfaerger-kan-faa- stor-gevinst-ved-eldrift-160221 Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 36 LITEHAUZ December 2013

Appendix A - Long list

Fuel Technology VOC NOx SOx CO GHG PM BC savings 2 Post engine technologies 85%2 95- Diesel Particle filtera - - No2 No2 -3.5%2 - 85%2 99%13(28,23,27,32) 80%1 No2 Exhaust Gas Recirculation -4%7 - 35%6,7 - - 40-58%13(20) No/ NR2 > 70%7 19%13(20) Plasma Assisted Catalytic - - 97%8, 80-907 - - - - - Reduction - - - 75%2(b) Scrubber Low Sulphura Y2, No8 90-95%3(b),7 -3%2 37.5%2 - - - 80%7 - - - 75%2(b) Scrubber High Sulphura Y2, No8 90-95%3(b),7 -3%2 60%2 - - - 80%7 Selective Catalytic - - Up to 95%1,7 No2 NR2 - 25-40%3, 30-45%7 >35%13(3) Reductiona Selective Non Catalytic - - 50%8 - - - - - Reductiona Fuel switching Now limited4, 12(e) a - - 4 100% biodiesel, - 13(13,26,29) - Biofuel Increase 7-10% 13(13,26,29) 25% - - 85% - - 20%12(e) 40-45%8 Dimethyl Ether (DME) - - 35% 100%15 95%(b) - 97% - 90%12 Up to 20%12 Fuel cells/Hydrogen - - 100%12 - 100%12 100%13(9,40) 100%13(9,40) 100%13(9,40) 10- 7 90 60 3,7 2 3(c) 3,7 13 2 Liquefied Natural Gas (LNG) - 50% 4 15% 7 90-100% 22.5% 0-25 % 72% 99% 93.5% % % )f) Batteries – Renewable - - 100% 100% 100% - - - Energy from Shorea Follow fuel Follow fuel Follow fuel Batteries – Hybrid(g) - - consumpti - - - consumption consumption on Few % Solar energya energy - - - 1-2%7 - - - saving4 Ultra low suphur diesel fuel - - - 90% - - - - 5% (15 k) Wind powera 20% (10 ------k)4 Wave power Limited4 ------Combustion modification Combustion Air Saturation - - 30-60%3, 50-60%7 - - - - - System3 Direct Water Injection - - Up to 50-60%1 Negli- Up to - -2-0%3 - - (DWI)* - - 42-60%7 gible6 50%7 Fluidised Bed Combustion ------5,7 a >50% Typical 7 Humid Air Motors - - - - - Up to 50% >70%1,7 <30%5 Internal Engine 10- - 50%7 20%3,7, 30% in test7 - 0%2 - 80%7 25%2 Modifications - Slide Valves 50%13(45) Intercooler Recuperative 25-30%8 ------gas turbine Limestone - - - 50-60% - - - - 20- Water in Fuela - - >55%1 Y2 No2 - 30%2 70%2 50%7 Operational measures (d) Follow fuel Slow steaming (no Follow fuel 7-25 - consumpti 7-25 - - - consumption derating/re-tuning) on (d) Follow fuel Slow steaming (with Follow fuel 7-30 - consumpti 7-30 - - - consumption derating/re-tuning) on a) Can be applied on both new build and existing ships b) Only stated for scrubber in general c) Risk of methane slip Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 37 LITEHAUZ December 2013

d) Engine load reduced from 100% to 40%. e) If produced from biomass f) Dual fuel g) Reduction potential is dependent on specific configuration of system

The references used for the long-list are given below. Reference number 13 is an overview of reduction technologies made by the International Council for Clean Transportation (icct). Whenever information from this reference is used it is indicated by “13” followed by brackets where the original references are stated. These references can be found in the table below reference number 13.

References: 1. Incentive Partners and LITEHAUZ, 2012, Economic Impact Assessment of a NOx Control Area in the North Sea, Danish EPA 2. LITEHAUZ, 2012, Investigation of appropriate control measures (abatement technologies) to reduce Black Carbon emissions from international shipping, IMO 3. CNSS, 2011, Air pollution Technologies, viewed 8/1/2013, http://cleantech.cnss.no/air-pollutant-tech/ 4. IMO, 2009, Second IMO Greenhouse Study 2009, viewed 8/1/2013, http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyF INAL.pdf 5. DNV, 2012, Shipping 2020, viewed 8/1/2013, http://www.dnv.nl/binaries/shipping%202020%20-%20final%20report_tcm141- 530559.pdf 6. European Commission, 2005, Service Contract on Ship Emissions: Assignment, Abatement and Market-based Instruments, viewed 9/1/2013, http://ec.europa.eu/environment/air/pdf/task2_shoreside.pdf 7. EU, Factsheet Abatement Technology, viewed 1/8/2013 8. Andreoni, V., Miola, A., Perujo, A., 2008, Cost Effectiveness Analysis of the Emission Abatement in the Shipping Sector Emissions, European Commission, viewed 17/1/2013, http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/7978/1/reqno_ jrc49334_eur_report_cost_effectiviness.pdf%5B1%5D.pdf 9. MAN Diesel & Turbo, 2013, Secondary Measures, viewed 17/1/2013, http://www.mandieselturbo-greentechnology.com/0000489/Technology/Secondary- Measures.html 10. DNV, 2012, Fuel cells for ships, viewed 17/1/2013, http://www.dnv.com/binaries/fuel%20cell%20pospaper%20final_tcm4-525872.pdf 11. Fellowship, n.d., Technology, viewed 17/1/2013, http://vikinglady.no/technology/ 12. Biello, D., 2009, Worlds First Fuel Cell Ship Docks in Copenhagen, Scientific American, viewed 17/1/2013, http://www.scientificamerican.com/article.cfm?id=worlds-first-fuel-cell-ship 12b. EMSA, 2012, Potential of biofuel for shipping, viewed 17/6/2013, http://emsa.europa.eu/main/air-pollution/items/id/1376.html?cid=149 13. icct, Emissions Reductions Strategies and Technologies, viewed 18th of June, 2013, http://www.google.dk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFj AA&url=http%3A%2F%2Fwww.theicct.org%2Fsites%2Fdefault%2Ffiles%2FICCT_Emissi ons_Control_Strategies.xlsx&ei=TmjAUZH0NOSh4gTfkYHwDw&usg=AFQjCNFu1lINS91 tTGcFbz8d_BSgtuHxkQ&sig2=VO0glwtN7TmnjxOypNRGmA&bvm=bv.47883778,d.bGE Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 38 LITEHAUZ December 2013

15. HALDOR TOPSØE: Spireth: Methanol fuelled Diesel engine using the OBATETM technology, Christophe Duwig, R&D Division

Alfa Laval. PureSOx Exhaust Gas Cleaning. Alfa Laval Corporate AB, 1 EMD00281EN 1107. API Technology Issues Work Group. Technical Consideration of Fuel Switching 2 (2009). 3 CARB. Effect of SCR Unit on Emissions from Auxiliary Engines, April 2009. Caterpillar Marine Power Systems. Cat Common Rail: Less Fuel and Reduced 4 Emissions Mean More Environmental Care. Leaflet No. 245 · 12.11 · e · L+S · VM3 (2011). CIMAC. "Background information on black carbon emissions from large marine and stationary diesel engines- definition, measurement methods, emissions 5 factors and abatement technologies". The International Council on Combustion Engines (2012). 6 Clean Marine. Integrated Multistream Exhaust Gas Cleaning. 7 Confurto, Nick. Belco-DuPont Interview. Corbett et al. “An assessment of technologies for reducing regional short-lived 8 climate forcers emitted by ships with implications for Arctic shipping”. Carbon Management 1(2), 207-225, 2010. 9 DNV. “Fuel Cells for Ships”. Research & Innovation, Position Paper 13. 2012. 10 Fahimi, Sulai. MAN Diesel & Turbo Interview. 11 Flanagan, Jim. "Maersk Pilot Fuel Switch Initiative". Maersk, 16 May 2008. Germanischer Lloyd SE & MAN. Costs and benefits of LNG as ship fuel container 12 vessels: Key results from a GL and MAN joint study (2012). Ghosh, Sujit and Tom Risley. Alternative Fuel for Marine Application Final 13 Report. US MARAD 29 February 2012. GL. Measurement of particulate emissions before and after COUPLE SYSTEMS 14 DryEGCS on MV "TIMBUS". GL-Reg.-No.90577. CL-T-SC (2012) Hafkemeyer, Jan and Olaf Knueppel. "The very new exhaust gas cleaning 15 systems". Couple Systems Jayaram, Varalakshmi, J. Wayne Miller, Abhilash Nigam, William Welch, David Cocker. "Effects of Selective Catalytic Reduction Unit on Emissions from an 16 Auxiliary Engine on an Ocean-Going Vessel". California Air Resources Board, April 2009 Juliussen, Lars R., Michael J. Kryger and Anders Andreasen. "MAN B&W ME-GI 17 Engines. Recent Research and Results." Proceedings of the International Symposium on Marine Engineering, 17-21 October 2011, Kobe, Japan. 18 Jurgens, Ralf. Couple Systems Interview. Karlsson, Sören, Mathias Jansson, Jens Norrgård, Jens Häggblom. "LNG 19 Conversion for Marine Installations". Wartsila Technical Journal 01.2012. Khalilarya et al. “Simultaneously Reduction of NOx and Soot Emissions in a DI 20 Heavy Duty diesel Engine Operating at High Cool EGR Rates.” International Journal of Aerospace and Mechanical Engineering 6:1 2012. Khan, M. Yusuf, et al. "Benefits of Two Mitigation Strategies for Container 21 Vessels: Cleaner Engines and Cleaner Fuels". Environ. Sci. Technol. 46, 5049- 5056, 2012. Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 39 LITEHAUZ December 2013

Lack & Corbett. "Black carbon from ships: a review of the effects of ship speed, 22 fuel quality and exhaust gas scrubbing." Atmos. Chem. Phys. 12, 3985-4000, 2012. Lack et al. “Impact of Fuel Quality Regulation and Speed Reduction on Shipping 23 Emissions: Implications for Climate and Air Quality.” Environmental Science & Technology 45(20): 9052-9060, 2011. Lauer, P. "First DPF at a Medium Speed 4-Stroke Diesel Engine on Board of an 24 Ocean Going Vessel". MAN Diesel & Turbo SE, Augsburg, Germany. MAN Diesel and Turbo. Diesel-Electric Drives: Lower emissions, greater 25 reliability. 26 MARAD. Alternative Fuel for Marine Application Final Report (April 2012). Meng Lee, YAP , Silvia HENG, BOO Puay Yang. "Excellent verified results of 27 CSNOx by ABS on 11MW main engine, a world's first". Ecospec Global Technology Pte Ltd, 25 Feb 2010. 28 Mitsui O.S.K. Line Nayyar, Pradeep. "The Use of Biodiesel Fuels in US Marine Industry". MARAD 29 April 2010 30 Nils, Tove. Clean Marine Interview. Posada, F. CNG Bus Emissions Roadmap: from Euro III to Euro VI. icct, December 31 2009. 32 Rosatom 33 Rypos, Inc. Sames et al. "Costs and benefits of LNG as ship fuel for container vessels" MAN 34 Diesel & Turbo, May 2012. Sember, William J. "The Trade-Off Between LNG and CNG Shipping". ABS 35 Europe, Marseille Maritime 2008: The Mediterranean Basin Shipping Future, 16 September 2008. 36 Slettevoll, Hollvard. STADT Interview. 37 STADT. "STADT has introduced Sustainable Electric Propulsion". 2012. Verbeek et al. "Environmental and Economic aspects of using LNG as a fuel for 38 shipping in The Netherlands". TNO-RPT-2011-00166, 2011. Verbeek, Ruud , Mark Bolech and Herman den Uil. "Alternative fuels for sea 39 shipping". TNO-060-DTM-2011-04219. 2011. Wallenius Marine 41 Wartsila. "Shipping in the Gas Age". 2010. 42 Wartsila. "Wartsila SOx Scrubber System". 2012. Winebrake, J.J., J.J. Corbett and E.H. Green. Black Carbon Control Costs in 43 Shipping. ClimateWorks Foundation, 31 January 2009. 44 Yuska, Dan. MARAD Interview

Miljøstyrelsen TECHNICAL REVIEW – CATALOGUE OF REDUCTION TECHNOLOGIES 40 LITEHAUZ December 2013

Appendix B – Plot of ferries

Grøn profil for kommunale skibe Rapporten giver en oversigt over tilgængelige teknologier, der kan gøre færger mere miljø- og klimavenlige. Da kommunerne ikke forventes at udskifte færger i stor stil indenfor de kommende fem år fokuserer rapporten primært på mulighederne for miljøforbedringer på eksisterende skibe.

Strandgade 29 1401 København K Tlf.: (+45) 72 54 40 00

www. mst.dk