Basement Membranes: Cell Scaffoldings and Signaling Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Basement Membranes: Cell Scaffoldings and Signaling Platforms Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Basement Membranes: Cell Scaffoldings and Signaling Platforms Peter D. Yurchenco Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 Correspondence: [email protected] Basement membranes are widely distributed extracellular matrices that coat the basal aspect of epithelial and endothelial cells and surround muscle, fat, and Schwann cells. These extra- cellular matrices, first expressed in early embryogenesis, are self-assembled on competent cell surfaces through binding interactions among laminins, type IV collagens, nidogens, and proteoglycans. They form stabilizing extensions of the plasma membrane that provide cell adhesion and that act as solid-phase agonists. Basement membranes play a role in tissue and organ morphogenesis and help maintain function in the adult. Mutations ad- versely affecting expression of the different structural components are associated with devel- opmental arrest at different stages as well as postnatal diseases of muscle, nerve, brain, eye, skin, vasculature, and kidney. he basement membrane (basal lamina)was ancient structures, likely appearing when or- Tfirst described in muscle as a “membran- ganized communities of animal cells first aceous sheath of the most exquisite delicacy” emerged. These matrices serve as an extension (Bowman 1840). Microscopists subsequently of the plasma membrane, protecting tissues identified basement membranes in nearly all from disruptive physical stresses, and provide tissues. In the late 1970s, the discovery of the an interactive interface between cell and sur- basement membrane-rich EHS tumor led to rounding environment that can mediate local the isolation of abundant quantities of laminin, and distant signals within and between these type IV collagen, nidogen (entactin), and perle- compartments. Such signals appear to be largely can, enabling elucidation of their biochemi- processed through integrins, growth factor cal and cell-interactive properties and opening interactions, and dystroglycan. Basement mem- a door to an understanding of structure and brane-dependent functions include the promo- function of basement membranes at a molecu- tion of strong epidermal/dermal attachment, lar level. stabilization of the skeletal muscle sarcolemma, Basement membranes are layered cell-ad- selectivity of glomerular filtration, and estab- herent extracellular matrices (ECMs) that form lishment of epithelial and glial cell polarization. part of tissue architecture, contributing both Assembly of a functionally active basement to embryonic differentiation and the mainte- membrane depends on the binding interac- nance of adult functions. They are evolutionarily tions among the large carbohydrate-modified Editors: Richard Hynes and Kenneth Yamada Additional Perspectives on Extracellular Matrix Biology available at www.cshperspectives.org Copyright # 2011 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a004911 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a004911 1 Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press P.D. Yurchenco proteins, each consisting of an array of dis- differential developmental and tissue-specific tinct domains with unique binding properties. expression patterns.1 These components, in turn, are organized into By electron microscopy of glutaraldehyde- higher ordered supramolecular assemblies that fixed and heavy-metal-impregnated thin sec- engage cell surface receptors in a developmen- tions, the basement membrane is typically tally and tissue-specific manner. In this review seen as consisting of an electron-dense layer models of structure will be related to those of (lamina densa) separated from the plasma function based on a consideration of morpho- membrane by an electron-lucent layer (lamina logical, biochemical, cell biological, develop- lucida). However, the significance of this dis- mental, and genetic information. tinct morphology was brought into question by the technique of rapid freeze-substitution in which a homogenous ultrastructure was observed (Chan et al. 1993; Chan and Inoue SUPRAMOLECULAR ARCHITECTURE 1994; Miosge 2001). A detailed study of Reich- Each basement membrane contains at least one ert’s membrane revealed a three-dimensional member of the heterotrimeric laminin family, branching network of fine filaments and cords one or two nidogens, the heparan sulfate pro- (Inoue et al. 1983). By ultrathin high-angle plat- teoglycans (HSPGs) perlecan and/or agrin, and inum/carbon shadowing, the supramolecular one or more of the variants of type IV collagens organization was seen to consist of a branching (Fig. 1). We recognize these components as ma- network of type IV collagen containing end- jor contributors to the formation of the basic to-end and lateral associations and a mesh of architectural scaffolding and array of interactive short interconnecting struts corresponding to ligands. The laminin and collagen isoforms the laminin polymer in which the combined possess differences in their assembly, receptor- laminin/collagen network “pore” size was on binding, and/or subsequent cross-linking, al- the order of 10 nm (Yurchenco and Ruben lowing variations in final structure, signaling, 1987; Yurchenco et al. 1992). and stability. Laminins, type IV collagens, perle- can, and agrin are large macromolecules rang- ing from 75 nm to 400 nm in greatest BASEMENT MEMBRANE SELF-ASSEMBLY length. In typical thin basement membranes AND RECEPTOR INTERACTIONS (50–100 nm thick), the basic components are likely organized into a single molecular layer Basement membranes have been deduced to with the long axes of laminin and collagen par- assemble (Fig. 2) through a multistep process allel to the surface. In thicker basement mem- that is substantially mass action-driven (self- branes, such as those of Reichert’s membrane, assembly) and that is initiated by the binding the renal glomerulus, lens capsule, and EHS of laminins to competent (i.e., laminin-bind- tumor matrix, the interior basement mem- ing) cell surfaces (Smyth et al. 1998; Li et al. brane molecules reside beyond the reach of 2002; Li et al. 2005b; McKee et al. 2007; McKee receptors and interact only through intercom- et al. 2009). The intercomponent binding inter- ponent architectural bonds. Collagens type actions and polymerizations of laminins and XVIII, XV, and VI are found at the basement type IV collagen that create a relevant scaffold membrane/stromal interface and are thought matrix were first identified and characterized to mediate their attachment. Additionally, fi- by a study of purified components in vitro. As- bronectin, usherin, bamacan, nephronectin, sembly on cells, however, has been found to be papilin, netrins, and other components can be found within basement membranes, adding 1The reader should be aware of a comprehensive mouse additional receptor-binding activities (e.g., E16.5 expression reference map of the different basement membrane components, generated by K. Sekiguchi and col- nephronectin) and/or modulating structure leagues, to be found at the website http://www.matrixome. (e.g., netrin-4). All of the components show com/bm. 2 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a004911 Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Basement Membranes facilitated by anchorage to select cell surfaces general, the laminins differ from each other that serves to increase the local surface concen- on the basis of short arm domain composition, tration of components, promoting the interac- a-subunit LG integrin- and dystroglycan- tions (Kalb and Engel 1991; Li et al. 2005b; binding affinities/specificities, and posttrans- McKee et al. 2007). This initial anchoring inter- lational proteolytic processing of amino- and action appears to occur primarily through the carboxy-terminal globular domains. The a- laminin LG domains (Figs. 1–3) that can bind subunits are largely responsible for cell surface to sulfated glycolipids, integrins, dystroglycan, adhesion and receptor interactions but also and heparan sulfates. Cell surface anchorage contribute to self-assembly. The b- and g- sub- then enables the accumulation of nidogen, units primarily play a structural role, mediating type IV collagen, perlecan, and agrin to the nas- polymerization and nidogen-binding but also cent laminin scaffold. Although nonlaminin serve to modulate receptor-binding. Laminins- components have the potential to bind directly 111 and 511 (a5b1g1), the first to be expressed to cell surface integrins and/or dystroglycan, in mammalian embryos, are essential for base- they appear to be unable to accumulate on the ment membrane assembly and early embryonic cell surface to any appreciable degree in the ab- morphogenesis (Smyth et al. 1999; Huang et al. sence of laminins. Cell control of assembly, bio- 2003; Miner et al. 2004; Urbano et al. 2009). The logical activity, and subsequent state can occur laminin a1 subunit was found to be required for through the regulation of component expres- assembly of the extraembryonic Reichert’s sion, receptor expression, receptor activation, membrane whereas formation of the basement site-specific cleavage of laminin domains to membrane of the embryonic plate required alter their interactions, enzymatic cross-linking, either the Lma1orLma5 subunit (Miner and turnover/degradation
Recommended publications
  • Differentiation of Recombinant Myoblasts In
    DIFFERENTIATION OF RECOMBINANT MYOBLASTS IN ALGINATE MICROCAPSULES By KELLY MACMILLAN BOWIE, B.Sc. A Thesis Submitted to the school of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree Master ofScience McMaster University 1997 © Copyright by Kelly MacMillan Bowie, June, 1997 MASTER OF SCIENCE MCMASTER UNIVERSITY 1997 Hamilton, Ontario TITLE: Differentiation of Recombinant Myoblasts in Alginate Microcapsules AUTHOR: Kelly MacMillan Bowie, B.Sc. (University of Western Ontario) SUPERVISOR: Dr. P.L. Chang EXAMINING COMMITTEE: Dr. M.A. Rudnicki Dr. C. Nurse NUMBER OF PAGES: xii,l75 11 ABSTRACT A cost effective approach to the delivery of therapeutic gene products in vivo is to immunoprotect genetically-engineered, universal, non-autologous cells in biocompatible microcapsules before implantation. Myoblasts may be an ideal cell type for encapsulation due to their inherent ability to differentiate into myotubes, thereby eliminating the problem of cell overgrowth within the capsular space. To evaluate the interaction between the differentiation program and the secretory activity of the myoblasts within the microcapsule environment, we transfected C2C 12 myoblasts to express human growth hormone and followed their expression of muscle differentiation markers, such as creatine phosphate kinase (CPK) protein and up-regulation of muscle-specific genes (ie. myosin light chains 2 & 1/3, Troponin I slow, Troponin T, myogenin and MyoD1). As the transfected myoblasts were induced to differentiate for up to two weeks, their myogenic index (i.e. the percentage of multinucleate myoblasts) increased from 0 to -50%. Concomitantly, up-regulation of differentiation marker RNA levels, and as much as a 23-fold increase in CPK activity, were observed.
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • Open Iyer PR__Thesis.Pdf
    The Pennsylvania State University The Graduate School Department of Biochemistry and Molecular Biology BIOCHEMICAL CHARACTERIZATION OF THE PROTEINS INVOLVED IN GLUCONACETOBACTER HANSENII CELLULOSE SYNTHESIS A Dissertation in Integrative Biosciences by Radhakrishnan Iyer Prashanti 2012 Radhakrishnan Iyer Prashanti Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2012 The dissertation of Radhakrishnan Iyer Prashanti was reviewed and approved* by the following: Ming Tien Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee B. Tracy Nixon Professor of Biochemistry and Molecular Biology Nicole R. Brown Associate Professor of Wood Chemistry Charles T. Anderson Assistant Professor of Biology Peter J Hudson Program Chair, Integrative Biosciences Director, The Huck Institutes of the Life Sciences * Signatures are on file in the Graduate School ii ABSTRACT Gluconacetobacter hansenii is a Gram-negative bacterium, considered as the model organism for studying the process of cellulose biogenesis. This is due to its unique ability to synthesize and secrete copious amounts of cellulose as an extracellular polysaccharide, in its growth medium. G. hansenii is therefore an ideal bacterium to study cellulose as a material as well as cellulose synthesis as a biological process. We have therefore employed this bacterium as our subject for our inquiry into the biochemistry of the process of cellulose synthesis. In this work, the main area of focus is towards understanding the bacterial cellulose synthesis and secretion complex, in terms of its component proteins, their structure, organization and their interactions. Two parallel approaches were used to understand and gain insights into the cellulose synthesis complex. One was to heterologously express and purify the proteins that are known to be involved in cellulose synthesis for structural studies or for generation of antibodies.
    [Show full text]
  • The Organization and Evolution of Biological Networks in Bacteria
    The Organization and Evolution of Biological Networks in Bacteria Elucidating Biological Pathways and Complexes Involved in Bacterial Survival and Environmental Adaptation by Cedoljub Bundalovic-Torma A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto © Copyright by Cedoljub Bundalovic-Torma 2018 ii The Organization and Evolution of Biological Networks in Bacteria: Systematic Exploration of Large-Scale Biological Networks in E. coli and Exopolysaccharide Biosynthetic Machineries. Cedoljub Bundalovic-Torma Doctor of Philosophy Department of Biochemistry University of Toronto 2018 Abstract Bacteria inhabit diverse environmental niches and employ various functional repertoires encoded in their genomes relevant for survival and adaptation. It has long been proposed that gene duplication plays an important role in bacterial adaptation, however systematic experimental study of the functional roles of duplicates in bacteria has been lacking. From decades of small- scale experimental work with the model bacterium, Escherichia coli, our view of the bacterial cell has expanded to encompass the concept of biological networks, a wiring diagram of the cell representing diverse functional associations of genes. To help define these complex functional relationships, large-scale genetic and protein interaction screens have been devised and applied to E. coli, providing datasets for deriving novel and biologically meaningful associations. In this work I present a study of gene duplication in the context of several large-scale biological networks. First (Chapter 2) I investigate two recently published E. coli genetic interaction (GI) networks, and find that duplicates are likely to contribute to increased robustness through epistatic buffering or integration in the context of biological pathways and protein complexes with broad biological roles1 and DNA damage and repair response pathways2.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Bcsa and Bcsb Form the Catalytically Active Core of Bacterial Cellulose Synthase Sufficient for in Vitro Cellulose Synthesis
    BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis Okako Omadjelaa, Adishesh Naraharia, Joanna Strumillob, Hugo Mélidac, Olga Mazurd, Vincent Bulonec, and Jochen Zimmera,1 aCenter for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908; bFaculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland; cDivision of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; and dDepartment of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 Edited by Chris R. Somerville, University of California, Berkeley, CA, and approved September 20, 2013 (received for review July 24, 2013) Cellulose is a linear extracellular polysaccharide. It is synthesized reaction, and the membrane-embedded part forms a TM pore in by membrane-embedded glycosyltransferases that processively close juxtaposition with the catalytic site, thereby allowing trans- polymerize UDP-activated glucose. Polymer synthesis is coupled to location of the nascent polysaccharide (2). membrane translocation through a channel formed by the cellu- Although most eukaryotic CesAs are believed to form supra- lose synthase. Although eukaryotic cellulose synthases function in molecular complexes that organize the secreted glucans into macromolecular complexes containing several different enzyme cable-like structures,
    [Show full text]
  • High-Throughput Metabolism-Induced Toxicity Assays
    HIGH-THROUGHPUT METABOLISM-INDUCED TOXICITY ASSAYS ON A 384-PILLAR PLATE SOO-YEON KANG Bachelor of Chemical and Biological Engineering Gachon University February 2016 Submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE IN CHEMICAL ENGINEERING at CLEVELAND STATE UNIVERSITY August 2018 We hereby approve the thesis for SOOYEON KANG Candidate for the Master of Science in Chemical Engineering degree for the Department of Chemical and Biomedical Engineering and CLEVELAND STATE UNIVERSITY’S College of Graduate Studies by Thesis Chairperson, Dr. Moo-Yeal Lee Chemical and Biomedical Engineering Department Date Thesis Committee Member, Dr. Chandrasekhar R. Kothapalli Chemical and Biomedical Engineering Department Date Thesis Committee Member, Dr. Geyou Ao Chemical and Biomedical Engineering Department Date Date of Defense: April 27, 2018 ACKNOWLEDGMENTS I would like to express my deep appreciation and indebtedness to countless individuals. First, I would like to mention my family. Being away from them is a toughest part but they are the ones who keep on encouraging me whenever I get knocked down. I would like to thank my research advisor, Dr. Moo-Yeal Lee, for the support and guidance that he provided me throughout my experience at Cleveland State University. I am grateful to my thesis committee members, Dr. Chandrasekhar R. Kothapalli and Dr. Geyou Ao for the comments and encouragement. I want to thank all my lab mates for their immense help, love and support. Special thanks to Dr. Kyeong-Nam Yu, Pranav Joshi, and Stephen Hong for all the moral support, inspiration and motivation. Their participation and assistance made the completion of this thesis possible.
    [Show full text]
  • Pharmaceutical Excipients and Drug Metabolism: a Mini-Review
    International Journal of Molecular Sciences Review Pharmaceutical Excipients and Drug Metabolism: A Mini-Review Rahul Patel, James Barker and Amr ElShaer * Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK; [email protected] (R.P.); [email protected] (J.B.) * Correspondence: [email protected]; Tel.: +44-(0)20-8417-7416 Received: 7 October 2020; Accepted: 20 October 2020; Published: 3 November 2020 Abstract: Conclusions from previously reported articles have revealed that many commonly used pharmaceutical excipients, known to be pharmacologically inert, show effects on drug transporters and/or metabolic enzymes. Thus, the pharmacokinetics (absorption, distribution, metabolism and elimination) of active pharmaceutical ingredients are possibly altered because of their transport and metabolism modulation from the incorporated excipients. The aim of this review is to present studies on the interaction of various commonly-used excipients on pre-systemic metabolism by CYP450 enzymes. Excipients such as surfactants, polymers, fatty acids and solvents are discussed. Based on all the reported outcomes, the most potent inhibitors were found to be surfactants and the least effective were organic solvents. However, there are many factors that can influence the inhibition of CYP450, for instance type of excipient, concentration of excipient, type of CYP450 isoenzyme, incubation condition, etc. Such evidence will be very useful in dosage form design, so that the right formulation can be designed to maximize drug bioavailability, especially for poorly bioavailable drugs. Keywords: Pharmaceutical excipients; metabolism; cytochrome P450 1. Introduction The most popular route for drug delivery is oral administration because of pain avoidance, ease of ingestion, patient compliance and versatility of drug candidates.
    [Show full text]
  • Oil 96 20061219 150649
    0. Schamburg · 0. Stephan (Eds.) GBF- Gesellschaft für Biotechnologische Forschung Enzyme Handbock Class 2.3.2 - 2.4 Transferases 12 Springer Index (Aiphabetical order of Enzyme names) EC-No. Name EC-No. Name 2.4.1.60 Abequosyltransferase 2.4.99.7 (alpha-N-Acetylneuraminyl- 2.4.99 .3 alpha-N-Acetylgalactos­ 2,3-beta-galactosyl-1 ,3)­ aminide alpha-2,6-sialyl­ N-acetylgalactosaminide transferase alpha-2,6-sialyltransferase 2.4.1.147 Acetylgalactosaminyl-ü-gly• 2.4.1.92 (N-Acetylneuraminyl)-galac­ cosyl-glycoprotein beta- tosylglucosylceramide 1,3-N-acetylglucosaminyl­ N-acetylgalactosaminyl­ transferase transferase 2.4.1.148 Acetylgalactosaminyl-0-gly­ 2.4.1.165 N-Acetylneuraminylgalacto­ cosyl-glycoprotein beta- sylglucosylceramide beta- 1,6-N-acetylglucosaminyl 1,4-N-acetylgalactosaminyl­ transferase transferase 2.4.1.141 N-Acetylglucosaminyl­ 2.4.1.47 N-Acylsphingosine galacto­ diphosphodolichol N-ace­ syltransferase tylglucosaminyltransferase 2.4.2.7 Adenine phosphoribosyl­ 2.4.1.187 N-Acetylglucosaminyl­ transferase diphosphoundecaprenol 2.3.2.9 Agaritine gamma-glutamyl­ N-acetyl-beta-0-mannos­ transferase aminyltransferase 2.3.2.14 0-Aianine gamma-glutamyl­ 2.4.1.188 N-Acetylglucosaminyl­ transferase diphosphoundecaprenol 2.3.2.11 Alanylphosphatidylglycerol glucosyltransferase synthase 2.4.1.38 beta-N-Acetylglucosaminyl­ 2.4.1.162 Aldose beta-D-fructosyl­ glycopeptide beta-1 ,4-ga­ transferase lactosyltransferase 2.4.1.33 Alginate synthase 2.4.1.124 N-Acetyllactosamine 2.4.1.103 Alizarin 2-beta-glucosyl­ 3-alpha-galactosyltrans­ transferase ferase 2. 4.1.140 Alternansucrase 2.4.1.90 N-Acetyllactosamine syn­ 2.4.2.14 Amidophosphoribosyl­ thase transferase 2.4.1.149 N-Acetyllactosaminide beta- 2.4.1.4 Amylosucrase 1, 3-N-acetylg lucosaminyl­ 2.4.1.
    [Show full text]
  • A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense Mechanisms Abdulkareem O
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2015 Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense Mechanisms Abdulkareem O. Odesina East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons, Molecular Biology Commons, and the Plant Biology Commons Recommended Citation Odesina, Abdulkareem O., "Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense Mechanisms" (2015). Electronic Theses and Dissertations. Paper 2598. https://dc.etsu.edu/etd/2598 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense Mechanisms A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirement for the degree Master of Science in Biology by Abdulkareem Olakunle Odesina December 2015 Dhirendra Kumar, Chair, PhD Cecilia A. McIntosh, PhD Jonathan Peterson, PhD Keywords: Nicotiana tabacum, SA, SABP2, SBIP68, Glucosyltransferase, Pichia pastoris, E. coli ABSTRACT Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense Mechanisms by Abdulkareem Olakunle Odesina Plant secondary metabolites are essential for normal growth and development in plants ultimately affecting crop yield.
    [Show full text]