(12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano Et Al US 20120222148A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano et al. (43) Pub. Date: Aug. 30, 2012 (54) METHODS FOR THE BIOSYNTHESIS OF AOIH 5/10 (2006.01) TAURINE OR HYPOTAURINE IN CELLS AOIH 5/08 (2006.01) A636/00 (2006.01) (75) Inventors: Frank J. Turano, Baltimore, MD CI2N 5/82 (2006.01) (US); Kathleen A. Turano, (52) U.S. Cl. ......... 800/260; 424/725; 426/615; 426/635; Baltimore, MD (US); Peters. 435/468; 435/411; 435/412: 435/415; 435/417: Carlson, Baltimore, MD (US); 435/419: 800/278; 800/290; 800/298; 800/301; Alan M. Kinnersley, Baltimore, 800/302:800/305; 800/307; 800/308; 800/309; MD (US) 800/310: 800/312:800/313; 800/314; 800/315; (73) Assignee: PLANT SENSORY SYSTEMS Sooo... LLC, Baltimore, MD (US) •800/320.1; - s 800/320.2:of 800/320.3s (21) Appl. No.: 131505,415 (57) ABSTRACT (22) PCT Filed: Oct. 29, 2010 The present invention describes an approach to increase tau rine or hypotaurine production in prokaryotes or eukaryotes. (86). PCT No.: PCT/US2O1 O/O54664 More particularly, the invention relates to genetic transforma tion of organisms with genes that encode proteins that cata S371 (c)(1), lyze the conversion of cysteine to taurine, methionine to tau (2), (4) Date: May 1, 2012 rine, cysteamine to taurine, or alanine to taurine. The invention describes methods for the use of polynucleotides Related U.S. Application Data that encode functional cysteine dioxygenase (CDO), cysteine (60) 2,Provisional 2009, provisional application application No. 61/257.240, No. 61/263,548, filed on Nov.filed orE. glutamate decarboxyE. s aseyine ( ), cysteamine E. dioxygenase ase (SAD) (ADO), taurine-pyruvate aminotransferase (TPAT), TPAT on Nov. 23, 2009. and Sulfoacetaldehyde acetyltransferase (SA), taurine dioxy O O genase (TDO) or the small (ssTDeHase) and large subunits of Publication Classification taurine dehydrogenase (1sTDeHase) polypeptides in plants to (51) Int. Cl. increase taurine, hypotaurine or taurine precursor production. AOIH IM02 (2006.01) The preferred embodiment of the invention is in plants but A2.3L. I./22 (2006.01) other organisms may be used. Increased taurine production in A23K L/00 (2006.01) plants will enhance plant growth and development, yield, or AOIH 5/06 (2006.01) tolerance to biotic and/or abiotic stresses and could be used as CI2N 5/10 (2006.01) nutraceutical, pharmaceutical, or therapeutic compounds or AOIH 5/00 (2006.01) as a Supplement in animal feed. Patent Application Publication Aug. 30, 2012 US 2012/0222148A1 FIGURE I Cysteine se CDO 3-sulfinoalanine CL SAD Cysteamine Cysteate O GAD ADO SUCCinate SAD Hypotaurine Sulfite Or HTDeHase 2-oxoglutarate GAD TDO Pyruvate Taurine TPAT TDeHase Alanine Sulfo- Ammonium acetaldehyde Orthophosphate SA Acetyl Sulfite phosphate US 2012/0222148 A1 Aug. 30, 2012 METHODS FOR THE BIOSYNTHESIS OF 0005 Taurine is an Essential Compound for Animals TAURINE OR HYPOTAURINE IN CELLS 0006 Taurine is essential for human neonatal develop ment (2) and plays an important role in brain development (3. CROSS REFERENCE TO RELATED 4). Taurine is involved in the modulation of intracellular calcium homeostasis (5, 6) and may balance glutamate activ APPLICATION(S) ity, protecting neurons against glutamate excitotoxicity (7,8). 0001. This application claims the benefit of U.S. Patent Taurine is also an osmoregulator (9). Taurine is essential for Application No. 61/257.240 filed Nov. 2, 2009 and U.S. heart function (10), protects the integrity of hepatic tissue Patent Application No. 61/263,548 filed Nov. 23, 2009, the (11), and plays a role in photoprotection (12). disclosures of which are incorporated herein in their entirety 0007 Taurine as a Pharmaceutical or Therapeutic by reference. 0008 Taurine is used as a pharmaceutical and therapeutic. Taurine has been used in the treatment of cardiovascular diseases (13, 14), elevated blood pressure (15), seizure disor FIELD OF THE INVENTION ders (16), hepatic disorders (17), and alcoholism (18) and 0002 The present invention is in the field of recombinant may be useful in the treatment of diabetes (19), Alzheimer's production of taurine. disease (20), and ocular disorders (21). Taurine has been shown to prevent obesity (22) and control cholesterol (23. 24). Taurine acts as an antioxidant and protects against tox BACKGROUND OF THE INVENTION icity of various substances (25-27). Taurine has been shown to prevent oxidative stress induced by exercise (28), and is used 0003 Taurine as a Plant Growth Stimulator in energy drinks to improve performance (29). Taurine can 0004 Exogenous application of taurine has been reported also be used in topical applications to treat dermatological to increase crop harvest, yield, and biomass (1). Applications conditions (30). of taurine by foliar spray, Soil and roots application, and seed 0009 Taurine as a Dietary Supplement immersion increase crop production and seedling growth (1). 0010 Taurine is biosynthesized in most animals and can Exogenous applications of taurine have also been shown to be found in meat and seafood. Those who do not eat these increase photosynthetic capacity of isolated plant cells (pro foods regularly (e.g., vegetarians) or do not produce Sufficient toplasts and chloroplasts) (1). Increased taurine production in levels of taurine, e.g., cats (31), must acquire it through plants can enhance plant growth and development, yield, or dietary supplement. Trout that are fed all-plant protein diets tolerance to biotic and/or abiotic stresses. Increased yield, must acquire dietary taurine for normal growth (32). growth, or biomass may be a result of increased nitrogen flow, (0011 Metabolic Pathways that Synthesize Taurine sensing, uptake, storage, transport or nitrogen use efficiency. 0012. With few exceptions (33, 34), taurine is found in Increased yield, growth or biomass may also be a result of plants only in low levels (35), and the metabolic pathway for increased carbon metabolism due to increased photosynthesis taurine and hypotaurine has not yet been identified in plants. or increased carbohydrate metabolism by increased Sucrose Several metabolic pathways that synthesize taurine and hypo production and/or transport or increase biosynthesis or mobi taurine have been identified in animals and bacteria (FIG. 1). lization of starch, or oil. Increased yield, growth or biomass In animals, cysteine and oxygen are converted into 3-sulfi may also be associated with increased phosphorus uptake, noalanine by cysteine dioxygenase (CDO). 3-sulfinoalanine transport or utilization. Increased yield, growth or biomass is converted into hypotaurine by Sulfinoalanine decarboxy may also be associated with increased Sulfur or Sulfate lase (SAD) or glutamate decarboxylase (GAD). Hypotaurine uptake, transport or utilization. Increased yield, growth or is converted into taurine either by the activity of hypotaurine biomass may also be associated with increased water uptake, dehydrogenase (HTDeHase) or by a spontaneous conversion. transport, utilization or water-use-efficiency. Increased yield, Cysteamine (2-aminoethanethiol) and oxygen are converted growth or biomass may also be due to changes in the cell cycle into hypotaurine by cysteamine dioxygenase (ADO), and modifications that improve growth rates and may increase hypotaurine is converted into taurine. Alternatively cysteine early vigor and accelerate maturation leading to improved and Sulfite are converted into cysteate and hydrogen sulfide by yield. Increased yield, growth or biomass may also be due to cysteine lyase (cysteine Sulfite lyase or cysteine hydrogen changes in the production of hormones or signaling mol sulfide-lyase). Cysteate is converted into taurine by SAD or ecules that regulate and improve plant growth and develop GAD. In bacteria, the compound 2-sulfoacetaldehyde is syn ment leading to improvements in yield and biotic or abiotic thesized from acetyl phosphate and sulfite by sulfoacetalde stress tolerance. Increases in carbon, nitrogen, phosphorus, or hyde acetyltransferase (SA). Alanine and 2-sulfoacetalde Sulfate flow, sensing, uptake, storage, transport or efficiency hyde are converted into taurine and pyruvate by taurine may improve seed quality for starch, oil or protein content. pyruvate aminotransferase (TPAT). In addition, Increased yield, growth or biomass may also be a result of Sulfoacetaldehyde and ammonia (or ammonium) are con increased tolerance to abiotic stress such as changes in verted into taurine and water in the presence of ferrocyto osmotic conditions, oxidative damage, drought, salt, cold, chrome C by taurine dehydrogenase. Sulfite, aminoacetalde freezing, heat, UV light or light intensity. Increased yield, hyde, carbon dioxide and Succinate are converted into taurine, growth or biomass may also be a result of increased tolerance 2-oxoglutarate and oxygen by taurine dioxygenase (TDO). to biotic stress such as challenges, infection or insult from pests, pathogens, bacteria, microbes, viruses, Viroids, micro SUMMARY OF THE INVENTION organisms, invertebrates, insects, nematodes, or vertebrate. 0013 The invention provides methods and compositions Increased yield, growth or biomass may be a result of for taurine or taurine precursor production in organisms. increased tolerance to abiotic stresses such as changes in More particularly, the invention encompasses the use of poly osmotic conditions or light intensity, oxidative damage, nucleotides that encode in plants functional (1) cysteine drought, salt, cold, freezing, heat, or UV radiation. dioxygenase (CDO),
Recommended publications
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Mechanistic Study of Cysteine Dioxygenase, a Non-Heme
    MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE, A NON-HEME MONONUCLEAR IRON ENZYME by WEI LI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Student Name Wei Li All Rights Reserved Acknowledgements I would like to thank Dr. Pierce for your mentoring, guidance and patience over the five years. I cannot go all the way through this without your help. Your intelligence and determination has been and will always be an example for me. I would like to thank my committee members Dr. Dias, Dr. Heo and Dr. Jonhson- Winters for the directions and invaluable advice. I also would like to thank all my lab mates, Josh, Bishnu ,Andra, Priyanka, Eleanor, you all helped me so I could finish my projects. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. At Last, I would like to thank my lovely wife and beautiful daughter who made my life meaningful and full of joy. July 11, 2014 iii Abstract MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE A NON-HEME MONONUCLEAR IRON ENZYME Wei Li, PhD The University of Texas at Arlington, 2014 Supervising Professor: Brad Pierce Cysteine dioxygenase (CDO) is an non-heme mononuclear iron enzymes that catalyzes the O2-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). CDO controls cysteine levels in cells and is a potential drug target for some diseases such as Parkinson’s and Alzhermer’s.
    [Show full text]
  • Cysteamine: an Old Drug with New Potential
    Drug Discovery Today Volume 18, Numbers 15/16 August 2013 REVIEWS POST SCREEN Cysteamine: an old drug with new potential Reviews 1,2 3 1,2,4 Martine Besouw , Rosalinde Masereeuw , Lambert van den Heuvel and 1,2 Elena Levtchenko 1 Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium 2 Laboratory of Pediatrics, Department of Development & Regeneration, Catholic University Leuven, Belgium 3 Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands 4 Laboratory for Genetic, Endocrine and Metabolic Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands Cysteamine is an amino thiol with the chemical formula HSCH2CH2NH2. Endogenously, cysteamine is derived from coenzyme A degradation, although its plasma concentrations are low. Most experience with cysteamine as a drug originates from the field of the orphan disease cystinosis, in which cysteamine is prescribed to decrease intralysosomal cystine accumulation. However, over the years, the drug has been used for several other applications both in vitro and in vivo. In this article, we review the different applications of cysteamine, ending with an overview of ongoing clinical trials for new indications, such as neurodegenerative disorders and nonalcoholic fatty liver disease (NAFLD). The recent development of an enteric-coated cysteamine formulation makes cysteamine more patient friendly and will extend its applicability for both old and new indications. Endogenous cysteamine production cysteine, it is oxidized into taurine by hypotaurine dehydrogenase Cysteamine (synonyms: b-mercaptoethylamine, 2-aminoetha- (Fig. 1b). Taurine is excreted either in urine, or in feces in the form nethiol, 2-mercaptoethylamine, decarboxycysteine, thioethano- of bile salts [3].
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg and Ida Schomburg (Eds.) Springer Handbook of Enzymes Volume 25 Class 1 • Oxidoreductases X EC 1.9-1.13 co edited by Antje Chang Second Edition 4y Springer Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.13.11.50 acetylacetone-cleaving enzyme 673 1.10.3.4 o-aminophenol oxidase 149 1.13.12.12 apo-/?-carotenoid-14',13'-dioxygenase 732 1.13.11.34 arachidonate 5-lipoxygenase 591 1.13.11.40 arachidonate 8-lipoxygenase 627 1.13.11.31 arachidonate 12-lipoxygenase 568 1.13.11.33 arachidonate 15-lipoxygenase 585 1.13.12.1 arginine 2-monooxygenase 675 1.13.11.13 ascorbate 2,3-dioxygenase 491 1.10.2.1 L-ascorbate-cytochrome-b5 reductase 79 1.10.3.3 L-ascorbate oxidase 134 1.11.1.11 L-ascorbate peroxidase 257 1.13.99.2 benzoate 1,2-dioxygenase (transferred to EC 1.14.12.10) 740 1.13.11.39 biphenyl-2,3-diol 1,2-dioxygenase 618 1.13.11.22 caffeate 3,4-dioxygenase 531 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase 505 1.13.11.21 p-carotene 15,15'-dioxygenase (transferred to EC 1.14.99.36) 530 1.11.1.6 catalase 194 1.13.11.1 catechol 1,2-dioxygenase 382 1.13.11.2 catechol 2,3-dioxygenase 395 1.10.3.1 catechol oxidase 105 1.13.11.36 chloridazon-catechol dioxygenase 607 1.11.1.10 chloride peroxidase 245 1.13.11.49 chlorite O2-lyase 670 1.13.99.4 4-chlorophenylacetate 3,4-dioxygenase (transferred to EC 1.14.12.9) .
    [Show full text]
  • Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes
    antioxidants Review Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes Gethin J. McBean School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland; [email protected]; Tel.: +353-1-716-6770 Received: 13 July 2017; Accepted: 1 August 2017; Published: 3 August 2017 Abstract: This review discusses the current understanding of cysteine and glutathione redox balance in astrocytes. Particular emphasis is placed on the impact of oxidative stress and astrocyte activation on pathways that provide cysteine as a precursor for glutathione. The effect of the disruption of thiol-containing amino acid metabolism on the antioxidant capacity of astrocytes is also discussed. − Keywords: cysteine; cystine; cysteamine; cystathionine; glutathione; xc cystine-glutamate exchanger; transsulfuration 1. Introduction Thiol groups, whether contained within small molecules, peptides, or proteins, are highly reactive and prone to spontaneous oxidation. Free cysteine readily oxidises to its corresponding disulfide, cystine, that together form the cysteine/cystine redox couple. Similarly, the tripeptide glutathione (γ-glutamyl-cysteinyl-glycine) exists in both reduced (GSH) and oxidised (glutathione disulfide; GSSG) forms, depending on the oxidation state of the sulfur atom on the cysteine residue. In the case of proteins, the free sulfhydryl group on cysteines can adopt a number of oxidation states, ranging from disulfides (–S–S–) and sulfenic acids (–SOOH), which are reversible, to the more oxidised sulfinic (–SOO2H) and sulfonic acids (–SOO3H), which are not. These latter species may arise as a result of chronic and/or severe oxidative stress, and generally indicate a loss of function of irreversibly oxidised proteins. Methionine residues oxidise to the corresponding sulfoxide, which can be rescued enzymatically by methionine sulfoxide reductase [1].
    [Show full text]
  • Purification and Characterization of Cysteicacid and Cysteine Sulfinic
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 4270-4274, July 1982 Biochemistry Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain (taurine/amino acid transmitters/y-aminobutyric acid) JANG-YEN WU Department of Cell Biology and Program in Neuroscience, Baylor College of Medicine, Houston, Texas 77030 Communicated by Francis 0. Schmitt, April 5, 1982 ABSTRACT L-Cysteic and cysteine sulfinic acids decarbox- pable of decarboxylating both L-glutamate and L-cysteine sul- ylase (CADCase/CSADCase) and L-glutamic acid decarboxylase finate (15, 16). Furthermore, kinetic studies on enzymatic ac- (GADCase), the synthetic enzymes fortaurine and y-aminobutyric tivities by cross-incubation tests of Dixon and Webb (17) also acid, respectively, have been purified to homogeneity from bovine excluded the existence oftwo enzymes (15, 16). Because GAD- brain. Although CADCase/CSADCase and GADCase copurified Case is the rate-limiting enzyme for GABA biosynthesis, its through various column procedures, these two enzymes can be presence in certain types ofneurons has been regarded as evi- clearly separated by a hydroxyapatite column. The purification dence to support the notion that these neurons use GABA as procedures involve ammonium sulfate fractionation, column chro- their neurotransmitter. Should GADCase and CSADCase/ matographies on Sephadex G-200, hydroxyapatite, DEAE-cellu- CADCase be the same enzyme entity, the GABA neurons iden- lose, and preparative polyacrylamide gel electrophoresis. The Km tified by the presence of GADCase will actually include the values for CADCase/CSADCase are 0.22 and 0.18 mM with L- neurons. cysteic and cysteine sulfinic acids as substrates, respectively.
    [Show full text]
  • Omega-3 Fatty Acids Correlate with Gut Microbiome Diversity And
    Omega-3 fatty acids correlate with gut microbiome diversity and production of N- carbamylglutamate in middle aged and elderly women Cristina Mennia, Jonas Zierera, Tess Pallistera, Matthew A Jacksona, Tao Longb, Robert P Mohneyc, Claire J Stevesa, Tim D Spectora, Ana M Valdesa,d,e a Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK. b Sanford Burnham Prebys, USA cMetabolon Inc., Raleigh-Durham, NC 27709, USA. dSchool of Medicine , Nottingham City Hospital, Hucknall Road, Nottingham, UK. e NIHR Nottingham Biomedical Research Centre, Nottingham, UK. Corresponding author: Dr Ana M Valdes School of Medicine Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK Phone number: +44 (0)115 823 1954; Fax number:+44(0) 115 823 1757 email: [email protected] Supplementary Table 1. List of faecal metabolites significantly associated to DHA circulating levels (FDR<0.05)adjusting for age, BMI and family relatedness. Super Pathway Sub pathway Metabolite BETA SE P Q Lipid Polyunsaturated Fatty Acid (n3 and n6) eicosapentaenoate (EPA; 20:5n3) 0.15 0.04 4.35x10-5 0.01 Xenobiotics Carbamylated aminoacid N-carbamylglutamate 0.15 0.04 1.21x10-4 0.02 Peptide Dipeptide Derivative anserine 0.13 0.04 5.39x10-4 0.04 Supplementary Table 2. Associations between five measures of microbiome diversity and circulating levels of PUFA adjusting for age, BMI fibre intake and family relatedness SHANNON DIVERSITY CHAO1 OBSERVED Phylogenetic Diversity SIMPSON SPECIES Beta SE P Beta SE P Beta SE P Beta SE P Beta SE P DHA 0.13 0.04 0.002 0.12 0.04 0.003 0.14 0.04 0.001 0.12 0.04 0.01 0.09 0.04 0.02 FAW3 0.12 0.04 0.005 0.13 0.04 0.003 0.13 0.04 0.002 0.12 0.05 0.01 0.08 0.04 0.05 LA 0.10 0.05 0.02 0.10 0.05 0.03 0.10 0.05 0.03 0.10 0.05 0.03 0.09 0.04 0.04 (18:2) FAW6 0.09 0.04 0.02 0.10 0.04 0.01 0.10 0.04 0.01 0.10 0.04 0.02 0.08 0.04 0.05 DHA=22:6 docosahexaenoic acid;, FAW3= Omega-3 fatty acids; 18:2, LA= linoleic acid;; FAW6=omega-6 fatty acids Supplementary Table 3.
    [Show full text]
  • Crystal Structure of Mammalian Cysteine Dioxygenase
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 27, pp. 18723–18733, July 7, 2006 © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Crystal Structure of Mammalian Cysteine Dioxygenase A NOVEL MONONUCLEAR IRON CENTER FOR CYSTEINE THIOL OXIDATION* Received for publication, February 17, 2006, and in revised form, March 30, 2006 Published, JBC Papers in Press, April 11, 2006, DOI 10.1074/jbc.M601555200 Chad R. Simmons‡, Qun Liu§, Qingqiu Huang§, Quan Hao§, Tadhg P. Begley¶, P. Andrew Karplusʈ1, and Martha H. Stipanuk‡2 From the ‡Division of Nutritional Sciences, §Macromolecular Diffraction Facility at Cornell High Energy Synchrotron Source (MacCHESS), and the ¶Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-8001 and the ʈDepartment of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4501 Cysteine dioxygenase is a mononuclear iron-dependent enzyme to yield cysteine. In addition, CDO activity is essential for the biosyn- responsible for the oxidation of cysteine with molecular oxygen to thesis of taurine, which is formed by the decarboxylation of cysteine form cysteine sulfinate. This reaction commits cysteine to either sulfinate to hypotaurine and further oxidation of hypotaurine to taurine. catabolism to sulfate and pyruvate or the taurine biosynthetic path- Clinical evidence indicates that a block in cysteine catabolism, way. Cysteine dioxygenase is a member of the cupin superfamily of thought to be at CDO, leads to an altered cysteine to sulfate ratio that is Downloaded from proteins. The crystal structure of recombinant rat cysteine dioxyge- associated with sulfate depletion and other adverse effects (1).
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Human Cysteamine Dioxygenase
    Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 5-7-2016 Investigation Of A Novel Mammalian Thiol Dioxygenase Structure: Human Cysteamine Dioxygenase Tseng Xiong [email protected] Tseng Xiong Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Xiong, Tseng and Xiong, Tseng, "Investigation Of A Novel Mammalian Thiol Dioxygenase Structure: Human Cysteamine Dioxygenase." Thesis, Georgia State University, 2016. https://scholarworks.gsu.edu/chemistry_theses/85 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. INVESTIGATION OF A NOVEL MAMMALIAN THIOL DIOXYGENASE STRUCTURE: HUMAN CYSTEAMINE DIOXYGENASE by TSENG XIONG Under the Direction of Aimin Liu, PhD ABSTRACT In 2007, a gene homolog of CDO encoded by the gene Gm237 in the DUF164 family was identified as cysteamine dioxygenase (ADO). ADO is one of the only known thiol dioxygenases found in mammals. Both ADO and its partner cysteine dioxygenase (CDO) are non-heme iron dependent enzymes that play a crucial role in the biosynthesis of taruine/hypotaurine by insertion of a dioxygen molecule. However, ADO has been overshadowed by CDO as heavy research focus on CDO over the past decade has led to the elucidation of its structure and possible mechanistic properties. In an effort to further understand ADO’s mechanism and regulating role in vivo, this work will be focused on the mammalian hADO and trying to gain further insight on hADO’s structural features via crystallography work.
    [Show full text]