Protein Oxidation Biomarkers to Reveal the Age of Body Fluids Jolien M

Total Page:16

File Type:pdf, Size:1020Kb

Protein Oxidation Biomarkers to Reveal the Age of Body Fluids Jolien M Protein oxidation biomarkers to reveal the age of body fluids Jolien M. Nienkemper 10458131 Date: 31-01-2018 Institute: University of Amsterdam Master Programme: Forensic Science Supervisor: Dr. Annemieke van Dam Co-Assessor: Prof. Dr. Ate Kloosterman List of contents: Introduction 2 1. What makes a good biomarker? 4 1.1 Biomarkers 4 2. The process of protein oxidation 5 2.1 Proteomics 5 2.2 Protein Oxidation 6 3. Oxidation products 7 3.1 Aliphatic residues 8 3.2 Aromatic residues 9 3.3 Sulfur-containing residues 10 4. Mass Spectrometry 12 4.1 Mass Spectrometry and biomarkers 12 4.2 From MS to immunoassays 14 Discussion 15 Conclusion 18 References 19 Appendix I: Table 1 23 Appendix II: Search Strategy 26 1 Abstract Knowing when a body fluid stain was left at a crime scene, can provide meaningful information on the order of events of a crime. A relatively recent development in the forensic field is to study the degradation pattern of proteins present in a body fluid, to determine the time of deposition. For this method to be successful, it is necessary to establish biomarkers which are capable of giving an indication of the age of a crime scene stain. The purpose of this article is to give an overview of the most common protein oxidation products on amino acid level, and to indicate which of these products have the potential of being used as a biomarker. It is discussed whether the biomarkers can be measured using Mass Spectrometry, and subsequently whether they can be detected through an immuno-based assay. For future research, it is advised to focus on the carbonyl groups, methionine sulfoxide, methionine sulfone, cysteines oxyacids, dityrosine and the different kynurenines for a more thorough investigation into their potential as a biomarker. Introduction With current techniques DNA can often be extracted from body fluids found at a crime scene, making identification possible. The next step is to use the information embedded in the body fluids to determine the time passed since deposition. Such information can be used to provide intelligence on the order of events of a crime, which can help to link a piece of evidence to the crime. For example, a fingermark found at a crime scene can be linked to a suspect with the help of a database. It is possible however, that the suspect claims that he had been at the location of the crime scene, but one week prior to the date of the crime. If no other evidence can be found against the suspect, he cannot be detained. In such a situation, it would have been helpful if the forensic examiners would have been able to determine at what time the fingermark was deposited. Currently, different study groups are looking into new ways to apply varying analytical techniques on certain types of body fluids to estimate the age of that particular body fluid. Most research in this area is still in its early stages however, and needs further investigation. Almost all body fluids contain proteins specific to that fluid, which can be used for identification of the biological material (Juusola & Ballantyne, 2003). Moreover, such proteins can function as biomarkers for age estimation. Over time proteins degrade into different products (Stadtman & Levine, 2000) which can be measured and used to determine the time since deposition. For example, it is known that the major component of blood, hemoglobin, converts into metHemoglobin once oxygen saturated. Inside of the body metHemoglobin is reduced back into hemoglobin, but outside of the body all hemoglobin will be oxygen saturated and change into hemichrome (Bremmer et al., 2011). Bremmer et al. (2011) studied the ratio of these three hemoglobin derivatives in dried blood stains with the use of diffuse reflectance spectroscopy. They found that each measurement, performed between 0 to 60 days after deposition, showed a unique combination of the three derivatives. With the help of this ratio, the age of a bloodstain could be estimated with, at most, a margin of uncertainty of 14 days. Bauer and colleagues (2003) took a different approach by looking into the degradation levels of RNA in blood, using RT-PCR to quantify the amounts of mRNA. Their results showed a significant correlation between the rate of RNA degradation and storage time. They do emphasize however, that storage conditions need to be known for 2 reliable age estimation, since, for example, heat and light could influence RNA fragmentation. p A similar approach was attempted for saliva samples, however, higher variability in overall protein concentrations within and between individuals and a high protein degradation rate made it hard to find a protein marker which was stable over time (Crosley et al., 2009; Ackerman et al., 2010). Saliva in general is found to be a very dynamic proteome, continuously being supplied with new proteins which are subsequently being removed by swallowing. Not only does is contain a great variety of proteins, it is also a very unstable fluid, susceptible to microorganisms and proteases (Helmerhorst & Oppenheim, 2007; Esser et al., 2008). In saliva, protein degradation starts from the moment a sample is deposited and is usually very rapid, making these proteins inadequate for long term age determination. However, a selection of degradation products has been found to increase in abundance over time and are therefore thought to be stable breakdown products of larger proteins, making them suitable biomarkers (Esser et al., 2008). Yet precautions should be taken towards the proteases in saliva and how they interact with these proteins. Seminal plasm proteins also show rapid degradation, but when stored under optimum conditions, relatively stable biochemical parameters can be found (Jimenez- Verdejo et al., 1994). An older research of Jimenez-Verdejo and colleagues (1994) studied the behaviour of a selection of semen specific enzymes and detected that, when all parameters were combined, the age of a semen stain could be calculated with a certain degree of precision. Nevertheless, none of the parameters was capable of giving a reliable age prediction on their own. A more recent study of Szykula (2016) found ‘new’ biomarkers in semen by analysing the length of proteins in aging stains with the help of mass spectrometry. Results showed dermcidin and semenogelin-2 to have the most significant change in length, making them interesting targets for validation studies. A promising study of van Dam et al. (2014) showed that with the help of fluorescence spectroscopy the age of the 55% of the male fingermarks could be determined. The method used is based on the principle of the oxidation of the proteins and lipids present in a fingermark, with tryptophan-containing proteins (Tryp) being the main contributor. Unsaturated lipids oxidize when exposed to air, which results in reactive oxidation products (LipOx). These products react with proteins and form fluorescent oxidation products (FOX) (Eq. (1)). [Eq. (1)]: LipOx + Tryp → FOX During the oxidation reaction tryptophan is degraded, causing the fluorescence intensity generated by tryptophan to decrease. FOX is being produced as a result of the reaction, which leads to an increase of FOX-induced fluorescence. From this fluorescence spectrum, a Tryp/FOX-ratio can be extracted, which can be used to determine the time of deposition. A downside to this method is the fact that fluorescence spectroscopy is not sensitive enough to measure the fluorescent reaction products of, for example, female donors, because of the lower excretion of skin components by women. Mass spectrometry is a technique which is far more sensitive and is capable of quantifying very minute amounts of proteins. This is particularly useful since there is still no method available to amplify proteins, as they do with PCR for DNA (Kussman et al., 2009). Since crime scene stains can have a low volume, it is important that the technique used to analyse these samples is sensitive enough to measure such small quantities. 3 This review will focus on the different forms of protein oxidation modifications and will try to answer the question ‘which biomarkers seem most promising in revealing the age of body fluids?’. Sub questions in need of an answer are: - What makes a good biomarker? - Which protein oxidation products are there? - Can MS be used to demonstrate the presence of oxidative modifications? - How do these biomarkers translate to practice? Proteins are chosen as the subject of this study since they are known to be the major component of almost every biological system, regardless of whether one considers tissue level, cellular level or body fluid level (Davies, 2005). Also, protein oxidation products are generally thought to be more stable compared to lipid oxidation products m. Moreover, proteins are found to be the main contributor to oxidation reactions with free radicals. Such knowledge, together with the finding that proteins have low turnover rates, and are therefore likely to accumulate higher amounts of oxidation products, makes that proteins are thought to be a suitable candidate for oxidation biomarker research (Davies et al., 1999). 1. What makes a good biomarker? 1.1 Biomarkers Before answering the main research question of ‘which biomarkers seem most promising in revealing the age of body fluids?’ it is discussed here what exactly a biomarker is, and what makes a good biomarker. Any biological molecule found in an organism that can be measured and quantified is a potential biomarker. In the medical field a biomarker is often a molecule that signals the presence of abnormal processes or diseases, but in the forensic context a biomarker can be used to indicate fairly common processes. One such example is using hemoglobin derivatives as biomarkers to measure the level of degradation of blood proteins. The body fluid from which biomarkers are aimed to be extracted should meet certain criteria.
Recommended publications
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Mechanistic Study of Cysteine Dioxygenase, a Non-Heme
    MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE, A NON-HEME MONONUCLEAR IRON ENZYME by WEI LI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Student Name Wei Li All Rights Reserved Acknowledgements I would like to thank Dr. Pierce for your mentoring, guidance and patience over the five years. I cannot go all the way through this without your help. Your intelligence and determination has been and will always be an example for me. I would like to thank my committee members Dr. Dias, Dr. Heo and Dr. Jonhson- Winters for the directions and invaluable advice. I also would like to thank all my lab mates, Josh, Bishnu ,Andra, Priyanka, Eleanor, you all helped me so I could finish my projects. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. At Last, I would like to thank my lovely wife and beautiful daughter who made my life meaningful and full of joy. July 11, 2014 iii Abstract MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE A NON-HEME MONONUCLEAR IRON ENZYME Wei Li, PhD The University of Texas at Arlington, 2014 Supervising Professor: Brad Pierce Cysteine dioxygenase (CDO) is an non-heme mononuclear iron enzymes that catalyzes the O2-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). CDO controls cysteine levels in cells and is a potential drug target for some diseases such as Parkinson’s and Alzhermer’s.
    [Show full text]
  • Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes
    antioxidants Review Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes Gethin J. McBean School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland; [email protected]; Tel.: +353-1-716-6770 Received: 13 July 2017; Accepted: 1 August 2017; Published: 3 August 2017 Abstract: This review discusses the current understanding of cysteine and glutathione redox balance in astrocytes. Particular emphasis is placed on the impact of oxidative stress and astrocyte activation on pathways that provide cysteine as a precursor for glutathione. The effect of the disruption of thiol-containing amino acid metabolism on the antioxidant capacity of astrocytes is also discussed. − Keywords: cysteine; cystine; cysteamine; cystathionine; glutathione; xc cystine-glutamate exchanger; transsulfuration 1. Introduction Thiol groups, whether contained within small molecules, peptides, or proteins, are highly reactive and prone to spontaneous oxidation. Free cysteine readily oxidises to its corresponding disulfide, cystine, that together form the cysteine/cystine redox couple. Similarly, the tripeptide glutathione (γ-glutamyl-cysteinyl-glycine) exists in both reduced (GSH) and oxidised (glutathione disulfide; GSSG) forms, depending on the oxidation state of the sulfur atom on the cysteine residue. In the case of proteins, the free sulfhydryl group on cysteines can adopt a number of oxidation states, ranging from disulfides (–S–S–) and sulfenic acids (–SOOH), which are reversible, to the more oxidised sulfinic (–SOO2H) and sulfonic acids (–SOO3H), which are not. These latter species may arise as a result of chronic and/or severe oxidative stress, and generally indicate a loss of function of irreversibly oxidised proteins. Methionine residues oxidise to the corresponding sulfoxide, which can be rescued enzymatically by methionine sulfoxide reductase [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano Et Al
    US 20120222148A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0222148A1 Turano et al. (43) Pub. Date: Aug. 30, 2012 (54) METHODS FOR THE BIOSYNTHESIS OF AOIH 5/10 (2006.01) TAURINE OR HYPOTAURINE IN CELLS AOIH 5/08 (2006.01) A636/00 (2006.01) (75) Inventors: Frank J. Turano, Baltimore, MD CI2N 5/82 (2006.01) (US); Kathleen A. Turano, (52) U.S. Cl. ......... 800/260; 424/725; 426/615; 426/635; Baltimore, MD (US); Peters. 435/468; 435/411; 435/412: 435/415; 435/417: Carlson, Baltimore, MD (US); 435/419: 800/278; 800/290; 800/298; 800/301; Alan M. Kinnersley, Baltimore, 800/302:800/305; 800/307; 800/308; 800/309; MD (US) 800/310: 800/312:800/313; 800/314; 800/315; (73) Assignee: PLANT SENSORY SYSTEMS Sooo... LLC, Baltimore, MD (US) •800/320.1; - s 800/320.2:of 800/320.3s (21) Appl. No.: 131505,415 (57) ABSTRACT (22) PCT Filed: Oct. 29, 2010 The present invention describes an approach to increase tau rine or hypotaurine production in prokaryotes or eukaryotes. (86). PCT No.: PCT/US2O1 O/O54664 More particularly, the invention relates to genetic transforma tion of organisms with genes that encode proteins that cata S371 (c)(1), lyze the conversion of cysteine to taurine, methionine to tau (2), (4) Date: May 1, 2012 rine, cysteamine to taurine, or alanine to taurine. The invention describes methods for the use of polynucleotides Related U.S. Application Data that encode functional cysteine dioxygenase (CDO), cysteine (60) 2,Provisional 2009, provisional application application No.
    [Show full text]
  • Purification and Characterization of Cysteicacid and Cysteine Sulfinic
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 4270-4274, July 1982 Biochemistry Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain (taurine/amino acid transmitters/y-aminobutyric acid) JANG-YEN WU Department of Cell Biology and Program in Neuroscience, Baylor College of Medicine, Houston, Texas 77030 Communicated by Francis 0. Schmitt, April 5, 1982 ABSTRACT L-Cysteic and cysteine sulfinic acids decarbox- pable of decarboxylating both L-glutamate and L-cysteine sul- ylase (CADCase/CSADCase) and L-glutamic acid decarboxylase finate (15, 16). Furthermore, kinetic studies on enzymatic ac- (GADCase), the synthetic enzymes fortaurine and y-aminobutyric tivities by cross-incubation tests of Dixon and Webb (17) also acid, respectively, have been purified to homogeneity from bovine excluded the existence oftwo enzymes (15, 16). Because GAD- brain. Although CADCase/CSADCase and GADCase copurified Case is the rate-limiting enzyme for GABA biosynthesis, its through various column procedures, these two enzymes can be presence in certain types ofneurons has been regarded as evi- clearly separated by a hydroxyapatite column. The purification dence to support the notion that these neurons use GABA as procedures involve ammonium sulfate fractionation, column chro- their neurotransmitter. Should GADCase and CSADCase/ matographies on Sephadex G-200, hydroxyapatite, DEAE-cellu- CADCase be the same enzyme entity, the GABA neurons iden- lose, and preparative polyacrylamide gel electrophoresis. The Km tified by the presence of GADCase will actually include the values for CADCase/CSADCase are 0.22 and 0.18 mM with L- neurons. cysteic and cysteine sulfinic acids as substrates, respectively.
    [Show full text]
  • Omega-3 Fatty Acids Correlate with Gut Microbiome Diversity And
    Omega-3 fatty acids correlate with gut microbiome diversity and production of N- carbamylglutamate in middle aged and elderly women Cristina Mennia, Jonas Zierera, Tess Pallistera, Matthew A Jacksona, Tao Longb, Robert P Mohneyc, Claire J Stevesa, Tim D Spectora, Ana M Valdesa,d,e a Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK. b Sanford Burnham Prebys, USA cMetabolon Inc., Raleigh-Durham, NC 27709, USA. dSchool of Medicine , Nottingham City Hospital, Hucknall Road, Nottingham, UK. e NIHR Nottingham Biomedical Research Centre, Nottingham, UK. Corresponding author: Dr Ana M Valdes School of Medicine Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK Phone number: +44 (0)115 823 1954; Fax number:+44(0) 115 823 1757 email: [email protected] Supplementary Table 1. List of faecal metabolites significantly associated to DHA circulating levels (FDR<0.05)adjusting for age, BMI and family relatedness. Super Pathway Sub pathway Metabolite BETA SE P Q Lipid Polyunsaturated Fatty Acid (n3 and n6) eicosapentaenoate (EPA; 20:5n3) 0.15 0.04 4.35x10-5 0.01 Xenobiotics Carbamylated aminoacid N-carbamylglutamate 0.15 0.04 1.21x10-4 0.02 Peptide Dipeptide Derivative anserine 0.13 0.04 5.39x10-4 0.04 Supplementary Table 2. Associations between five measures of microbiome diversity and circulating levels of PUFA adjusting for age, BMI fibre intake and family relatedness SHANNON DIVERSITY CHAO1 OBSERVED Phylogenetic Diversity SIMPSON SPECIES Beta SE P Beta SE P Beta SE P Beta SE P Beta SE P DHA 0.13 0.04 0.002 0.12 0.04 0.003 0.14 0.04 0.001 0.12 0.04 0.01 0.09 0.04 0.02 FAW3 0.12 0.04 0.005 0.13 0.04 0.003 0.13 0.04 0.002 0.12 0.05 0.01 0.08 0.04 0.05 LA 0.10 0.05 0.02 0.10 0.05 0.03 0.10 0.05 0.03 0.10 0.05 0.03 0.09 0.04 0.04 (18:2) FAW6 0.09 0.04 0.02 0.10 0.04 0.01 0.10 0.04 0.01 0.10 0.04 0.02 0.08 0.04 0.05 DHA=22:6 docosahexaenoic acid;, FAW3= Omega-3 fatty acids; 18:2, LA= linoleic acid;; FAW6=omega-6 fatty acids Supplementary Table 3.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase
    The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase by Catherine Wangui Njeri A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Copyright 2014 by Catherine Wangui Njeri Approved by Holly R. Ellis, Chair, Associate Professor of Chemistry and Biochemistry Douglas C. Goodwin, Associate professor of Chemistry and Biochemistry Evert E. Duin, Associate Professor of Chemistry and Biochemistry Paul A. Cobine, Assistant Professor of Biological Sciences Benson T. Akingbemi, Associate Professor of Anatomy Abstract Intracellular concentrations of free cysteine in mammalian organisms are maintained within a healthy equilibrium by the mononuclear iron-dependent enzyme, cysteine dioxygenase (CDO). CDO catalyzes the oxidation of L-cysteine to L-cysteine sulfinic acid (L-CSA), by incorporating both atoms of molecular oxygen into the thiol group of L-cysteine. The product of this reaction, L-cysteine sulfinic acid, lies at a metabolic branch-point that leads to the formation of pyruvate and sulfate or taurine. The available three-dimensional structures of CDO have revealed the presence of two very interesting features within the active site (1-3). First, in close proximity to the active site iron, is a covalent crosslink between Cys93 and Tyr157. The functions of this structure and the factors that lead to its biogenesis in CDO have been a subject of vigorous investigation. Purified recombinant CDO exists as a mixture of the crosslinked and non crosslinked isoforms, and previous studies of CDO have involved a heterogenous mixture of the two.
    [Show full text]
  • Plasma Methylation Profile RESOURCE GUIDE
    Plasma Methylation Profile RESOURCE GUIDE Science + Insight doctorsdata.com Methionine SAMe DNA SHMT THF RNA 5, 10 Methyltransferases MethyleneTHF Protein Thymidine DMG Lipids synthesis B12 BHMT SAH dUMP MTRR MTR TMG adenosine AHCY MTHFR Homocysteine 5 Methyl THF CBS Cystathionine Cysteine Sulte SUOX Sulfate Introduction The Plasma Methylation Profile is a functional assessment of the enzymes involved in methionine metabolism and the trans-sulfuration pathway (commonly called the “Methylation Pathway”). The genomics revolution has made it possible to assess genetic information stored in the DNA code. An awareness of single nucleotide polymorphisms (SNPs) has made genetic testing for certain SNPs part of diagnostic patient assessment. While the identification of SNPs in a patient’s genome is important, it is vital to remember that functional testing of enzymes should determine treatment decisions. There are many layers of translation between the genome and the enzyme. Enzyme function may be compromised not only by inheritance, but also by acquired epigenetic factors such as nutritional status, oxidative stress, autoimmunity or environmental exposures. There is mounting evidence that, especially within the folate and methylation pathways, multiple SNPs in multiple genes (haplotypes) may be necessary to alter metabolism or change health outcomes. Gastrointestinal functions may influence absorption, physiology, metabolism and immunity; nutrient maldigestion or malabsorption may inhibit normal enzyme functions, and may have greater effects on enzymes with SNPs. © 2016 Doctor’s Data, Inc. All rights reserved. doctorsdata.com Doctor’s Data, Inc. Plasma Methylation Enzyme and Nutrition Guide 2 Methionine High Methionine may be elevated for a variety of reasons. Several enzymes involved in the metabolism of methionine require magnesium and other nutritional cofactors.
    [Show full text]
  • The Taurine Biosynthetic Pathway of Microalgae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Center for Plant Plant Science Innovation, Center for Science Innovation 2015 The aT urine Biosynthetic Pathway of Microalgae Rahul Tevatia University of Nebraska-Lincoln, [email protected] James Allen University of Nebraska-Lincoln, [email protected] Deepak Rudrappa University of Nebraska-Lincoln Derrick White University of Nebraska-Lincoln, [email protected] Thomas E. Clemente University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/plantscifacpub Part of the Plant Biology Commons, Plant Breeding and Genetics Commons, and the Plant Pathology Commons Tevatia, Rahul; Allen, James; Rudrappa, Deepak; White, Derrick; Clemente, Thomas E.; Cerutti, Heriberto; Demirel, Yaşar; and Blum, Paul H., "The aT urine Biosynthetic Pathway of Microalgae" (2015). Faculty Publications from the Center for Plant Science Innovation. 166. http://digitalcommons.unl.edu/plantscifacpub/166 This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Rahul Tevatia, James Allen, Deepak Rudrappa, Derrick White, Thomas E. Clemente, Heriberto Cerutti, Yaşar Demirel, and Paul H. Blum This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/plantscifacpub/166 Published in Algal Research 9 (2015), pp. 21–26; doi: 10.1016/j.algal.2015.02.012 Copyright © 2015 Elsevier B.V.
    [Show full text]
  • The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection
    International Journal of Molecular Sciences Review The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection Rochelin Dalangin 1, Anna Kim 1 and Robert E. Campbell 1,2,* 1 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; [email protected] (R.D.); [email protected] (A.K.) 2 Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan * Correspondence: [email protected]; Tel.: +1-7804921849 Received: 29 July 2020; Accepted: 24 August 2020; Published: 27 August 2020 Abstract: Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics. Keywords: amino acids; neurotransmission; fluorescence; imaging; biosensors; neurotransmitters; indicators 1. Introduction Neurons communicate to each other by the release of chemicals stored in synaptic vesicles across specialized gaps known as synapses. These chemicals diffuse across the synapse and bind to their target receptors on adjacent neurons to modulate their physiological states.
    [Show full text]