Bcsa and Bcsb Form the Catalytically Active Core of Bacterial Cellulose Synthase Sufficient for in Vitro Cellulose Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Embracing Bacterial Cellulose As a Catalyst for Sustainable Fashion
Running head: BACTERIAL CELLULOSE 1 Embracing Bacterial Cellulose as a Catalyst for Sustainable Fashion Luis Quijano A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Fall 2017 BACTERIAL CELLULOSE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Debbie Benoit, D.Min. Thesis Chair ______________________________ Randall Hubbard, Ph.D. Committee Member ______________________________ Matalie Howard, M.S. Committee Member ______________________________ David E. Schweitzer, Ph.D. Assistant Honors Director ______________________________ Date BACTERIAL CELLULOSE 3 Abstract Bacterial cellulose is a leather-like material produced during the production of Kombucha as a pellicle of bacterial cellulose (SCOBY) using Kombucha SCOBY, water, sugar, and green tea. Through an examination of the bacteria that produces the cellulose pellicle of the interface of the media and the air, currently named Komagataeibacter xylinus, an investigation of the growing process of bacterial cellulose and its uses, an analysis of bacterial cellulose’s properties, and a discussion of its prospects, one can fully grasp bacterial cellulose’s potential in becoming a catalyst for sustainable fashion. By laying the groundwork for further research to be conducted in bacterial cellulose’s applications as a textile, further commercialization of bacterial cellulose may become a practical reality. Keywords: Acetobacter xylinum, alternative textile, bacterial cellulose, fashion, Komagateibacter xylinus, sustainability BACTERIAL CELLULOSE 4 Embracing Bacterial Cellulose as a Catalyst for Sustainable Fashion Introduction One moment the fashionista is “in”, while the next day the fashionista is “out”. The fashion industry is typically known for its ever-changing trends, styles, and outfits. -
Differentiation of Recombinant Myoblasts In
DIFFERENTIATION OF RECOMBINANT MYOBLASTS IN ALGINATE MICROCAPSULES By KELLY MACMILLAN BOWIE, B.Sc. A Thesis Submitted to the school of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree Master ofScience McMaster University 1997 © Copyright by Kelly MacMillan Bowie, June, 1997 MASTER OF SCIENCE MCMASTER UNIVERSITY 1997 Hamilton, Ontario TITLE: Differentiation of Recombinant Myoblasts in Alginate Microcapsules AUTHOR: Kelly MacMillan Bowie, B.Sc. (University of Western Ontario) SUPERVISOR: Dr. P.L. Chang EXAMINING COMMITTEE: Dr. M.A. Rudnicki Dr. C. Nurse NUMBER OF PAGES: xii,l75 11 ABSTRACT A cost effective approach to the delivery of therapeutic gene products in vivo is to immunoprotect genetically-engineered, universal, non-autologous cells in biocompatible microcapsules before implantation. Myoblasts may be an ideal cell type for encapsulation due to their inherent ability to differentiate into myotubes, thereby eliminating the problem of cell overgrowth within the capsular space. To evaluate the interaction between the differentiation program and the secretory activity of the myoblasts within the microcapsule environment, we transfected C2C 12 myoblasts to express human growth hormone and followed their expression of muscle differentiation markers, such as creatine phosphate kinase (CPK) protein and up-regulation of muscle-specific genes (ie. myosin light chains 2 & 1/3, Troponin I slow, Troponin T, myogenin and MyoD1). As the transfected myoblasts were induced to differentiate for up to two weeks, their myogenic index (i.e. the percentage of multinucleate myoblasts) increased from 0 to -50%. Concomitantly, up-regulation of differentiation marker RNA levels, and as much as a 23-fold increase in CPK activity, were observed. -
Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems
Metabolites 2014, 4, 36-52; doi:10.3390/metabo4010036 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Article Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems Akira Yamazawa 1,2, Tomohiro Iikura 2, Yusuke Morioka 2, Amiu Shino 3, Yoshiyuki Ogata 4, Yasuhiro Date 2,3 and Jun Kikuchi 2,3,5,6,* 1 Research Planning and Management Group, Kajima Technical Research Institute, Kajima Corporation, 2-19-1 Tobitakyu, Chofu, Tokyo 182-0036, Japan; E-Mail: [email protected] 2 Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: [email protected] (T.I.); [email protected] (Y.M.); [email protected] (Y.D.) 3 RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mail: [email protected] (A.S.) 4 Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; E-Mail: [email protected] 5 Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan 6 RIKEN Biomass Engineering Program, 2-1 Hirosawa, Wako 351-0198, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-45-503-9439; Fax: +81-45-503-9489. Received: 13 September 2013; in revised form: 18 December 2013 / Accepted: 20 December 2013 / Published: 31 December 2013 Abstract: Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. -
Bacterial Cellulose - Properties and Its Potential Application (Bakteria Selulosa - Sifat Dan Keupayaan Aplikasi)
Sains Malaysiana 50(2)(2021): 493-505 http://dx.doi.org/10.17576/jsm-2021-5002-20 Bacterial Cellulose - Properties and Its Potential Application (Bakteria Selulosa - Sifat dan Keupayaan Aplikasi) IZABELA BETLEJ, SARANI ZAKARIA, KRZYSZTOF J. KRAJEWSKI & PIOTR BORUSZEWSKI* ABSTRACT This review paper is related to the utilization on bacterial cellulose in many applications. The polymer produced from bacterial cellulose possessed a very good physical and mechanical properties, such as high tensile strength, elasticity, absorbency. The polymer from bacterial cellulose has a significantly higher degree of polymerization and crystallinity compared to those derived from plant. The collection of selected literature review shown that bacterial cellulose produced are in the form pure cellulose and can be used in many of applications. These include application in various industries and sectors of the economy, from medicine to paper or electronic industry. Keywords: Acetobacter xylinum; biocomposites; culturing; properties of bacterial cellulose ABSTRAK Ulasan kepustakaan ini adalah mengenai bakteria selulosa yang digunakan dalam banyak aplikasi. Bahan polimer yang terhasil daripada bakteria selulosa mempunyai sifat fizikal dan mekanikal yang sangat baik seperti sifat kekuatan regangan, kelenturan dan serapan. Bahan polimer terhasil daripada selulosa bakteria mempunyai darjah pempolimeran dan kehabluran yang tinggi berbanding daripada sumber tumbuhan. Suntingan kajian daripada beberapa koleksi ulasan kepustakaan menunjukkan bakteria selulosa terhasil adalah selulosa tulen yang boleh digunakan untuk banyak kegunaan. Antaranya adalah untuk pelbagai industri dan sektor ekonomi seperti perubatan atau industri elektronik. Kata kunci: Acetobacter xylinum; komposit-bio; pengkulturan; sifat bakteria selulosa INTRODUCTION Yamada et al. 2012). The first reports on the synthesis of Cellulose is the most common polymer found in nature. -
1/05661 1 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC. -
Open Iyer PR__Thesis.Pdf
The Pennsylvania State University The Graduate School Department of Biochemistry and Molecular Biology BIOCHEMICAL CHARACTERIZATION OF THE PROTEINS INVOLVED IN GLUCONACETOBACTER HANSENII CELLULOSE SYNTHESIS A Dissertation in Integrative Biosciences by Radhakrishnan Iyer Prashanti 2012 Radhakrishnan Iyer Prashanti Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2012 The dissertation of Radhakrishnan Iyer Prashanti was reviewed and approved* by the following: Ming Tien Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee B. Tracy Nixon Professor of Biochemistry and Molecular Biology Nicole R. Brown Associate Professor of Wood Chemistry Charles T. Anderson Assistant Professor of Biology Peter J Hudson Program Chair, Integrative Biosciences Director, The Huck Institutes of the Life Sciences * Signatures are on file in the Graduate School ii ABSTRACT Gluconacetobacter hansenii is a Gram-negative bacterium, considered as the model organism for studying the process of cellulose biogenesis. This is due to its unique ability to synthesize and secrete copious amounts of cellulose as an extracellular polysaccharide, in its growth medium. G. hansenii is therefore an ideal bacterium to study cellulose as a material as well as cellulose synthesis as a biological process. We have therefore employed this bacterium as our subject for our inquiry into the biochemistry of the process of cellulose synthesis. In this work, the main area of focus is towards understanding the bacterial cellulose synthesis and secretion complex, in terms of its component proteins, their structure, organization and their interactions. Two parallel approaches were used to understand and gain insights into the cellulose synthesis complex. One was to heterologously express and purify the proteins that are known to be involved in cellulose synthesis for structural studies or for generation of antibodies. -
Characterization of the Bacterial Cellulose Dissolved on Dimethylacetamide/Lithium Chloride
CHARACTERIZATION OF THE BACTERIAL CELLULOSE DISSOLVED ON DIMETHYLACETAMIDE/LITHIUM CHLORIDE Gláucia de Marco Lima 1, Maria Rita Sierakowski 2, Paula C. S. Faria-Tischer 2, Cesar. A. Tischer 2* 1PMCF-Mestrado em Ciências Farmacêuticas, UNIVALI, ZIP 88302-202 - Itajaí-SC, Brazil 2BIOPOL-Biopolymers Lab. Biopolímeros ZIP 81531-990, PoBox 19081 - Curitiba-PR, Brazil – [email protected] Palavras-chave : Celulose bacteriana, Acetobacter xylinum, Dimetilacetamida, cloreto de lítio, Ressonância Magnética Nuclear,difração de raio-X. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum , and is identical to the plant, but free of lignin and hemicellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 °C, 150 °C or 170 °C). The product of dissolved cellulose was observed with 13 C-nmr and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel . The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. Keywords : Bacterial Cellulose, Acetobacter xylinum, Dimethylacetamide, lithium chloride, Nuclear Magnetic Resonance, X-ray diffraction. Introduction Bacterial cellulose is a homo-polysaccharide formed for glucose molecules with β-(1-4) linkages 1 that can be produced with different substrates and acquire the format of the recipient that contains it 2. -
The Organization and Evolution of Biological Networks in Bacteria
The Organization and Evolution of Biological Networks in Bacteria Elucidating Biological Pathways and Complexes Involved in Bacterial Survival and Environmental Adaptation by Cedoljub Bundalovic-Torma A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto © Copyright by Cedoljub Bundalovic-Torma 2018 ii The Organization and Evolution of Biological Networks in Bacteria: Systematic Exploration of Large-Scale Biological Networks in E. coli and Exopolysaccharide Biosynthetic Machineries. Cedoljub Bundalovic-Torma Doctor of Philosophy Department of Biochemistry University of Toronto 2018 Abstract Bacteria inhabit diverse environmental niches and employ various functional repertoires encoded in their genomes relevant for survival and adaptation. It has long been proposed that gene duplication plays an important role in bacterial adaptation, however systematic experimental study of the functional roles of duplicates in bacteria has been lacking. From decades of small- scale experimental work with the model bacterium, Escherichia coli, our view of the bacterial cell has expanded to encompass the concept of biological networks, a wiring diagram of the cell representing diverse functional associations of genes. To help define these complex functional relationships, large-scale genetic and protein interaction screens have been devised and applied to E. coli, providing datasets for deriving novel and biologically meaningful associations. In this work I present a study of gene duplication in the context of several large-scale biological networks. First (Chapter 2) I investigate two recently published E. coli genetic interaction (GI) networks, and find that duplicates are likely to contribute to increased robustness through epistatic buffering or integration in the context of biological pathways and protein complexes with broad biological roles1 and DNA damage and repair response pathways2. -
Bacterial Cellulose: a Versatile Biopolymer for Wound Dressing Applications
bs_bs_banner Minireview Bacterial cellulose: a versatile biopolymer for wound dressing applications Raquel Portela,1 Catarina R. Leal,2,3 Pedro L. acquire antibacterial response and possible local Almeida2,3,**† and Rita G. Sobral1,*† drug delivery features. Due to its intrinsic versatility, 1Laboratory of Molecular Microbiology of Bacterial BC is the perfect example of a biotechnological Pathogens, UCIBIO@REQUIMTE, Departamento de response to a clinical problem. In this review, we Ciencias^ da Vida, Faculdade de Ciencias^ e Tecnologia, assess the BC main features and emphasis is given Universidade Nova de Lisboa, 2829-516 Caparica, to a specific biomedical application: wound dress- Portugal. ings. The production process and the physical– 2Area Departamental de Fısica, ISEL - Instituto Superior chemical properties that entitle this material to be de Engenharia de Lisboa, Instituto Politecnico de used as wound dressing namely for burn healing are Lisboa, Rua Conselheiro Emıdio Navarro 1, P-1959-007 highlighted. An overview of the most common BC Lisboa, Portugal. composites and their enhanced properties, in partic- 3CENIMAT/I3N, Departamento de Ciencia^ dos Materiais, ular physical and biological, is provided, including Faculdade Ciencias^ e Tecnologia, Universidade Nova de the different production processes. A particular Lisboa, 2829-516 Caparica, Portugal. focus is given to the biochemistry and genetic manipulation of BC. A summary of the current mar- keted BC-based wound dressing products is pre- Summary sented, and finally, future perspectives for the usage of BC as wound dressing are foreseen. Although several therapeutic approaches are avail- able for wound and burn treatment and much pro- gress has been made in this area, room for Introduction improvement still exists, driven by the urgent need Cellulose is the most abundant naturally occurring poly- of better strategies to accelerate wound healing and mer obtained from renewable sources. -
Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall
Article Cite This: Biomacromolecules 2018, 19, 1485−1497 pubs.acs.org/Biomac Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using 1H Polarization Transfer Solid-State NMR † † § † ∥ ‡ † Pyae Phyo, Tuo Wang, , Yu Yang, , Hugh O’Neill, and Mei Hong*, † Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States ‡ Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States *S Supporting Information ABSTRACT: In contrast to the well-studied crystalline cellulose of microbial and animal origins, cellulose in plant cell walls is disordered due to its interactions with matrix polysaccharides. Plant cell wall (PCW) is an undisputed source of sustainable global energy; therefore, it is important to determine the molecular structure of PCW cellulose. The most reactive component of cellulose is the exocyclic hydroxymethyl group: when it adopts the tg conformation, it stabilizes intrachain and interchain hydrogen bonding, while gt and gg conformations destabilize the hydrogen-bonding network. So far, information about the hydroxymethyl conformation in cellulose has been exclusively obtained from 13C chemical shifts of monosaccharides and oligosaccharides, which do not reflect the environment of cellulose in plant cell walls. Here, we use solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy to measure the hydroxymethyl torsion angle of cellulose in two model plants, by detecting distance-dependent polarization transfer between H4 and H6 protons in 2D 13C−13C correlation spectra. We show that the interior crystalline portion of cellulose microfibrils in Brachypodium and Arabidopsis cell walls exhibits H4−H6 polarization transfer curves that are indicative of a tg conformation, whereas surface cellulose chains exhibit slower H4−H6 polarization transfer that is best fit to the gt conformation. -
Production of Cellulose and Profile Metabolites by Fermentation Of
1 Biological and Applied Sciences Vol.61: e18160696, 2018 BRAZILIAN ARCHIVES OF http://dx.doi.org/10.190/1678-4324-2018160696 ISSN 1678-4324 Online Edition BIOLOGY AND TECHNOLOGY A N I N T E R N A T I O N A L J O U R N A L Production of Cellulose and Profile Metabolites by Fermentation of Glycerol by Gluconacetobacter Xylinus 1 1 1* Francielle Lina Vidotto , Geovana Piveta Ribeiro , Cesar Augusto Tischer . 1 Universidade Estadual de Londrina – UEL – Departamento de Bioquímica e Biotecnologia – CCE, Londrina, Paraná, Brasil. ABSTRACT Because of the widespread occurrence of cellulose in nature, many organisms use glycerol as a source of carbon and energy, so these organisms have drawn attention to the potential use of glycerol bioconversion. The bacteria Gluconacetobacter xylinus, a strictly aerobic strain that performing incomplete oxidation of various sugars and alcohols to cellulose biosynthesis. For this reason, we modify the Hestrim-Schram medium, associating glycerol, glucose and sucrose varying their concentration. The fermentations were performed statically at a temperature of 28˚C for a period of 10 days. The pH, membrane formation, crystallinity and the production of some metabolites of the 4 th, 7th and 10 th days was evaluated. The results showed a higher yield of membrane in the medium containing glucose, gly 1 + glu2 on 10 fermentation of 3.5 g %. Through solid -state NMR gave the crystallinity of the membranes, where there was a clear trend toward higher crystallinity membranes with 7 days of fermentation. Metabolic products found in the media by analysis of NMR spectroscopy in liquid were similar, especially for the production of alanine and lactate that were present in all media. -
Ep 1 117 822 B1
Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.