The Effect of Treponema Denticola on Porphyromonas Gingivalis Phenotypes and Transcriptome

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Treponema Denticola on Porphyromonas Gingivalis Phenotypes and Transcriptome The Effect of Treponema denticola on Porphyromonas gingivalis Phenotypes and Transcriptome Lin Xin Kin ORCID identifier 0000-0003-2378-1711 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy October 2018 Oral Health CRC Melbourne Dental School Faculty of Medicine, Dentistry and Health Sciences The University of Melbourne Abstract Chronic periodontitis is an inflammatory, bacterial biofilm-associated disease resulting in destruction of the tooth’s supporting tissues. The imminent progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Living in a complex oral polymicrobial community, these two bacterial species display close association via physical interaction and metabolic cooperativity in the biosynthesis and cross-feeding of growth substrates. These interspecies interactions result in the coordination of their physiological activities, some of which exhibit complementary and combinatory effects in enhancing their growth and virulence factors. A previous study demonstrated that coculture of T. denticola and P. gingivalis in a continuous system led to upregulation of T. denticola glycine utilisation systems. Likewise, P. gingivalis increased the production of free glycine by proteolytic hydrolysis of peptide-bound glycine during growth in T. denticola conditioned medium (TdCM), suggesting cross-feeding of glycine from P. gingivalis to T. denticola. Free glycine is an important nutrient source for T. denticola, contributing to a dramatic increase in T. denticola growth rate and biomass. Given that P. gingivalis glycine release was stimulated in TdCM, this study aimed to determine and characterise the T. denticola stimulatory factors that had been released into TdCM. TdCM was fractionated by size filtration and reversed-phase high-performance liquid chromatography (RP-HPLC) to determine the most active stimulatory fractions. The free glycine produced by P. gingivalis in different TdCM fractions was then quantified using a glycine enzyme-linked immunosorbent assay (ELISA) kit and liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS). As several RP-HPLC fractions of TdCM appeared to stimulate the release of free glycine by P. gingivalis, this indicated that there was no specific signalling molecule that stimulated P. gingivalis to produce glycine. Instead, the release of glycine by P. gingivalis was likely due to P. gingivalis proteinases that further digested the peptides that had been partially processed by T. denticola proteases during growth in the medium. Candidate peptidases of P. gingivalis that could be involved in the hydrolysis of glycine-containing peptides into free glycine were selected by bioinformatic predictions of the localisation and specificities of P. gingivalis putative peptidases. Interestingly, inactivation of PG0753 and PG1788 that encode putative PrtQ collagenase and C1 family cysteine peptidase respectively, showed a reduction in the rate of free glycine production relative to P. gingivalis I calculated cell number in OB:CM, relative to wild type. These results indicated that these two peptidases might play a role in the release of free glycine by P. gingivalis in the presence of T. denticola stimulatory factors. Other potential multimodal interactions of T. denticola and P. gingivalis were examined by investigating the differential gene expression profiles of P. gingivalis during growth in TdCM, compared to oral bacterial growth medium (OBGM). There were a total of 132 genes that showed differential expression, which included transcripts related to metabolic pathways, signal transduction systems, transcription regulatory systems, nucleic acid interacting protein encoding genes, transporters and hypothetical protein encoding genes. This work generated more testable hypotheses of the molecular effects of T. denticola on P. gingivalis gene expression and as well as potential mechanisms that might contribute to P. gingivalis and T. denticola physiological interactions. II Declaration This is to certify that: (i) the thesis comprises only my original work towards the PhD except where indicated in the Preface, (ii) due acknowledgement has been made in the text to all other material used, (iii) the thesis is fewer than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices. Lin Xin Kin III Preface This thesis is submitted for the degree of Doctor of Philosophy at the University of Melbourne. The research described herein was conducted as a continuation of Tan et al. (2014) work: Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses. This project was performed under the supervision of Dr. Nada Slakeski, Prof. Stuart Dashper and Dr. Catherine A. Butler in the Melbourne Dental School, from July 2014 until July 2018. Part of the contents of Chapter 1 have been published in a review article with Hong Min Ng as first co-author: *Ng, H. M., *Kin, L. X., Dashper, S. G., Slakeski, N., Butler, C. A. and Reynolds, E. C. (2016) 'Bacterial interactions in pathogenic subgingival plaque', Microbial Pathogenesis, 94, 60-69. For Chapter 3, Dr. Kheng Tan guided me in the preparation of TdCMs and processing of samples for the metabolomic experiments. Ms. Komal Kanojia and Dr. Dedreia Tull from Metabolomics Australia provided service and assistance in the generation and analysis of data on metabolomics. Chapter 4, genomic library preparation and Ion Torrent sequencing were performed by Brigitte Hoffmann. The resulting sequencing reads were analysed by Dr. Catherine A. Butler. For Chapter 5, Micromon Monash and Monash Bioinformatics were paid to perform the RNA sequencing and analyse the results. RNA sequencing library preparation and sequencing were performed by Mr. Scott Coutts from Micromon Monash. The raw files were analysed by Mr. Kirill Tsyganov and Assoc. Prof. David Powell from the Monash Bioinformatics platform and output was shared on the Degust web tool. IV Acknowledgements To Yong Kai, my soulmate, companion, cheerleader, supporter, teacher and househusband for your support, encouragement and enthusiasm that have made our journeys in Australia fruitful and exciting. I would like to thank my mom, dad and family members for their love, understanding and moral support to me in the pursuit of this study and constantly reminding me to finish what I started. Thank you my supervisors, Dr. Nada Slakeski for accepting me as her PhD student, Prof. Stuart Dashper for entrusting me with this project and Dr. Catherine Butler for her warm hugs, patience and support in the laboratory. I am very appreciative for their dedication in proofreading and reviewing my thesis drafts. My sincere gratitude to Assoc. Prof Paul Veith, who has provided helpful suggestions and advice on the research direction. His guidance has been a valuable input in this work. I am grateful to all staff at Metabolomics Australia, especially Komal Kanojia and Dr. Dedreia Tull for their time and patience in helping me with the metabolomic data analysis. Mr. Scott Coutts and Mr. Mark Cauchi from Micromon Monash for performing the library preparation and RNA sequencing adeptly. Mr. Kirill Tsyganov and Assoc. Prof. David Powell from the Monash Bioinformatic platform for their quick response in answering questions I have on the RNA sequencing data. I would like to extend my gratitude to all past and present lab members. Dr. Kheng Tan for his suggestions and guidance in reproducing his work and continuing his research project. Mr. David Stanton for his guidance on the RP-HPLC. Ms. Brigitte Hoffmann for her contribution on the Ion Torrent sequencing. Dr. Alexis Gonzalez for tirelessly optimizing the protocol for bacterial cell enumeration using the flow cytometry. A great thank you to Ms. Deanne Catmull, Dr. Tanya D’Cruze, Dr. Christine Seers, Ms. Caroline Moore, Mr. Steve Cleal, Ms. Sze Wei Liu, Mr. William Singleton, Dr. Brent Ward and Dr. Jacqueline Heath, who have provided technical assistance and support in my studies. I am also truly thankful to other PhD students and friends, who provide me inspirations, emotional support and sweet memories. It is my pleasure to have both Hong Min and May Ju as my comrades in completing this PhD journey with me, and to have all the desserts they both made and shared with me. Thanks to Jia Min, Lilian, Mathew, Ros, Nidhi, Sayeed, Grace and Jason for all the lunch breaks, chats and laughter together. V Finally, I am grateful to the University of Melbourne for the Fee Remission Scholarship (MIFRS) and Melbourne International Research Scholarship (MIRS). I appreciated Melbourne Dental School, The University of Melbourne for the provision of studentship stipend support for the extension of my PhD candidature. Laureate Prof. Eric C. Reynolds AO and Oral Health Cooperative Research Centres (CRC) for the top-up scholarship and funding support in this research project. VI Table of Contents Abstract ...................................................................................................................................... I Declaration ............................................................................................................................... III Preface...................................................................................................................................... IV Acknowledgements ..................................................................................................................
Recommended publications
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Mechanistic Study of Cysteine Dioxygenase, a Non-Heme
    MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE, A NON-HEME MONONUCLEAR IRON ENZYME by WEI LI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Student Name Wei Li All Rights Reserved Acknowledgements I would like to thank Dr. Pierce for your mentoring, guidance and patience over the five years. I cannot go all the way through this without your help. Your intelligence and determination has been and will always be an example for me. I would like to thank my committee members Dr. Dias, Dr. Heo and Dr. Jonhson- Winters for the directions and invaluable advice. I also would like to thank all my lab mates, Josh, Bishnu ,Andra, Priyanka, Eleanor, you all helped me so I could finish my projects. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. At Last, I would like to thank my lovely wife and beautiful daughter who made my life meaningful and full of joy. July 11, 2014 iii Abstract MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE A NON-HEME MONONUCLEAR IRON ENZYME Wei Li, PhD The University of Texas at Arlington, 2014 Supervising Professor: Brad Pierce Cysteine dioxygenase (CDO) is an non-heme mononuclear iron enzymes that catalyzes the O2-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). CDO controls cysteine levels in cells and is a potential drug target for some diseases such as Parkinson’s and Alzhermer’s.
    [Show full text]
  • Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes
    antioxidants Review Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes Gethin J. McBean School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland; [email protected]; Tel.: +353-1-716-6770 Received: 13 July 2017; Accepted: 1 August 2017; Published: 3 August 2017 Abstract: This review discusses the current understanding of cysteine and glutathione redox balance in astrocytes. Particular emphasis is placed on the impact of oxidative stress and astrocyte activation on pathways that provide cysteine as a precursor for glutathione. The effect of the disruption of thiol-containing amino acid metabolism on the antioxidant capacity of astrocytes is also discussed. − Keywords: cysteine; cystine; cysteamine; cystathionine; glutathione; xc cystine-glutamate exchanger; transsulfuration 1. Introduction Thiol groups, whether contained within small molecules, peptides, or proteins, are highly reactive and prone to spontaneous oxidation. Free cysteine readily oxidises to its corresponding disulfide, cystine, that together form the cysteine/cystine redox couple. Similarly, the tripeptide glutathione (γ-glutamyl-cysteinyl-glycine) exists in both reduced (GSH) and oxidised (glutathione disulfide; GSSG) forms, depending on the oxidation state of the sulfur atom on the cysteine residue. In the case of proteins, the free sulfhydryl group on cysteines can adopt a number of oxidation states, ranging from disulfides (–S–S–) and sulfenic acids (–SOOH), which are reversible, to the more oxidised sulfinic (–SOO2H) and sulfonic acids (–SOO3H), which are not. These latter species may arise as a result of chronic and/or severe oxidative stress, and generally indicate a loss of function of irreversibly oxidised proteins. Methionine residues oxidise to the corresponding sulfoxide, which can be rescued enzymatically by methionine sulfoxide reductase [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano Et Al
    US 20120222148A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano et al. (43) Pub. Date: Aug. 30, 2012 (54) METHODS FOR THE BIOSYNTHESIS OF AOIH 5/10 (2006.01) TAURINE OR HYPOTAURINE IN CELLS AOIH 5/08 (2006.01) A636/00 (2006.01) (75) Inventors: Frank J. Turano, Baltimore, MD CI2N 5/82 (2006.01) (US); Kathleen A. Turano, (52) U.S. Cl. ......... 800/260; 424/725; 426/615; 426/635; Baltimore, MD (US); Peters. 435/468; 435/411; 435/412: 435/415; 435/417: Carlson, Baltimore, MD (US); 435/419: 800/278; 800/290; 800/298; 800/301; Alan M. Kinnersley, Baltimore, 800/302:800/305; 800/307; 800/308; 800/309; MD (US) 800/310: 800/312:800/313; 800/314; 800/315; (73) Assignee: PLANT SENSORY SYSTEMS Sooo... LLC, Baltimore, MD (US) •800/320.1; - s 800/320.2:of 800/320.3s (21) Appl. No.: 131505,415 (57) ABSTRACT (22) PCT Filed: Oct. 29, 2010 The present invention describes an approach to increase tau rine or hypotaurine production in prokaryotes or eukaryotes. (86). PCT No.: PCT/US2O1 O/O54664 More particularly, the invention relates to genetic transforma tion of organisms with genes that encode proteins that cata S371 (c)(1), lyze the conversion of cysteine to taurine, methionine to tau (2), (4) Date: May 1, 2012 rine, cysteamine to taurine, or alanine to taurine. The invention describes methods for the use of polynucleotides Related U.S. Application Data that encode functional cysteine dioxygenase (CDO), cysteine (60) 2,Provisional 2009, provisional application application No.
    [Show full text]
  • Purification and Characterization of Cysteicacid and Cysteine Sulfinic
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 4270-4274, July 1982 Biochemistry Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain (taurine/amino acid transmitters/y-aminobutyric acid) JANG-YEN WU Department of Cell Biology and Program in Neuroscience, Baylor College of Medicine, Houston, Texas 77030 Communicated by Francis 0. Schmitt, April 5, 1982 ABSTRACT L-Cysteic and cysteine sulfinic acids decarbox- pable of decarboxylating both L-glutamate and L-cysteine sul- ylase (CADCase/CSADCase) and L-glutamic acid decarboxylase finate (15, 16). Furthermore, kinetic studies on enzymatic ac- (GADCase), the synthetic enzymes fortaurine and y-aminobutyric tivities by cross-incubation tests of Dixon and Webb (17) also acid, respectively, have been purified to homogeneity from bovine excluded the existence oftwo enzymes (15, 16). Because GAD- brain. Although CADCase/CSADCase and GADCase copurified Case is the rate-limiting enzyme for GABA biosynthesis, its through various column procedures, these two enzymes can be presence in certain types ofneurons has been regarded as evi- clearly separated by a hydroxyapatite column. The purification dence to support the notion that these neurons use GABA as procedures involve ammonium sulfate fractionation, column chro- their neurotransmitter. Should GADCase and CSADCase/ matographies on Sephadex G-200, hydroxyapatite, DEAE-cellu- CADCase be the same enzyme entity, the GABA neurons iden- lose, and preparative polyacrylamide gel electrophoresis. The Km tified by the presence of GADCase will actually include the values for CADCase/CSADCase are 0.22 and 0.18 mM with L- neurons. cysteic and cysteine sulfinic acids as substrates, respectively.
    [Show full text]
  • Omega-3 Fatty Acids Correlate with Gut Microbiome Diversity And
    Omega-3 fatty acids correlate with gut microbiome diversity and production of N- carbamylglutamate in middle aged and elderly women Cristina Mennia, Jonas Zierera, Tess Pallistera, Matthew A Jacksona, Tao Longb, Robert P Mohneyc, Claire J Stevesa, Tim D Spectora, Ana M Valdesa,d,e a Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK. b Sanford Burnham Prebys, USA cMetabolon Inc., Raleigh-Durham, NC 27709, USA. dSchool of Medicine , Nottingham City Hospital, Hucknall Road, Nottingham, UK. e NIHR Nottingham Biomedical Research Centre, Nottingham, UK. Corresponding author: Dr Ana M Valdes School of Medicine Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK Phone number: +44 (0)115 823 1954; Fax number:+44(0) 115 823 1757 email: [email protected] Supplementary Table 1. List of faecal metabolites significantly associated to DHA circulating levels (FDR<0.05)adjusting for age, BMI and family relatedness. Super Pathway Sub pathway Metabolite BETA SE P Q Lipid Polyunsaturated Fatty Acid (n3 and n6) eicosapentaenoate (EPA; 20:5n3) 0.15 0.04 4.35x10-5 0.01 Xenobiotics Carbamylated aminoacid N-carbamylglutamate 0.15 0.04 1.21x10-4 0.02 Peptide Dipeptide Derivative anserine 0.13 0.04 5.39x10-4 0.04 Supplementary Table 2. Associations between five measures of microbiome diversity and circulating levels of PUFA adjusting for age, BMI fibre intake and family relatedness SHANNON DIVERSITY CHAO1 OBSERVED Phylogenetic Diversity SIMPSON SPECIES Beta SE P Beta SE P Beta SE P Beta SE P Beta SE P DHA 0.13 0.04 0.002 0.12 0.04 0.003 0.14 0.04 0.001 0.12 0.04 0.01 0.09 0.04 0.02 FAW3 0.12 0.04 0.005 0.13 0.04 0.003 0.13 0.04 0.002 0.12 0.05 0.01 0.08 0.04 0.05 LA 0.10 0.05 0.02 0.10 0.05 0.03 0.10 0.05 0.03 0.10 0.05 0.03 0.09 0.04 0.04 (18:2) FAW6 0.09 0.04 0.02 0.10 0.04 0.01 0.10 0.04 0.01 0.10 0.04 0.02 0.08 0.04 0.05 DHA=22:6 docosahexaenoic acid;, FAW3= Omega-3 fatty acids; 18:2, LA= linoleic acid;; FAW6=omega-6 fatty acids Supplementary Table 3.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase
    The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase by Catherine Wangui Njeri A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Copyright 2014 by Catherine Wangui Njeri Approved by Holly R. Ellis, Chair, Associate Professor of Chemistry and Biochemistry Douglas C. Goodwin, Associate professor of Chemistry and Biochemistry Evert E. Duin, Associate Professor of Chemistry and Biochemistry Paul A. Cobine, Assistant Professor of Biological Sciences Benson T. Akingbemi, Associate Professor of Anatomy Abstract Intracellular concentrations of free cysteine in mammalian organisms are maintained within a healthy equilibrium by the mononuclear iron-dependent enzyme, cysteine dioxygenase (CDO). CDO catalyzes the oxidation of L-cysteine to L-cysteine sulfinic acid (L-CSA), by incorporating both atoms of molecular oxygen into the thiol group of L-cysteine. The product of this reaction, L-cysteine sulfinic acid, lies at a metabolic branch-point that leads to the formation of pyruvate and sulfate or taurine. The available three-dimensional structures of CDO have revealed the presence of two very interesting features within the active site (1-3). First, in close proximity to the active site iron, is a covalent crosslink between Cys93 and Tyr157. The functions of this structure and the factors that lead to its biogenesis in CDO have been a subject of vigorous investigation. Purified recombinant CDO exists as a mixture of the crosslinked and non crosslinked isoforms, and previous studies of CDO have involved a heterogenous mixture of the two.
    [Show full text]
  • Plasma Methylation Profile RESOURCE GUIDE
    Plasma Methylation Profile RESOURCE GUIDE Science + Insight doctorsdata.com Methionine SAMe DNA SHMT THF RNA 5, 10 Methyltransferases MethyleneTHF Protein Thymidine DMG Lipids synthesis B12 BHMT SAH dUMP MTRR MTR TMG adenosine AHCY MTHFR Homocysteine 5 Methyl THF CBS Cystathionine Cysteine Sulte SUOX Sulfate Introduction The Plasma Methylation Profile is a functional assessment of the enzymes involved in methionine metabolism and the trans-sulfuration pathway (commonly called the “Methylation Pathway”). The genomics revolution has made it possible to assess genetic information stored in the DNA code. An awareness of single nucleotide polymorphisms (SNPs) has made genetic testing for certain SNPs part of diagnostic patient assessment. While the identification of SNPs in a patient’s genome is important, it is vital to remember that functional testing of enzymes should determine treatment decisions. There are many layers of translation between the genome and the enzyme. Enzyme function may be compromised not only by inheritance, but also by acquired epigenetic factors such as nutritional status, oxidative stress, autoimmunity or environmental exposures. There is mounting evidence that, especially within the folate and methylation pathways, multiple SNPs in multiple genes (haplotypes) may be necessary to alter metabolism or change health outcomes. Gastrointestinal functions may influence absorption, physiology, metabolism and immunity; nutrient maldigestion or malabsorption may inhibit normal enzyme functions, and may have greater effects on enzymes with SNPs. © 2016 Doctor’s Data, Inc. All rights reserved. doctorsdata.com Doctor’s Data, Inc. Plasma Methylation Enzyme and Nutrition Guide 2 Methionine High Methionine may be elevated for a variety of reasons. Several enzymes involved in the metabolism of methionine require magnesium and other nutritional cofactors.
    [Show full text]
  • The Taurine Biosynthetic Pathway of Microalgae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Center for Plant Plant Science Innovation, Center for Science Innovation 2015 The aT urine Biosynthetic Pathway of Microalgae Rahul Tevatia University of Nebraska-Lincoln, [email protected] James Allen University of Nebraska-Lincoln, [email protected] Deepak Rudrappa University of Nebraska-Lincoln Derrick White University of Nebraska-Lincoln, [email protected] Thomas E. Clemente University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/plantscifacpub Part of the Plant Biology Commons, Plant Breeding and Genetics Commons, and the Plant Pathology Commons Tevatia, Rahul; Allen, James; Rudrappa, Deepak; White, Derrick; Clemente, Thomas E.; Cerutti, Heriberto; Demirel, Yaşar; and Blum, Paul H., "The aT urine Biosynthetic Pathway of Microalgae" (2015). Faculty Publications from the Center for Plant Science Innovation. 166. http://digitalcommons.unl.edu/plantscifacpub/166 This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Rahul Tevatia, James Allen, Deepak Rudrappa, Derrick White, Thomas E. Clemente, Heriberto Cerutti, Yaşar Demirel, and Paul H. Blum This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/plantscifacpub/166 Published in Algal Research 9 (2015), pp. 21–26; doi: 10.1016/j.algal.2015.02.012 Copyright © 2015 Elsevier B.V.
    [Show full text]
  • Protein Oxidation Biomarkers to Reveal the Age of Body Fluids Jolien M
    Protein oxidation biomarkers to reveal the age of body fluids Jolien M. Nienkemper 10458131 Date: 31-01-2018 Institute: University of Amsterdam Master Programme: Forensic Science Supervisor: Dr. Annemieke van Dam Co-Assessor: Prof. Dr. Ate Kloosterman List of contents: Introduction 2 1. What makes a good biomarker? 4 1.1 Biomarkers 4 2. The process of protein oxidation 5 2.1 Proteomics 5 2.2 Protein Oxidation 6 3. Oxidation products 7 3.1 Aliphatic residues 8 3.2 Aromatic residues 9 3.3 Sulfur-containing residues 10 4. Mass Spectrometry 12 4.1 Mass Spectrometry and biomarkers 12 4.2 From MS to immunoassays 14 Discussion 15 Conclusion 18 References 19 Appendix I: Table 1 23 Appendix II: Search Strategy 26 1 Abstract Knowing when a body fluid stain was left at a crime scene, can provide meaningful information on the order of events of a crime. A relatively recent development in the forensic field is to study the degradation pattern of proteins present in a body fluid, to determine the time of deposition. For this method to be successful, it is necessary to establish biomarkers which are capable of giving an indication of the age of a crime scene stain. The purpose of this article is to give an overview of the most common protein oxidation products on amino acid level, and to indicate which of these products have the potential of being used as a biomarker. It is discussed whether the biomarkers can be measured using Mass Spectrometry, and subsequently whether they can be detected through an immuno-based assay.
    [Show full text]