<<

Journal of Earth Science, Vol. 25, No. 1, p. 45–63, February 2014 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-014-0399-5

Radiolarian and Planktic Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation, Northern

M Ben Fadhel* 1, 2, T Zouaghi2, A Amri2, M Ben Youssef 2 1. Département de Géologie, Faculté des Sciences de -Campus Universitaire Sidi Ahmed Zarrouk–2112, Université de Gafsa, Tunisia 2. Département des Géoressources, CERTE–Technopole de Borj Cédria, PB 174 1164, Hammam E Chatt, Tunisia

ABSTRACT: The lower part of Fahdene Formation outcropping in northeastern Tunisia is repre- sented by pelagic sequences and characterized by an important siliciclastic fraction that includes ra- diolarian and organic-rich beds of Allam Member. Litho-biostratigraphic analysis based on planktic foraminifera and shows that deposition of organic-rich beds of Allam Member is confined to the Microhedbergella rischi Zone through the lower part of Ticinella primula Zone. Age diagnostic radiolaria recovered from these beds has been identified to constrain a direct age of black shale depo- sition. The assemblages can be correlated with the radiolarian biochronozone U.A.10–11 indicating an Early Albian to early Middle Albian in age. Radiolarian assemblages composed of species characteris- tic of U.A.10 biochronozone (A. montisserei, D. gracilis) are associated with radiolarian taxa belonging to Costata Zone (U.A.9 Pseudoeucyrtis hanni and Thanarla pseudodecora), which can be correlated with Dercourt Member in the Ionian Zone and Paquier level of the Vocontian Basin (southeast of France). Biostratigraphic and abundance curves analysis has demonstrated significant diversification of cryptocephalic Nassellaria and Archaeodictyomitrae, probably adapted to eutrophic conditions that characterized the Aptian-Albian transition. Ecological conditions may have governed the stratigraphic range of many cosmopolitan taxa (i.e., Pseudodictyomitrae lodogaensis) compared with stratigraphic distributions schemes reported from other domains. The timing of black shales deposition was dia- chronic due to local geodynamic conditions and upwelling currents distribution. The Allam black shales are correlative with the oceanic anoxic event OAE1b which is characterized by the widespread of supraregionnally organic-rich beds in the Mediterranean Tethys basins across the Aptian-Albian transition. KEY WORDS: northeastern Tunisia, Albian, Allam Member, black shale, radiolaria, planktic fo- raminifera.

1 INTRODUCTION and implications of orbital forcing (Heldt et al., 2010; Fiet et al., The Aptian-Albian transition is a “hinge” period during 2001). which subsequent sedimentation reflects global transgression Radiolarians were mostly used to calibrate the ophiolitic (Hardenbol et al., 1998) and orogenic events related to the “Aus- sutures age (O’Dogherty et al., 2006; Babazadeh and de Wever, trian” tectonic phase (Chihaoui et al., 2010; Dall’Agnolo, 2000). 2004; Beurrier et al., 1987), their occurrence in the Mediterra- Most debates center around its stratigraphic calibration and sev- nean pelagic sequences of Mid-Cretaceous age aroused the in- eral studies have discussed the ammonite biozonations (Chihaoui terest of micropaleontologists to use them as a biostratigraphic et al., 2010; Hancock, 2001; Kennedy et al., 2000), biological tool for large scale correlation and paleogeographic reconstruc- events on marine biota including phases of speciation and tions in addition to planktic foraminifera (O’Dogherty et al., planktic foraminifera turnover (Huber and Leckie, 2011) 2010, 2009; Danelian et al., 2007; Bak, 2004, 1999, 1995; Erba- cher, 1998; O’Dogherty, 1994). *Corresponding author: [email protected] The Early Albian pelagic sequences of western Tethyan © China University of Geosciences and Springer-Verlag Berlin margins include discrete organic-rich beds yielding diagnostic Heidelberg 2014 radiolarian microfauna (Danelian et al., 2007; Erbacher and Thurow, 1997). Previous biostratigraphic works on Aptian- Manuscript received July 23, 2012. Albian transition of north Central Tunisia focused on ostracods Manuscript accepted December 15, 2012. (Zghal et al., 1997; Khayati-Ammar, 1996; Bismuth et al., 1981),

Ben Fadhel, M., Zouaghi, T., Amri, A., et al., 2014. Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation, Northern Tunisia. Journal of Earth Science, 25(1): 45–63, doi:10.1007/s12583-014-0399-5 46 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef ammonites (Chihaoui et al., 2010; Lehmann et al., 2009; Memmi, 2004). 1999) and planktic foraminifera (Ben Haj Ali, 2005). These au- The Cretaceous sedimentation was, under the control of thors have discussed the deposition age of Late Aptian Serj syn-sedimentary faults trending 140ºN–160ºN reflected by cha- and/or Hameima Formation and Early Albian Lower Fahdene otic and gravitational deposits (Saadi, 1991). Formation, and concluded that Lower to Middle Albian pelagic Early Cretaceous successions show northward, reduced successions are diachronic and affected by hiatuses. In addition, thickness and affected by hiatus and extreme condensations in some authors stated that Lower to Midlle Albian pelagic succes- Hammam (Saadi, 1990). The motion of a corridor trending sions of northeastern Tunisia can’t be differentiated due to poor north-south by 140ºN–160ºN faults has led to the fragmentation preservation of planktic foraminifera (Jauzein, 1967). of the seafloor in the lozenge-shaped basin (Saadi and Duee, So far, there are only few studies on Early Albian radiolaria. 1991). During the Valanginian–Barremian time span, these ba- The first dating attempts in the Tunisian realm using radiolarian sins were supplied by siliciclastic deposits while condensed se- assemblages were focused on Jurassic “” of the Tuni- dimentation occupied uplifted horsts (Saadi et al., 1994; Biely et sian Ridge (Dorsale “Tunisienne”) (Boughdiri et al., 2007; Cor- al., 1973). dey et al., 2005). More recently, Ben Fadhel et al. (2010) and The Ragoubet Lahneche anticline (Fig. 1c) is located west- Soua et al. (2006) discussed the paleoenvironmental significance ward of Ain Slim Section, 20 km far from the Teboursouk Vil- respectively of Late Albian and Cenomanian-Turonian lage. The structure is a part of the Jebel Goraa structure, an radiolarian-rich beds of northern Tunisia. NE-SW roosted syncline. The NW flank is cross cut by a Triassic Here we present integrated biostratigraphic analysis of ra- lens separating the Neogene from Cretaceous successions. diolarian and planktic foraminiferal assemblages from Allam Southward, Aptian and Albian deposits outcropping in western Member in northern Tunisia outcropping in Jebel Garci, Ain border of Ragoubet Lahneche structure are pierced by the Triassic Slim and Jebel Ragoubet Lahnèche sections. salt extrusion. The faults bordering the western flank of Jebel The aim of this article is also to present: (1) new documen- Goraa structure are responsible for a normal downthrow of Cre- tation of radiolarian species extracted from organic-rich beds taceous successions which were overlain by quaternary alluvium which is the first attempt of Early Albian successions dating in of Oued Tessa and Arkou rivers (Hammami, 1999). northeastern Tunisia; (2) an integrated biostratigraphy using The first stratigraphic nomenclature of Fahdene Formation planktic foraminifera and radiolarian of organic-rich beds of Al- was proposed by Burollet (1956). That author subdivided the lam Member; (3) constraining the timing of black shales deposi- Fahdene Formation into five members: (1) The Lower Shale tion and correlation with equivalents black shales recorded in the Member, composed of dark shale and marls, including an Mediterranean Tethys basins. ammonite-rich horizon which Burollet et al. (1983) attributed it to the Latest Aptian; (2) the Allam Limestone Member, com- 2 GEOLOGICAL SETTING AND PREVIOUS WORKS posed of black massive limestone and dark shale attributed to the The studied sections are located in northeastern Tunisia, and Middle Albian; (3) the Middle Shale Member, which is com- belong to two different structural domains. The section of Ain posed of black shale and marl, attributed to the Late Albian; (4) Slim-Zebbas (Fig. 1a) is bordering the “salt-glacier” extrusion of the Mouelha Limestone Member, composed of black, laminated Bir Lafou (Ben Chelbi et al., 2006) located in Bir M’Cherga area and bituminous limestone bed of Late Albian age; (5) the Upper which belongs to the northeastern part of the Dome belt (Vila et Shale Member, composed of black shales embedding some marly al., 1996; Perthuisot, 1978). The area is characterized by intervals of Vraconian age (Uppermost Albian). NNE-SSW-trending anticlines dominated by the Triassic struc- Then Bismuth (1973) established a biostratigraphic frame- ture of Jebel Aouinet. It is bordered to the southeast by the Zag- work for the Aptian-Albian transition based on ostracod fauna. houan thrust and to the north by the prolongation of the “Té- Saadi (1991) discussed the biostratigraphic framework of Jebel boursouk suture” (Fig. 1). Garci Section based on planktic and benthic foraminifera as well The Triassic of Jebel Aouinet anticline consists of “Ger- as faunal content of reefal limestones of Serj Formation. She as- manic” facies (anhydrites, dolomites and cargneules) and shows signed the black shales of Lower Fahdène Formation to Early– in its eastern slope, evaporites lenses, interstratified within Ap- Midlle Albian age and the hardground surface outlining the ree- tian to Early Albian shales (Ben Chelbi et al., 2006). fal limestone bed as an unconformity within the Aptian-Albian Early Cretaceous outcrops in Jebel Zebbas located northeast boundary. of Jebel Aouinet, consist of Barremian to Late Aptian pelagic Later, Robaszynski et al. (2008, 1994) proposed a detailed successions of gray clay and quartzite beds which yield Puzosia biostratigraphic and sedimentological analysis of the Fahdène getulina, Ptuchoceras laeve, Phylloceras winckleri ammonites Formation based on planktic foraminifera and ammonites and and belemnite fragments (Jauzein, 1967). The Albian sequences described the microfossil distribution within the Albian- consist of laminated limestone beds and organic-rich black marls Cenomanian boundary. including pyrite nodules (Talbi, 1991) More recently, biostratigraphic studies were focused mainly The Fadeloun-Garci-Mdeker structure (Fig. 1b) is com- on the lower part of Fahdene Formation which outlined the posed of three anticlines, trending north-south and is considered Aptian-Albian transition, based mainly on ammonite (Chihaoui as the northern prolongation of the N-S axis (Saadi, 1990). The et al., 2010; Memmi, 1999) or using planktic foraminifera for age anticlines are separated from the Atlas domain by the calibration of the “interstatified salt glaciers” outcropping in Ra- thrust, which its northeastern part becomes south-verging, com- goubet Lahnéche and Fej Lahdoum areas (Ghanmi et al., 2001; monly defined by the Chérichira-Kondar thrust (Khomsi et al., Vila et al., 1996, 1994).

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 47

6.

13.

unit;

6. Lower

.

. .

.

.

.

...

.

.

1

3

5

8

7

9

2

6

4

.

.

...

11

10

.

...

.

...

.

...

...

11. fault; RAG.

.

...

.

5. Senonian;

.

...

.

...

...

.

...

...

.

... . Arkou Oued

...

...

.

.

.

...

...

.

...

.

.

.

...

.

...

...

.

.

.

...

.

...

.

.

.

.

.

.

...

.

.

.

.

.

4. Mid Albian–Upper

.

12. Upper Eocene;

.

.

.

(1b)

.

.

.

.

750 m 750

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

unit; 4. sub-Numidian

.

.

.

.

.

.

..

.

.

.

. .

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

...

.

...

.

.

.

.

Quaternary;

.

.

.

...

...

.

.

.

.

...

. .

.

.

.

.

...

.

.

...

...

.

.

...

.

.

.

.

.

.

.

...

...

.

.

.

...

...

.

...

.

.

...

.

.

.

...

.

...

.

...

...

.

.

.

.

.

...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

...

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

(Lower Albian);

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

Jebel

.

...

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.

.

.

1986

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

10. ancient

.

.

.

..

.

.

.

.

.

.

.

5. Mid to Upper Cenomanian;

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

...

.

...

Ragoubet Lahnech Ragoubet

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

...

.

.

.

.

.

.

.

.

.

.

.

.

B

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. bed; 11. Lower Eocene;

.

.

...

...

.

...

.

.

.

.

.

.

.

.

.

...

...

A

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

. ...

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

...

.

.

alternation

...

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

...

.

.

.

.

.

...

.

.

.

.

.

.

...

.

...

.

.

.

.

...

...

...

.

...

.

.

...

.

...

.

.

.

...

.

...

.

.

...

.

.

.

.

.

...

.

.

...

...

.

...

...

...

.

.

.

.

.

...

.

...

.

GA

.

RAG

.

...

.

...

...

.

.

.

...

...

.

.

.

...

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

. . .

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...

.

.

Jebel Goraa Jebel (western flank) (western

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

...

.

.

.

.

.

...

.

.

.

.

......

...

.

...

.

.

.

.

...

.

N ...

.

.

...

...

.

...

.

...

...

.

axe; 2. Triassic; 3. Numidian

...

.

...

.

...

.

...

.

.

...

...

.

.

.

...

.

1. Triassic; 2. Barremian; 3. Aptian;

.

.

. .

.

...

...

.

Saadi, 1991 Meddeb,

.

.

...

...

4. Upper Albian;

.

.

.

...

.

.

F1

entiated Quaternary;

10. K-T transition

6

5

2

1

4

3

8

7

...

...

after ; ). 1.Aptian marls and sandstone;

1 km

...

...

4. marl/limestone

...

Lahneche.

...

...

...

...

...

...

...

...

...

...

N

...

...... Oued Arkou

...

...

15

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

(1c)

...

...

...

...

0

...

.

..

et al, 1999). 1. Anticline

14

...

.

...

..

...

..

... Mediterreanean Sea Mediterreanean ..

.

...

uronian; 9. undiffer

N

...

.. Lybia ..

.

.

...

...

.

13

...

.

...

..

.

..

9. Upper Maestrichtian;

...

.

.

.

100 km 100

...

.

...

.

.

...

.

.

.

.

...

...

.

...

.

.

.

12

map of Jebel Ragoubet

...

.

.

.

100 km 100

.

map of Jebel Garci (modified

.

.

.

.

.

.

.

. Algeria ...

.

0

.

.

...

.

.

. 0 Zebbas

.

1. Triassic; 2. Barremian; 3. Aptian;

.

.

...

...

11 Jebel (Upper Aptian–Lower Albian);

.

.

...

8. Cenomanian-T

.

...

.

...

.

. ...

.

10

.

.

A.S

Tunisian trough

...

*

(1c) Geological

.

.

8. Upper Campanian;

...

.

.

limestone

.

(1b)

.

.

.

9

...

.

.

...

.

...

...

.

.

*

.

Sahel Platform

...

...

...

.

.

...

...

9º52'E

Tunis

.

...

.

...

...

(1a)

...

Nappes zone Nappes

.

...

...

8

after Ould Bagga et al., 2006; Ghanmi

...

.

...

.

...

...

...

.

...

map of Bir M’Cherga.

...

...

...

...

7

...

7. Upper Cenomanian;

He

Jebel Aouinet

. Téboursouk

J. Cheid J.

.

.

to Upper Santonian;

.

.

Ne

washitensis-bearing

...

.

4

. .

.

.

.

Tunisia (modified

.

56

.

*

8. fault; GA. studied section.

.

.

.

.

(1a) Geological

15. fault;A.S. studied section. (1b) Geological

N

.

.

.

.

.

.

.

J. Thibar

3

.

(1c)

.

Te

.

.

.

4

.

.

.

...

.

.

...

1 km

J. Slata J.

3. Favusella

...

.

...

.

...

.

...

.

.

7. Eocene;

...

.

3

.

.

...

.

2

.

...

...

.

.

...

.

.

7. Lower Campanian

...

.

.

.

...

.

...

.

.

...

...

.

.

maps of Northern

14. Quaternary;

.

..

...

...

2

.

...

.

...

.

.

...

.

...

N

.

1

0

.

.

.

.

.

.

.

.

–Paleocene;

.

(1)

.

(1a)

1

.

.

.

...

.

... 36º10'N –Coniacian;

Oligocene;

5. Upper Albian; 6. Lower Cenomanian;

lagoonal Santonian Figure 1. Structural Ne. ; He. Hedil; Te. Tebarka. 2. Aptian reefal limestone; studied section. Albian; Maastrichtian

48 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

Studies on structural and geodynamic of Triassic salt bodies the marly intervals increase in thickness contrary to limestone outcropping in Bir M’Cherga area and cross cutting the Creta- beds. The microfauna content yields poor planktic foraminiferal ceous succession of Jebel Zebbas show that salt wall has an Ap- assemblages and radiolarian rich microfauna. tian age based on the presence of Planomalina cheniourensis Planktic foraminifera reappear on GA20 bed that yields (Ben Chelbi et al., 2006). The Late Aptian to Early Albian age of Hedbergella gorbachikae Longoria Microhedbergella prae- salt roof (80 m thickness) is estimated based on the presence of planispira Huber and Leckie and Microhedbergella pseudodel- an association of Hedbergella planispira Tappan, Vaginella rec- rioensis Huber and Leckie. The benthic foraminiferal assem- ta Reuss, Frondicularia filocuicta Reuss, Lenticulina turgidula blages consist of Osangularia schloenbachi (Reuss) and Valvu- Reuss, L. pulchella Reuss, Tristix concavata Reuss (Ben Chelbi lineria infracretacea Crespin. et al., 2006). Fractures related to a strike slip fault outlining the black Ben Chelbi et al. (2006) stated that normal microfaults, hales unit are onlapped by a marly interval and gray limestone cross cutting Clansayesian limestone beds and sealing Albian beds alternation (GA24–GA27). This unit is characterized by marls of Lower Shale Member, indicate an extensive tectonic highly abundant of benthic GA25 sample has provided benthic phase which is responsible for the tilting of the sedimentary foraminiferal assemblages composed of Fursenkoina viscida blocks. The time equivalent outcrops in Jebel Garci show olis- (Khan), Spirillina minima Schacko, Lenticulina sp., Nodosaria tostromes, burrowed surfaces, and condensed deposits as indica- sp., Ramulina aculaeta (D’Orbigny), Valvulinoides sp., Gav- tors of tectonic activity associated with marine sea-level fall elinella sp.. Planktic foraminifera are represented by M. prae- (Saadi et al., 1994; Saadi, 1991). planispira, (Gandolfi) and Microhedbergella pseudodelrioensis Huber and Leckie. 3 MATERIALS AND METHODS The organic-rich beds comprised between GA9 and GA23 A total of 48 samples of marl and limestone were collected have released a moderately to well-preserved and age- for biostratigraphic analysis. Organic-rich levels were sampled at diagnostic radiolarian species. relatively higher resolution (approximately every 50 cm). Soft Radiolarians appear with few discrete taxa within GA6 level. samples were crushed and soaked in hydrogen peroxide solution It provides an assemblage composed of Holocryptocanium barbui and then washed using standard techniques. Samples were sieved Dumitrica, Spongostichomitra elatica (Aliev), Pseudoeucyrtis sequentially using meshes of 500 mm-250 mm-125 mm-63 mm. hanni (Tan), Archeodictyomitra vulgaris Pessagno, Thanarla Each sieve was stained with methyl blue (10 g/L) to avoid con- brouweri (Tan), Stichomitra simplex (Smirnova and Aliev), An- tamination from previous samples. Specimens with good preser- gulobracchia portmanni Baumgartner, Thanarla pacifica Na- vation determined and picked under Wild Herbrugg light bin- kaseko and Nishimura. They become diversified and abundant ocular microscope. Abundance of radiolaria is expressed semi- within GA7. This latter provided an association of Dictyomitra aff. quantitatively by counting the total number of preserved speci- gracilis (Squinabol), Dictyomitra communis Squinabol, Ar- mens (per 1 g of sample). Planktic foraminifers and radiolarians chaeodictyomitra montisserei (Squinabol), Pseudodictyomitra were mounted on slide, using double-faced adhesive tape, coated lodogaensis Pessagno, Thanarla praeveneta Pessagno, Ar- with silver and photographed using JEOL JSM 5400 scanning chaeodictyomitra aff. A. vulgaris Pessagno, Hiscocapsa sp., Tha- electron microscope of the ETAP Research Center, Tunis. narla aff. pulchra (Squinabol), Spongostichomitra elatica (Aliev), Thanarla brouweri (Tan), Thanarla pseudodecora (Tan), Angu- 4 RESULTS lobracchia portmanni Baumgartner, Stichomitra simplex (Smir- 4.1 Jebel Garci Section nova and Aliev), Stichomitra communis Squinabol. The condensed section of Jebel Garci (Fig. 2) begins with GA15 sample provided Archaeodictyomitra montisserei orbitolinids-rich green to gray clay and discontinuous sandy li- (Squinabol), Holocryptocanium barbui Dumitrica Pseudodictyo- mestone beds alternations which are attributed to the Hameima mitra lodogaensis Pessagno, Stichomitra simplex (Smirnova and Formation. The clay intervals have also provided fragments of Aliev), Pseudoeucyrtis hanni (Tan), Diacanhocapsa sp., Hisco- rudist and bryozoans (GA1). The top is outlined by olistolites capsa grutterinki (Tan) Angulobracchia portmanni Baumgartner, deposits that gradually pass to a reefal limestone. The top is Stichomitra communis Squinabol, Pseudodictyomitra paronai capped by an oxidized hardground which is overlain by detrital (Aliev), Cryptamphorella conara (Foreman). quartz rich-marly interval that provided Hedbergella trocoidea GA18 provided Dictyomitra gracilis (Squinabol), Thanarla (Gandolfi), Microhedbergella pseudodelrioensis Huber and conica (Squinabol). Leckie, and Microhedbergella praeplanispira Huber and Leckie The upper part of black shales interval (G17–23), composed (GA6). by rhythmic bundles of limestone and marl beds, is characterized Upwards, the black gray marl interval (GA9–10) did not by a decrease of radiolarian abundance. The sample GA20 has re- provide well-preserved planktic foraminifera. Some small-sized leased a radiolarian assemblages composed of Thanarla brouweri planktic foraminifer species are identified associated with ben- (Tan), Spongostichomitra phalanga O’Dogherty, Pseudodictyo- thic foraminiferal assemblage composed by rare epistominids mitra paronai (Aliev), Dictyomitra communis Squinabol, Holoc- and Conorboides lamplughi (Sherlock) (GA10). ryptocanium barbui Dumitrica, Pseudodictyomitra lodogaensis The next successions (GA13–GA20) consist of centimeter- Pessagno, Dictyomitra gracilis (Squinabol), Archaeodictyomitra thick grey to dark laminated limestone bed and organic-rich montisserei (Squinabol), Spongostichomitra elatica (Aliev), black marls intervals. Upwards, the succession is rhythmic and Pseudodictyomitra paronai (Aliev).

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 49

Ticinella primula Ticinella

Ticinella raynaudi Ticinella

Hebergella pseudodelrioensis Hebergella Microhedbergella praeplanispira Microhedbergella

eefal limestone; 4. sandy Hedbergella Gorbachikae Hedbergella

Planktic foraminifera Planktic Thanarla pseudodecora Thanarla

4 oi pelta Godia

hnraconica Thanarla

blsotsperspicuus Obeliscoites rhoitoir vulgaris Archeodictyomitra

3

7

hnrapraeveneta Thanarla

hnrapulchra Thanarla

suoitoir lodogaensis Pseudodictyomitra gf

gc Hiscocapsa grutterinki Hiscocapsa

2

6 blsotsvinassai Obeliscoites

iccpaasseni Hiscocapsa

Xitus spicularius Xitus

oclmcoronatum Torculum

Archaeodictyomitra montisserei Archaeodictyomitra 1

5

Stichomitra communis Stichomitra

suoitoir paronai Pseudodictyomitra

Pessagnobracchia rara Pessagnobracchia

atlopar maxima Dactyliosphaera

Cryptamphorella conara Cryptamphorella

Holocryptocanium barbui Holocryptocanium

pnotcoir elatica Spongostichomitra hnrabrouweri Thanarla

Thin bedded limestone; 2. thin laminated limestone; 3. r tcoir simplex Stichomitra

nuorchaportmannii Angulobracchia

oorpoaimtuberculatum Holocryptocanium

Radiolarian

suouytsapocrypha Pseudoeucyrtis

suouytshanni Pseudoeucyrtis

Stichomitra mediocris Stichomitra

Dictyomitra gracilis Dictyomitra ci Section. 1. Dictyomitra communis Dictyomitra

een to gray shale.

Hardground

5

40 30 20 10

0 m

biostratigraphy of Jebel Gar

GA17

GA6

GA18

GA3

GA16

GA8

GA 1

GA23 GA26 GA19

GA11 GA9 GA7

GA27

GA12 GA5

GA2

GA22 GA25 GA15 GA14 GA13

GA21 GA20

GA10

GA24

GA4

Leckie, 2011) Leckie,

irhdeglarischi Microhedbergella Undefined zone (Huber and (Huber zone Ticinella primula Ticinella

Planktic foraminifera Planktic

(O’Dogherty, 1994) (O’Dogherty,

biochronozone U.A.9-10 U.A.10-U.A.11

Radiolarian

Guex, 2002) Guex,

Costata

Romanus and (O’Dogherty

Radiolarian zone Radiolarian

ideshales Middle

Hameima Allam Member

i Albian Mid oe Albian Lower Stage pe Aptian Upper

limestone; 5. black shales; 6. marl (gc. light gray; gf. dark to gray); 7. gr Figure 2. Radiolarian and planktic foraminifer Figure

50 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

We identified well-preserved radiolarian population within marly interval (AS21), rich in detrital materials, provided GA24 beds composed of Pessagnobrachia rara (Squinabol), Sti- Ticinella roberti (Gandolfi), Ticinella primula Luterbacher and a chomitra communis Squinabol, Archaeodictyomitra montisserei benthic association composed of lenticulines, Spiroplectinata an- (Squinabol), Cryptamphorella conara (Foreman), Holocrypto- nectens (Parker and Jones), Gavelinella intermedia (Berthelin), canium barbui Dumitrica, Pseudodictyomitra lodogaensis Pessa- Laevidentalina communis (D’Orbigny). gno, Torculum coronatum (Squinabol), Xitus spicularius (Aliev), Obeliscoites vinassai (Squinabol), Hiscocapsa asseni (Tan), Tha- 4.3 Ragoubet Lahneche Section narla pulchra (Squinabol), Dictyomitra communis Squinabol, The section (Fig. 4) begins with chaotic Triassic evaporites Hiscocapsa grutterinki (Tan). and conglomerates which are overlain by dark greyish, slumped Marly interval of the top GA27 has released an assemblage marl interval (BLH0–BLH2, thickness: 2.50 m) showing of Holocryptocanium barbui Dumitrica, Stichomitra simplex centimeter-thick secant fractures and filled with calcite minerali- (Smirnova and Aliev), Pseudodictyomitra paronai (Aliev), and zation (BLH0–BLH2). The marl interval provided pyrite cubes, Dactyliosphaera maxima (Pessagno). tiny hedbergellids, mineralized skeletons of spherical radiolarian and some specimens of Microhedbergella praeplanispira Huber 4.2 Ain Slim Section and Leckie. The next successions (BLF2, BLF4–6) consist of 40 The Ain Slim Section, in vertically contact with Triassic m of grey to dark marl, passing upward into bituminous dark, evaporites (Fig. 3), begins with detrital and bipyramidal splintery and organic rich limestone beds of the Allam Member quartz-rich silty marls (AS1–6). They released diversified planktic (BLF3, BLF4 to 6). They yield relatively abundant planktic fo- foraminiferal assemblages composed of Globigerinelloides ferre- raminiferal microfauna with partially mineralized skeletons. Up- oloensis (Moullade), Globigerinelloides aptiensis Longoria, Hed- ward, the microfauna become rare, particularly within organic-rich bergella trocoidea (Gandolfi), Planomalina cheniourensis Sigal, beds. Clavihedbergella (Lilliputianella) bizonae (Chevalier). The ben- The interval comprised between BLH2 and BLH3 has pro- thic microfauna is composed of Lenticulina sp., Valvulineria sp., vided Microhedbergella praeplanispira Huber and Leckie, Mi- Gavelinella berthelini (Ten Dam). Upward, barite nodules-rich crohedbergella pseudodelrioensis Huber and Leckie, Ticinella marly interval has yielded Paraticinella eubejaouaensis (Randri- roberti (Gandolfi), Globigerinelloides maridalensis Bolli, Glo- anasolo and Anglada) and some tiny hedbergellids (AS7–AS10). bigerinelloides eaglefordensis (Moreman), Ticinella aff. yezoana We also identified sporadic occurrence of Saracenaria sp. (Takayanagi and Iwamoto). The first occurrence of Ticinella pri- and some spherical radiolarian fauna (AS10). mula Luterbacher is recorded within BLH3 bed, associated with The next intervals (AS11–AS14) consist of dark pyrite scarce ostracods. It also yields a moderately-preserved radiolarian nodules-rich marls and limestone beds that include stratiform bar- microfauna composed of Crolanium sp., Dactyliospharea maxima ite mineralizations. Planktic foraminifera are less diversified in (Pessagno), Obeliscoites perspicuous (Squinabol), Cavaspongia opposition to benthic foraminifera. They are poorly preserved sphaerica O’Dogherty, Stichomitra communis Squinabol. Sample within dark detrital quartz-rich marls (AS11–12–13) and are rep- from BLH8 has yield diversified microfauna of radiolarian and resented only by Microhedbergella pseudodelrioensis Huber and planktic foraminifera dominated by species of the genus Globig- Leckie, Hedbergella trocoidea (Gandolfi) and Microhedbergella erinelloide. The assemblage is composed by Globigerinelloides praeplanispira Huber and Leckie. bentonensis Morrow, Hedbergella sp. and Ticinella madecassiana AS11 sample provided an association of Globulina prisca Sigal. Reuss, Gavelinella baltica Brotzen, Gyroïdinoides sp., Lingu- Radiolarians are very abundant within organic-rich bed of logavelinella albiensis Malapris, Berthelina intermedia Allam Member. BLH8 sample has provided an assemblage com- (Berthelin). posed of Pessagnobrachia fabianii (Squinabol), Godia concava AS12 sample yields Osangularia schloenbachi (Reuss), (Li & Wu), Savaryella novalensis (Squinabol), Dactyliosphaera Berthelina sp., Gavelinella intermedia (Berthelin), Gavelinella acutispina Squinabol, Cavaspongia sphaerica O’Dogherty, Ho- ammonoïdes (Reuss), Lenticulina sp., Laevidentalina communis locryptocanium barbui Dumitrica, Stichomitra communis Squi- d’Orbigny. nabol, Savaryella quadra (Foreman), and Torculum coronatum The basal part of shaly limestones and pyritic nodules-rich (Squinabol). gray alternations (AS13) provided Lenticulina sp., Gavelinella The interval comprised between BLH9 and BLH11 (thick- intermedia (Berthelin), Ramulina aculatea Wright, Valvulineria ness: 11 m) correspond to grey marl and grey coarse-massive li- infracretacea Crespin, Gyroidinoïdes niditus (Reuss), Gavelinella mestone bed alternations. The radiolaria microfauna is rare. The ammonoïdes (Reuss) and Ticinella madecassiana Sigal. BLH11 has provided some specimens of Microhedbergella pra- AS16 beds underlying organic-rich laminated marl and lime- eplanispira Huber and Leckie Globigerinelloides bentonensis stone beds show the first occurrence of Ticinella roberti (Gan- Morrow. dolfi). Well-preserved species of benthic foraminifera were identi- fied such as Lenticulina munsteri (Roemer), Marginulina in- 5 DISCUSSION aequalis Reuss and Gavelinella sp. (AS17). 5.1 Biological Events and Biostratigraphic Attribution Stratigraphically upward, the abundance of benthic fo- The turbidic reefal and sandy limestone and green shales raminifera decreases whereas planktic foraminifera become alternations did not yield diagnostic planktic foraminifera micro- abundant (AS20). The first occurrence of Ticinella primula fauna. However, this interval could lithologically be correlated Luterbacher coincides with shaly limestone bed (AS18). The with the Hameima Formation in northeastern Tunisia of Upper

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 51

Planktic foraminifera

Substage

Member

Planktic foraminifera Zone foraminifera Planktic (Huber and Leckie, 2011) Leckie, and (Huber

Micredbergella pseudodelrioensis Micredbergella Microhedbergella praeplanispira Microhedbergella

Hedbergella trocoïdea Hedbergella gorbachikae Hedbergella

Paraticinella eubejaouaensis Paraticinella

Ticinella primula Ticinella roberti Ticinella madecassiana Ticinella Globigerinelloides aptiensis Globigerinelloides sp., Globigerinelloides bizonae Clavihedbergella Globigerinelloides ferroloensis Globigerinelloides

AS21

Middle Albian AS20

Middle shales Middle

Ticinella primula Ticinella AS19 AS18 ox10 primula T. ox9 AS17 ox8 ox7 ox6 ox5 ox4 ox3 ox2 ox1 AS16 Allam AS15 AS14

Ticinella madecassiana Ticinella

AS13 Ti. madecassiana Ti.

Lower Albian AS12

100

AS11 Microhedbergella rischi Microhedbergella

Lower shales Lower AS10

Paraticinella

eubejaouaensis AS9 ------

Upper Aptian ------eubejaouaensis Para. ------AS8 ------AS7 ------

trocoïdea ------Hedbergella ------AS6 ------

G. aptiensis G.

Bir M’Cherga Bir ------AS5 ------Middle Aptian AS4 ------AS3 10 ------G. algerianus G. AS2 - - - - - AS1 ------0 m

Pl. cheniourensis Pl. 1234 gn

Trias gf gc 5 6 7 8 Figure 3. Planktic foraminifera biostratigraphy of Ain Slim Section. 1. Triassic; 2. thin bedded limestone; 3. green shale; 4. green to gray shale; 5. black shales; 6. shaly limestone; 7. barite concretions; 8. marls (gc. light gray; gf. dark to gray; gn. dark).

52 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

Radiolarian Planktic foraminifera

Bioevent

Age

Member

Formation

Radiolarian zone

aff.

Planktic foraminifera zone foraminifera Planktic (Huber and Leckie, 2011) Leckie, and (Huber

Radiolarian biochronozone Radiolarian (O’Dogherty, 1994) (O’Dogherty,

blh14*

Micro. praeplanispira Micro.

Crolanium sp. Crolanium fabianii Pessagnobracchia Dactyliosphaera maxima Dactyliosphaera concava Godia Obeliscoites perspicuus Obeliscoites novalensis Savaryella Cavaspongia sphaerica Cavaspongia acutispina Dactyliosphaera Stichomitra communis Stichomitra Crucella remanei Holocryptocanium barbui Holocryptocanium Stichomitra communis Stichomitra Savaryella quadra Savaryella Torculum coronatum Torculum

G. bentonensis G. Ticinella roberti Ticinella Ticinella raynaudi Ticinella Ticinella primula Ticinella

blh13* blh12*

Mic praeplanispira

blh11*

Marnes Moyennes blh10* blh9*

primula Romanus Middle Albian blh8*

Lower Fahdene Lower

U.A10-U.A11

blh7* blh6* blh5* blh4* blh3*

T. primula T.

Allam blh2* 10 blh1*

Costata

Lower Albian

Madecassiana blh0* 0 m Trias

Figure 4. Radiolarian and planktic foraminifer biostratigraphy of Ragoubet Lahneche Section. Legend see Figs. 2 and 3.

Gargasian to Clansayesian in age (Chihaoui, 2009). as Thanarla pseudodecora (Tan) and Pseudoeucyrtis hanni (Tan) It was not possible to find Paraticinella eubejaouaensis (Zyabrev, 2011; Michalik et al., 2008; Danelian et al., 2007; Er- (Randrianasolo and Anglada), a marker specie of the Aptian- bacher and Thurow, 1998; O’Dogherty, 1994). Thus, a Late Ap- Albian boundary (Bellier and Moullade, 2002; Bellier et al., 2000; tian age of these beds could not hitherto be ruled out. Silva and Sliter, 1999). According to Erbacher and Thurow (1998), the first occur- The next successions overlying the hardground surface have rence of Pseudodictyomitra lodogaensis Pessagno coincides with yielded abundant Microhedbergella praeplanispira Huber and the upper part of Globigerinelloides algerianus Zone. Its last oc- Leckie that indicates an Early Albian age (Moullade et al., 2002). currence coincides with the Aptian-Albian boundary and the first In addition, co-occurrence of Early Albian taxa such as Osangu- occurrence of Mita gracilis (=Dictyomitra gracilis). On the other laria schloenbachi (Reuss), Fursenkoina viscida (Khan) (Hol- side, this taxon is also recorded within Albian to Cenomanian bourn et al., 2001; Erbacher et al., 1998) respectively in GA20 deposits in the Atlantic domain, California and Pacific realms and GA25 beds, assign at least the upper part of the black shales (Palechek et al., 2010; Kariminia, 2006; Thurow, 1988). to the Early Albian (GA17 to GA23). Slaczka et al. (2009) described an assemblage containing In the following section, we used radiolarian calibration in Angulobracchia portmanni Baumgartner, Dictyomitra communis order to improve the resolution of biostratigraphic record. The (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lo- assemblages recovered from black shale beds are discussed dogaensis Pessagno, Pseudoeucyrtis hanni (Tan), almost similar herein. to GA7 taxa. These authors attributed the assemblage to Costata Samples recovered from basal beds (GA2–GA6) show high Zone that is confined to U.A.6–9 biochronozones of Midlle to abundance of Pseudodictyomitra lodogaensis Pessagno and con- Late Aptian age (O’Dogherty, 1994). tain some Early Cretaceous taxa from Turbocapsula Zone such It is noteworthy to point to the coexistence of Albian species

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 53 in all samples such as Dictyomitra montisserei Squinabol and (OX2–OX8) show an assemblage composed typically by Dictyomitra gracilis Squinabol with Aptian taxa particularly in Ticinella madecassiana and Micr. praeplanispira, associated GA7, GA15 and GA26. In this overall context, an assemblage with and benthic microfauna indicating an Early Albian age. recovered from Mid Cretaceous outcrops of northern Tethys The occurrence of Ticinella primula (AS18) is recorded 17 margins was described by Danelian et al. (2007), shows the m above the black shale beds (OX2–OX8). Upward, the series co-occurrence of Pseudodictyomitra lodogaensis Pessagno, Dic- are composed of fractured limestone beds and gray marl intervals tyomitra gracilis Squinabol Archaeodictyomitra aff. vulgaris (AS19–31) which are confined to the acme zone of T. roberti and Pessagno assigning it to the Early Albian U.A.10–11 biochrono- T. raynaudi and characterizing the upper part of primula Zone zone. Danelian et al. (2004) consider that an Early Albian age of (Sliter, 1989). Dercourt Member cannot be ruled out despite the presence of The Ragoubet Lahneche anticline was the subject of an in- pseudoeucyrtis cf. hanni (Tan) characteristic of U.A.9. These tegrated study using biostratigraphy and seismic reflection data in species are hitherto observed within an assemblage from GA15, order to explain the salt tectonic evolution in northern Tunisia associated with Archaeodictyomitra montisserei (Squinabol). (Vila et al., 2002). These authors have postulated that conglom- Kurilov and Vishnevskaya (2011) described an assemblage erate bed overlying the Triassic evaporites have a Middle Albian extracted from Early Cretaceous outcrops of Pacific domain that age based on the presence of Hedbergella planispira and Fa- does not differ from GA21. It contains Pseudodictyomitra lo- vusella washitensis. Then, Ben Haj Ali (2005) stated that marlous dogaensis Pessagno, Holocryptocanium barbui Dumitrica, Dic- bed in contact with Triassic evaporites has a Late Albian age tyomitra cf. montisserei Squinabol, Dictyomitra communis based on the presence of Hedbergella planispira, Biticinella (Squinabol) and Dictyomitra gracilis Squinabol indicating an breggiensis and Ticinella primula together with abundant radio- Early Albian age. larian microfauna. The samples GA26 have provided an assemblage charac- Slumped marly interval (BLH0-2) overlying Triassic eva- terized by high abundance of Hiscocapsa asseni (Tan) porites (Fig. 4) provided an abundant tiny Hedbergellids such as co-occurring with Dictyomitra gracilis Squinabol and Dictyomi- Microhedbergella praeplanispira Huber and Leckie. The first tra montisserei Squinabol. It lies with the U.A.10 biochronozone occurrence of Ticinella primula Luterbacher is recorded within of Romanus Zone (Danelian et al., 2004; O’Dogherty, 1994). BLH3 bed thus the organic-rich beds of Allam Member may out- Basal beds of Ain Slim Section, overlying Triassic evapo- line the late Early Albian. rites (AS1–AS6), have provided planktic foraminifera-rich as- The assemblage provided by the interval BLH3–BLH11 is semblages mainly composed of Globigerinelloides species (G. composed of Microhedbergella praeplanispira Huber and Leckie, ferreolensis, Globigerinelloides aptiensis (AS1), Clavihedber- Ticinella roberti (Gandolfi), Ticinella yezoana Takayanagi and gella (Lilliputianella) bizonae (Chevalier), Globigerinelloides Iwamoto Microhedbergella rischi Huber and Leckie, Microhed- aptiensis (Longoria) and Planomalina cheniourensis Sigal (AS3). bergella pseudodelrioensis Huber and Leckie, Ticinella primula These occurrences are confined to the upper part of algerianus Luterbacher, an association that is inferred to the Middle Albian. Zone, based on the lowest occurrence of Planomalina chenio- The assemblage recovered from BLH3 bed contains species urensis, which indicates a Middle Aptian age (Huber and Leckie, like Stichomitra communis Squinabol, Obeliscoites perspicuus 2011). (Squinabol) and Dactyliosphaera maxima (Pessagno) ascribed to The sample AS6 shows an assemblage composed of Hed- the Barremian–Middle Albian interval (Zyabrev, 2011; Danelian bergela trocoidea, Hedbergella excelsa, Hebergella gorbachikae et al., 2007; Zyabrev et al., 2003; Erbacher, 1998) together with and G. ferreolensis (AS6) which is confined to the Upper Aptian. Cavaspongia sphaerica O’Dogherty which are described in the Upward, the marly interval has yielded depauperate planktic fo- Late Albian–Turonian interval (Musavu-Moussavou and Danel- raminifera fauna. The samples AS9 and AS10 contain small ian, 2006; Yurtsever et al., 2003; Erbacher, 1998; O’Dogherty, well-preserved specimens of Paraticinella eubejaouaensis which 1994). is considered by many authors as a marker specie to identify the The BLH8 has provided an assemblage containing strictly Aptian-Albian boundary (Bellier and Moullade, 2002; Silva and Albian species together with Dactyliospharea acutispina Sliter, 1999; Sliter, 1989). (Squinabol). Following (Erba et al., 1999) the first occurrence of The next upper beds yield strongly impoverished plank- Dactyliosphaera acutispina (Squinabol) species is recorded tic faunas in opposition to a high abundance of benthic fo- within the Selli Livello black shales of Early Albian age. Bak raminifera (GA11), an event which was regarded as a timeline (1999) stated that first occurrence of Dactyliosphaera acutispina outlining the Aptian-Albian boundary (Ben Haj Ali, 2005) (Squinabol) is recorded within the upper part of Rotalipora The next dark marly interval (AS11–AS15) contains small ticinensis-Planomalina praebuxtorfi foraminiferal zone through R. nodules of pyrite, and yields Mic. praeplanispira, Micr. praedel- appenninica foraminiferal zone. Then, Kemkin (2009) described rioensis and benthic-rich assemblages composed of Globulina an assemblage from the Far East domain of Russia containing prisca Reuss, a cosmopolitan specie of Lower Cretaceous age Dactyliosphaera acutispina (Squinabol) together with Dac- associated with Osangularia schloenbachi (Reuss), Berthelina tyliosphaera maxima (Pessagno). He attributed the assemblage to intermedia (Berthelin) which indicates an Early Albian age the Middle–Late Albian. An assemblage containing this species is (Tyszka, 2006; Holbourn et al., 2001; Erbacher et al., 1998; also described within Late Albian black shales of northeastern Holbourn and Moullade, 1998). Tunisia (Ben Fadhel et al., 2010). The taxonomic and strati- Shaly limestones of Allam Member (AS14–16) which graphic range discrepancies of Dactyliospharea acutispina overlain by organic-rich thin laminated limestone beds (Squinabol) has been debated in Kemkin and Filippov (2010) who

54 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef stated that range of the species is the Middle Albian–Early (Danelian et al., 2004; O’Dogherty, 1994). However, the first Cenomanian and not the Barremian. Taking into account the mi- occurrence of Ticinella primula planktic foraminifera is recorded crofauna content, we suppose that the organic-rich beds of Allam 24 m above GA17 bed. Thus, an Early Albian age for the lower Member lies with the upper part of U.A.10–U.A.11 biochrono- part of Romanus Zone cannot be ruled out. zones of Early to Middle Albian in age (O’Dogherty, 1994). In Ragoubet Lahneche Section, the top of Costata Zone We think that variation of stratigraphic ranges between Me- which is outlined by the first set of Allam black shales shows the diterranean Tethys and East Pacific domains may be influenced first occurrence of Ticinella primula planktic foraminifera. The by ecological and paleoceanographic conditions including water lower part of Romanus Zone which lies with the upper part of temperature and connections between domains during the Albian. Allam black shales is characterized by appearance of an abun- Studies on radiolarian biostratigraphy show that Early Al- dant Hagiastridae assemblage (i.e., Savaryella quadra and Sava- bian zonal schemes still not well established (Danelian et al., ryella novalensis). 2004; O’Dogherty, 1994). For example, O’Dogherty (1994) has assigned the Early–Middle Albian interval to the Mallanites ro- 5.2 Relationships between Radiolarian Abundance and manus Zone. Then, he modified the subdivision and assigned the Black Shales Deposition upper part of the Costata subzone to the Early Albian which the The abundance curves of Allam black shales show gradual top coincides with the upper part of Ticinella primula planktic increase of radiolarian abundance (Fig. 5) which could indicates foraminiferal zone (O’Dogherty and Guex, 2002). a rise of productivity rate. The continuous input of nutrients has Following the zonal schemes of (Erbacher and Thurow, created eutrophic environment associated with high rate of 1998, 1997), the first occurrence of Mita gracilis (=Dictyomitra planktic productivity. As consequences, significant quantity of gracilis) is recorded within the Hedbergella planispira Zone organic matter produced by the phytoplankton was degraded by (=Microhedbergella rischi Zone of Huber and Leckie, 2011) and the bacterial activity, thus minimizing the amount of oxygen and considered as a marker species of Aptian-Albian boundary. Fur- enhancing the widespread of anoxic conditions. thermore, these authors have assigned the base of Pseudodictyo- The decrease in Spumellaria abundance, subsequent to the mitra lodogaensis Zone to the upper half G. algerianus planktic abundance peak at GA10 bed (Fig. 5), indicates an unstable en- foraminifera zone of Late Aptian age which the top coincide the vironment with low rate of productivity. By consequence, op- FO (first occurrence) of Mita gracilis. However, it was stated portunistic species (mainly cryptocephalic Nassellaria, and some that Mita gracilis occurs much earlier in Hauterivian–Barremian Archaeodictyomitrae) adapted to low oxygen conditions in- successions of Umbria Marche Basin in Central Italy (Danelian creased in abundance. et al., 2007; Jud, 1994). Silva and Sliter (1999) suggest that low S/N (Spumellaria In their study about Mid Cretaceous black shales of Ionian vs. Nassellaria) ratio indicates a high productivity due to an im- domain, Danelian et al. (2007), Danelian (2008) stated an abun- portant input of nutrients in the surface sea-water and coupled dant diversified archaeodictyomitrae taxa within Lowermost Al- with intensified upwelling currents. However, the rise of S/N ra- bian successions. They postulated that last occurrence of Tha- tio could reflect in certain cases a low-oxygen environment (Go- narla brouweri (Tan) is recorded within Middle Albian U.A.11 rican et al., 2003; Kuhnt et al., 1986). biochronozone, equivalent to the planktic foraminifera T. pri- Such a tendency was observed GA10 and GA17 where S/N mula Zone. Nevertheless, it was demonstrated that stratigraphic ratio shows linear increase (Fig. 5). It can be explained by the range of Thanarla brouweri could reach the Cenomanian- widespread of strictly anoxic conditions following the exhaustion Turonian boundary, particularly within the lower part of Bon- of nutrient supply. If eutrophic conditions become increasingly arelli Horizon (Musavu-Moussavu et al., 2007). accentuated, the environment becomes hostile to bloom of Spu- Considering biotic changes across the Aptian-Albian boun- mellaria (Silva and Sliter, 1999). Other factors, such as the com- dary (Danelian, 2008) we think that constraining the age of black plexity of Spumellaria test structure, made their mobility difficult, shale beds based solely on radiolarian assemblages, may reveals which explains the dominance of Nassellaria in S/N ratio discrepancies because of similarities between archaeodictyomi- (O’Dogherty and Guex, 2002). trae morphospecies and mixing with strictly Aptian taxa. Studies on radiolarian paleoecology have demonstrated the We suggest that lower part of black shale intervals could be existence of relationship between radiolarian abundance and or- assigned to the upper part of Costata Zone based on the presence ganic matter content (de Wever and Baudin, 1996). Generally of Aptian taxa (i.e., Pseudoeucyrtis hanni, Thanarla pseudode- speaking, the organic-rich sedimentation was coeval with trans- cora). The lower part of this zone coincide with the first occur- gressive system tracts (TST) (Amèdro, 2008; O’Dogherty and rence of Microhedbergella praeplanispira planktic foraminifera. Guex, 2002; Arthur and Sageman 1994; Schlanger and Jenkyns, Whereas the top coincide with the last occurrence of Pseudoeu- 1976). Moreover, the vertical flux of nutrient-rich waters de- cyrtis hanni associated with a relative increase in abundance in- pends on oceanic circulation and intense upwelling currents crease of Archaedictyomitrae and Williriedellidae families. which occur during the transition from regressive to transgres- The Romanus Zone described in Jebel Garci show the sion episode (O’Dogherty and Guex, 2002). It was also shown dominance of high diversified nassellarian species. The assem- that radiolarian high abundance recorded from mid Cretaceous blage composed of Thanarla brouweri, Archaeodictyomitra organic-rich and biosiliceous beds indicates an environment montisserei, Thanarla conica may be attributed to the Middle characterized by high rate of productivity (Danelian, 2008; Albian Mallanites romanus Subzone (U.A.10–11 biochronozone) Silva and Sliter, 1999).

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 55

0.110 (a) Ga17 (b) 200 Allam Member 0.100 Ga26 180 black shales 0.090 Ga23 160 Ga10 0.080 140 0.070 Ga25 120 0.065 0.060 100 Ga14 S/N 0.055 Ga16 0.050 Ga8 80 0.045 0.040 Ga19

Radiolarian abundance Radiolarian 60 0.035 Ga25 0.030 Allam Member Ga9 Ga20 40 Ga8 0.025 black shales Ga6 Sample 0.020 Ga6 Ga19 Ga23 Sample 20 Ga12 Ga21 Ga24 0.015 Ga5 Ga15Ga18 0.010 Ga10 Ga11 Ga13 Ga22 0.005 Ga17 10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60 Thickness (m) Thickness (m) Figure 5. (a) Radiolarian abundance within Allam Member black shales of Jebel Garci Section; (b) Spumellaria vs. Nassel- laria ratio (S/N) recorded from the Allam black shales in the Jebel Garci Section.

5.3 Age Correlation of Black Shale Beds area (northwestern Tunisia). The author attributed it Although Lower Albian didn’t provide well preserved to the Early Albian Hypacanthoplites buloti ammonite zone. Re- planktic foraminifera, radiolaria are thought to be a reliable bio- cently, Ben Fadhel et al. (2011) have proposed a biostratigraphic stratigraphic tool of large-scale correlation (Boughdiri et al., framework for Albian pelagic successions in area. They 2007). The main target of this correlation (Fig. 6) is to compare ascribed the Upper Allam organic-rich beds to T. primula plank- the biological events as well as the Albian sedimentary record in tic foraminiferal zone. the Mediterranean Tethys basins. In this study, biostratigraphic results from northeastern Tu- The Jebel Garci Section shows the association of Aptian ra- nisia sections show that organic-rich beds precede the lowest diolarian assemblages (i.e., Pseudoeucyrtis hanni, Hiscocapsa occurrence of Ticinella primula (AS18) and 88 m above the sp., Thanarla pseudodecora) with Albian species that is men- highest occurrence of Paraticinella eubejaouaensis in Ain Slim tioned by Danelian et al. (2004) who suggested that an Early Al- Section. This could confirm the assessment of Huber and Leckie bian age attributed to Dercourt Member is not excluded. How- (2011) who stated that disappearance of Paraticinella eube- ever, we cannot with certainty assign the absolute age of these jaouaensis is recorded 52 m below the Paquier level in the Vo- black shales, since the Lower Albian radiolarian zonation was contian Basin. not identified in the nomenclature of O’Dogherty (1994). Large scale correlations show that timing of black shales These black shales can hitherto be attributed to the bio- deposition is diachronic between northern Mediterranean Tethys chronozone U.A.10 based on the co-occurrence of Dictyomitra margins and Tunisian domains. gracilis, Archaeodictyomitra montisserei and Hiscocapsa sp.. The diachronic beginning of Allam black shales deposition Toward the north-east, the age of Allam black shale is rather di- was controlled mostly by local geodynamic conditions and up- achronic. It outlines the Early–Middle Albian successions over- welling currents distribution in southwest and northeast basins on laying the Triassic evaporites. A late Middle Albian age cannot the one hand Tunisian and northern Tethys areas on the other (Ben be excluded on the basis of abundant Hagiastridae species (Sa- Fadhel et al., 2011). In fact, basin configuration of northern Tuni- varyella quadra and Savaryella novalensis). sia was the result of SW-NE extension tectonic regime and halo- Studies on radiolarian biostratigraphy in Atlantic domains kinetic dynamics recorded across the Aptian-Albian transition (Erbacher and Thurow, 1998) show that organic-rich beds occur (Rigane et al., 2010; Guiraud and Maurin, 1992; Boltenhagen, within Aptian-Albian transition which lies with the boundary 1985). This tectonic phase and the resulted restricted basins were between M. gracilis and P. lodogaensis zones. These two species coeval with the widespread of supraregionnally black shales of are abundant within the middle part of black shale set. It is note- Niveau Paquier which is considered as the record of the oceanic worthy that Pseudodictyomitrae lodogaensis records it last oc- anoxic event OAE1b (Danelian, 2008; Tsikos et al., 2004; Herrle currence in the Costata Zone. This species has’t been found nei- et al., 2003; Bréhéret, 1997; Bralower et al., 1993; Bréhéret et al., ther in Romanus Zone nor in Late Albian successions (Ben Fad- 1986). hel et al., 2010). Thus, we attribute an Early Albian to early Mid- Total organic carbon and Tmax vs. hydrogen index plots dle Albian to the Allam black shales. They can be correlated with analysis carried on Early Albian black shales of Allam Member the “Upper Shaly Siliceous” interval (Fig. 6) of Sopoti Section in has demonstrated a good to moderate potential source rock and southern Albania (Danelian et al., 2007). the organic matter is mainly terrigenous Type III (Ben Fadhel et Chihaoui (2009) has postulated through carbon isotope sig- al., 2011). Southward, the equivalent of Allam black shales nature, the presence of an equivalent of Paquier level (Herrle et (Lower Fahdene Formation) is represented by the Late Aptian– al., 2003; Bréhéret, 1988) between SA3 and SA4 sequence in Early Albian reefal limestones of Serj Formation which is

56 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

madecassiana

eubejaouaensis algerianus

Hedbergella trocoïdea Hedbergella Microhedbergella rischi Microhedbergella

Ticinella

Para. G.

Bir M’Cherga Bir Lower shales Lower Allam

Trias oe Albian Lower pe Aptian Upper

]

Para. eubejaouaensis Para. P. cheniourensis P. T. primula T.

Black shales

- - - - -

------

- - - - -

------

------

------

- - - - -

------

------

- - - - -

- - - - -

------

------

------

------

Ain Slim Ain

------

------

------

------

------

------

------

------

------

------

------

------

------

------

------

Tethys margins. Tethys

10

100

0 m

ops in northern

praeplanispira

T. primula T. Mic

Ragoubet Lahneche Ragoubet

10

0 m

Tunisia with equivalent outcr Tunisia T. primula T.

Hiatus of Hiatus eubejaouaensis and trocoidea zones? trocoidea and

J. Garci J.

5

60 50 40 30

20

10

0 m

ecords in northeastern U.A.10-11

interval» (radiolarian interval»

«Upper Shaly Siliceous Shaly «Upper

biochronozone U.A.10-11: LateU.A.10-11: Aptian- Early Albian)

Albian bio-events and sedimentary r

90

80

of

110

120 100

Sopoti-Southern Albania (Danelian et al., 2007)

elation of T. primula T.

Figure 6. Corr Figure

Last occurrence Last Ticinella bejaouaensis Ticinella

Jacob level Jacob

Kilian level Kilian

Paquier level Paquier

220 240 260 280 300

Vocontian Basin Vocontian SE France (Reichelt, 2005) (Reichelt, France SE

200 m 200

oe Albian Lower pe Aptian Upper

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 57 considered as a potential reservoir rock of hydrocarbons (Burollet, Carpathica, 50(1): 21–31 1988). Bak, M., 2004. Radiolarian Biostratigraphy of the Upper Cenomanian–Lower Turonian Deposits in the Subsilesian 6 CONCLUSION Nappe (Outer Western Carpathians). Geologica Carpathica, Radiolarian and planktic foraminifer biostratigraphic study 55(3): 239–250 of Lower Fahdene Formation has provided an age constraint of Bellier, J. P., Moullade, M., 2002. Lower Cretaceous Planktonic black shales embedded within the Allam Member. Radiolarian Foraminiferal Biostratigraphy of the Western North Atlantic assemblages analysis together with planktic foraminifera biologi- (ODP LEG 171B), and Taxonomic Clarification of Key In- cal events show that deposition of Allam Member black shales dex Species. Rev. de Micropal., 45(1): 9–26 lies with U.A.10–U.A.11 biochronozone and Microhedbergella Bellier, J. P., Moullade, M., Huber, B. T., 2000. Mid-Cretaceous rischi through the lowest part of Ticinella primula planktic fo- Planktic Foraminifers from Blake Nose: Revised Biostrati- raminiferal zone. However, an Earliest Albian age could not be graphic Framework. In: Norris, R. D., Kroon, D., Klaus, A., excluded on the basis of typical Aptian taxa. eds., Proceedings of the Ocean Drilling Program, Scientific The deposition of organic-rich beds in northern Tunisia is Results, 171B. Ocean Drilling Program, College Station, characterized by radiolarian bloom which reflects high productiv- Texas ity rates and eutrophic environment. As consequences, numerous Ben Chelbi, M., Melki, F., Zargouni, F., 2006. Mode of Salt Bodies Aptian taxa (i.e., pseudoeucyrtis hanni, Thanarla pseudodecora) Emplacement in Septentrional Atlas of Tunisia: Example of a disappeared and many taxa adapted to these conditions (i.e., Ar- Bir Afou Salt Body. Comptes Rendus Géosciences, 338(5): chaeodictyomitrae) are represented by various morphotypes. It is 349–358, doi:10.1016/j.crte.2006.02.009 noteworthy that ecological conditions may have governed the Ben Fadhel, M., Layeb, M., Ben Youssef, M., 2010. Upper Albian stratigraphic range of many cosmopolitan taxa (i.e., Pseudodic- Planktic Foraminifera and Radiolarian Biostratigraphy tyomitrae lodogaensis) compared with stratigraphic distributions (Nebeur-Northern Tunisia). Comptes Rendus Palevol, 9(3): schemes reported from other domains. 73–81 The large-scale correlation the black shales of Allam Mem- Ben Fadhel, M., Layeb, M., Hedfi, A., et al., 2011. Albian Oce- ber with sections reported from North Mediterranean Tethys mar- anic Anoxic Events in Northern Tunisia: Biostratigraphic and gins show that organic rich beds are correlable with Niveau Geochemical Insights. Cretaceous Research, 32(6): 685–699 Paquier of the Vocontian Basin and equivalent to the suprare- Ben Haj Ali, N., 2005. Les Foraminifères Planctoniques du gionnally distributed oceanic anoxic event OAE1b. Crétacé (Hauterivien à Turonien Inférieur) du Tunisie: Systématiques, Biozonations et Précisions Biostratigraphique: ACKNOWLEDGMENTS [Dissertation]. Université Tunis el Manar, Faculté des This work was supported by the «le Ministère de Sciences de Tunis, Tunis (in French) L’Enseignement Supérieur et de la Recherche Scientifique» and Beurrier, M., Bourdillon-De-Grissac, C., De Wever, P., et al., 1987. «Centre des recherches des technologies des eaux–CERTE». Drs. Biostratigraphie des Radiolarites Associées Aux Volcanites Moncef Saidi and Hedia Bessaies from ETAP Research Center Ophiolitiques de la Nappe de Samail (Sultanat d’Oman): gave all facilities needed for SEM photographs. We thank Prof. Conséquences Tectogénétiques. Comp. Ren. Acad. Sci., 304: Imen Khemiri for improving the English text. Authors are grateful 907–910 to Miroslava Smrečková from Comenius University, Bratislava, Biely, A., Memmi, L., Salaj, J., 1973. Le Crétacé Inferieur de la Slovakia for providing us with documentations and citations about Région d’Enfidaville. Decouverte d’Aptien Condense. Livr. Cretaceous radiolarians in Pacific domain. Comments provided Jub. M. Solignac, Ann. Min. Geol., 26: 169–l78 by an anonymous reviewer and the editor are gratefully acknowl- Bismuth, H., 1973. Réflexions Stratigraphiques Sur l’Albo-Aptien edged. Dans la Région des Djebels et Semmama et Son Environnement (Tunisie du Centre-Nord). Ann. Min. Géol., REFERENCES CITED 26: 179–212 Amédro, F., 2008. Support for a Vraconnian Stage between the Bismuth, H., Boltenhagen, C., Donze, P., et al., 1981. Le Crétacé Albian Sensu Stricto and the Cenomanian (Cretaceous Sys- Moyen et Supérieur du Djebel Semmama (Tunisie du Centre tem). Carnet de Géologie, Memoire 2008/02 Nord), Microstratigraphie et évolution Sédimentologique. (CG2008_M02) Bull. Cent. Rech. Expl. Prod. Elf-Aquit., 5(11): 193–267 Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: De- Boltenhagen, C., 1985. Paléogéographie du Crétacé Moyen de la positional Mechanisms and Environments of Ancient Depos- Tunisie Centrale. Proceedings of 1er Congrès Nat. Sc. Terre, its. Annu. Rev. Earth Planet. Sci., 22: 499–551 Tunis. 97–114 Babazadeh, S. A., De Wever, P., 2004. Radiolarian Cretaceous Boughdiri, M., Cordey, F., Sallouhi, H., et al., 2007. Jurassic Age of Soulabest Radiolarites in Ophiolite Suite of Eastern Radiolarian-Bearing Series of Tunisia: Biostratigraphy and Iran. Bull. Soc. Géol. de France, 175(2): 121–129 Significance to Western Tethys Correlations. Swiss Journal Bak, M., 1995. Mid Cretaceous Radiolarians from the Pieniny of Geosciences, 100(3): 431–441 Klippen Belt, Carpathians. Poland. Cretaceous Research, Bralower, T. J., Sliter, W. V., Arthur, M. A., et al., 1993. Dysoxic/ 16(1): 1–23 Anoxic Episodes in the Aptian-Albian (Early Cretaceous). In: Bak, M., 1999. Cretaceous Radiolarian Zonation in the Polish Part Pringle, M. S., Sager, W. W., Sliter, W. V., et al., eds., The of the Pienny Klippen Belt (Western Carpathians). Geologica Pacific: Geology, Tectonics and Volcanism. Geo-

58 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

physical Monograph, 77: 5–37 Erbacher, J., 1998. Mid-Cretaceous Radiolarians from the Eastern Bréhéret, J. G., 1988. Épisodes de Sédimentation Riche en Equatorial Atlantic and Their Paleoceanography. In: Mascle, Matière Organique Dans les Marnes Bleues d’âge Aptien et J., Lohmann, G. P., Moullade, M., eds., Proceedings of the Albien de La Partie Pélagique du Bassin Vocontien. Bull. Ocean Program, Scientific Results, 159: 363–373 Soc. Géol. France, IV(2): 349–356 Erbacher, J., Gerth, W., Schmiedl, G., et al., 1998. Benthic Fo- Bréhéret, J. G., 1997. L’Aptien et l’Albien de la Fosse raminiferal Assemblages of Late Aptian-Early Albian Black Vocontienne. Évolution de la Sédimentation et Shale Intervals in the Vocontian Basin, SE France. Creta- Enseignements sur les évènements Anoxiques. Soc. Géol. ceous Research, 19(6): 805–826 Nord, Publication, Villeneuve d’Ascq, 25: 614 Erbacher, J., Thurow, J., 1997. Influence of Oceanic Anoxic Bréhéret, J. G., Caron, M., Delamette, M., 1986. Niveaux Riches Events on the Evolution of Mid-Cretaceous Radiolaria in the en Matière Organique Dans l’Albien Vocontien, Quelques North Atlantic and Western Tethys. Mar. Micropal., 30(1–3): Caractères du Paléoenviron-Nement, Essai d’interprétation 139–158 Génétique. In: Bréhéret, J. G., ed., Les CouchesRiches en Erbacher, J., Thurow, J., 1998. Mid-Cretaceous Radiolarian Zona- Matière Organique et Leurs Conditions de Dépôt. tion for the North Atlantic: An Example of Oceanographi- Documents du Bureau de Recherches Géologiques et cally Controlled Evolutionary Processes in the Marine Bio- Minières, Orléans, 110: 41–191 sphere? In: Cramp, A., Macleod, C. J., Lee, S. V., et al., eds., Burollet, P. F., 1956. Contribution à l’étude Stratigraphique de la Geological Evolution of Ocean Basins: Results from Ocean Tunisie Centrale. Annales des Mines et de Géologie, 18(1): Drilling Program. Geolo. Soc., London, Special Publications, 350 131(384): 71–82 Burollet, P. F., 1988. Cretaceous Reservoirs in Tunisia. AAPG Fiet, N., Beaudoin, B., Parize, O., 2001. Lithostratigraphic Analy- Bull., 72: 8 sis of Milankovitch Cyclicity in Pelagic Albian Deposits of Burollet, P. F., Memmi, L., M’Rabet, A., 1983. Le Crétacé Central Italy: Implications for the Duration of the Stage and Inférieur de Tunisie. Aperçu Stratigraphique et Substages. Cretaceous Research, 22(3): 265–275 Sédimentologique. Zitteliana, 10: 255–264 Ghanmi, M., Ben Youssef, M., Jouirou, M., et al., 2001. Chihaoui, A., 2009. La Transgression Albienne Dans la Région de Halocinèse Crétacée au Jebel Kebbouch (Nord-Ouest Tajerouine en Tunisie Centrale: Stratigraphie, Tunisien): Mise en Place à Fleur d’eau et Evolution d’un Sédimentologie et Tectonique Synsédimentaire: [Disserta- «Glacier de sel» Albien, Comparaisons. Eclog. Geol. Helv., tion]. l’Université Joseph Fourier-Grenoble I, France 94: 153–160 Chihaoui, A., Jaillard, E., Latil, J. L., et al., 2010. Stratigraphy of Gorican, S., Smuc, A., Baumgartner, P. O., 2003. Toarcian Radio- the Hameima and Lower Fahdene Formations in the Tadjer- laria from Mt. Mangart (Slovenian-Italian Border) and Their ouine Area (Northern Tunisia). J. Afri. Earth Sciences, 58(2): Paleoecological Implications. Marine , 387–399 49(3): 275–301 Cordey, F., Boughdiri, M., Sallouhi, H., 2005. First Direct Age Guiraud, R., Maurin, J. C., 1992. Early Cretaceous Rifts of West- Determination from the Jurassic Radiolarian-Bearing Sili- ern and Central Africa: An Overview. Tectonophysics, ceous Series (Jedidi Formation) of North-Western Tunisia. 213(1–2): 153–168 Comp. Rend. Geosc., 337: 777–785 Hammami, M., 1999. Tectonique, Halocinèse et Mise en Place de Dall’Agnolo, S., 2000. Le Crétacé de la Nappe de la Brèche la Minéralisation dans la Zone des Diapirs (Tunisie (Préalpes Franco-Suisses). Données Nouvelles et Essai de Septentrionale): [Dissertation]. Université de Tunis II, Synthèse Stratigraphique et Paléogéographique. Eclog. Geol. Tunisie Helve., 93: 157–174 Hancock, J., 2001. A Proposal for a New Position for the Aptian/ Danelian, T., 2008. Diversity and Biotic Changes of Archaeodic- Albian Boundary. Cretaceous Research, 22: 677–683 tyomitrid Radiolaria from the Aptian/Albian Transition Hardenbol, J., Thierry, J., Farley, M. B., et al., 1998. Mesozoic (OAE1b) of Southern Albania. Micropaleontology, 54(1): and Cenozoic Sequence Chronostratigraphic Framework of 3–12 European Basins. Special Publication of Soc. Eco. Palaeont. Danelian, T., Baudin, F., Gardin, S., et al., 2007. The Record of Mineral, 60: 3–14 Mid Cretaceous Oceanic Anoxic Events from the Ionian Heldt, M., Lehmann, J., Willems, H., 2010. Calcareous Dinoflag- Zone of Southern Albania. Rev. Micropal., 50(3): 225–237 ellate Cysts from the Aptian/Albian Boundary Interval of Danelian, T., Tsikos, H., Gardin, S., et al., 2004. Global and Re- Northern Germany: Abundance Patterns Related to Orbital gional Palaeoceanographic Changes as Recorded in the Forcing? Newsletters on Stratigraphy, 44 (1): 37–55 Mid-Cretaceous (Aptian-Albian) Sequence of the Ionian Herrle, J. O., Pross, J., Friedrich, O., et al., 2003. Forcing Mecha- Zone (Northwestern Greece). J. Geol. Soc., 161(6): 703–709 nisms for Mid Cretaceous Black Shale Formation: Evidence de Wever, P., Baudin, F., 1996. Palaeogeography of and from the Upper Aptian and Lower Albian of the Vocontian Organic-Rich Deposits in Mesozoic Tethys. Geologische Basin (SE France). Palaeogeogr., Palaeoclimatol., Pa- Rundschau, 85(2): 310–326 laeoecol., 190: 399–426 Erba, E., Channell, J. E. T., Claps, M., et al., 1999. Integrated Holbourn, A. E. L., Kuhnt, W., Soeding, E., 2001. Atlantic Paeo- Stratigraphy of the Cismon Apticore (Southern Alps, Italy): A bathymetry, Paleoproductivity and Paleocirculation in the ‘‘Reference Section’’ for the Barremian-Aptian Interval at Late Albian: The Benthic Foraminiferal Record. Palaeo- Low Latitudes. J. Foram. Res., 29(4): 371–391 geogr., Palaeoclimatol., Palaeoecol., 170: 171–196

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 59

Holbourn, A. E. L., Moullade, M., 1998. Lower Cretaceous Ben- graphic and Paleoenvironmental Setting of Aptian OAE thic Foraminifer Assemblages, Equatorial Atlantic: Biostrati- Black Shale Deposits in the Pieniny Klippen Belt, Slovak graphic, Paleoenvironmental, and Paleobiogeographic Sig- Western Carpathians. Cretaceous Research, 29(5–6): nificance. In: Mascle, J., Lohmann, G. P., Moullade, M., eds., 871–892 Proceedings of the Ocean Drilling Program, Scientific Re- Moullade, M., Bellier, J. P., Tronchetti, G., 2002. Hierarchy of sults, 159: 347–362 Criteria, Evolutionary Processes and Taxonomic Simplifica- Huber, B. T., Leckie, R. M., 2011. Planktic Foraminiferal Species tion in the Classification of Lower Cretaceous Planktonic Turnover across Deep-Sea Aptian/Albian Boundary Sections. Foraminifera. Cretaceous Research, 23(1): 111–148 J. Foram. Res., 41(1): 53–95 Musavu-Moussavou, B., Danelian, T., 2006. The Radiolarian Bi- Jauzein, A., 1967. Contribution à l’étude Géologique de la Tunisie otic Response to Oceanic Anoxic Event 2 in the Southern Septentrionale: les Confins de la Dorsale Tunisienne. Ann. Part of the Northern Proto-Atlantic (Demerara Rise, ODP Min. Géol., 22: 475 Leg 207). Rev. Micropal., 49(3): 141–163 Jud, R., 1994. Biochronology and Systematics of Early Creta- Musavu-Moussavou, B., Danelian, T., Baudin, F., et al., 2007. The ceous Radiolaria of the Western Tethys. Mem. Geol. (Lau- Radiolarian Biotic Response during OAE2. A High- sanne), 19: 1–147 Resolution Study across the Bonarelli Level at Bottaccione Kariminia, S. M., 2006. Upper Jurassic and Lower Cretaceous (Gubbio, Italy). Rev. Micropal., 50: 253–287 Radiolaria Biostratigraphy of California Coast Ranges: O’Dogherty, E. S., Carter, P., Dumitrica, S., et al., 2009. Catalogue [Dissertation]. University of Texas, Dallas of Mesozoic Radiolarian Genera. Part 2: Jurassic–Cretaceous. Kemkin, I. V., 2009. Early Cretaceous Radiolarians of the Amur Geodiversitas, 31: 271–356 River Lower Stream Area (Russia Far East) and Their Tec- O’Dogherty, L., 1994. Biochronology and Paleoecology of tonic Significance. Acta Geosc. Sin., 30(Suppl. 1): 21–24 Mid-Cretaceous Radiolarians from Northern Apennines (It- Kemkin, I. V., Filippov, A. N., 2010. Zyabrev’s Critical Paper En- aly) and Betic Cordillera (Spain). Mémoires de Géologie titled “On the Biostratigraphy of Accretionary Complexes of (Lausanne), 21: 415 the Far East: A Critical Review of Several Papers. Russian O’Dogherty, L., Bill, M., Gorican, S., et al., 2006. Bathonian Ra- Journal of Pacific Geology, 4(1): 91–94 diolarians from an Ophiolitic Mélange of the Alpine Tethys Kennedy, W. J., Gale, A. S., Bown, P. R., et al., 2000. Integrated (Gets Nappe, Swiss-French Alps). Micropaleontology, 51(6): Stratigraphy across the Aptian-Albian Boundary in the Mar- 425–485 nes Bleues, at the Col de Pré-Guittard, Arnayon (Drôme), O’Dogherty, L., Carter, E. S., Gorican, S., et al., 2010. Triassic and at Tartonne (Alpes de Haute-Provence), France: A Can- Radiolarian Biostratigraphy. Geological Society, London, didate Global Boundary Stratotype Section and Boundary Special Publications, 334: 163–200 Point for the Base of the Albian Stage. Cretaceous Research, O’Dogherty, L., Guex, J., 2002. Rates and Pattern of Evolution 21: 591–720 among Cretaceous Radiolarians: Relations with Global Pa- Khayati-Ammar, H., 1996. Stratigraphie et Micropaléontologie de leoceanographic Events. Micropaleontology, 48: 1–22 la Série Crétacée Inférieur des Massifs Derdj- Palechek, T. N., Savel’ev, D. P., Savel’eva, O. L., 2010. Albian- (Tunisie du Centre Nord). Mémoire DEA, Université de Cenomanian Radiolarian Assemblage from the Smaginsk Tunis II, Tunisie Formation, the Kamchatskii Mys Peninsula of Eastern Khomsi, S., Bédir, M., Soussi, M., et al., 2004. Mise en Evidence Kamchatka. Stratigraphy and Geological Correlation, 18(1): et Analyse d’une Structure Atlasique Ennoyée au Front de la 63–82 Chaîne Alpine Tunisienne. Comptes Rendus Geosci., 336(14): Perthuisot, V., 1978. Dynamique et Pétrogenèse des Extrusions 1293–1300 Triasiques en Tunisie Septentrionale: [Dissertation]. Ecole Kuhnt, H., Thurow, J., Wiedmann, J., et al., 1986. Oceanic Anoxic Normale Supérieure, Paris Conditions around the Cenomanian/Turonian Boundary and Reichelt, K., 2005. Late Aptian-Albian of the Vocontian Basin the Response of Biota. Mitteilungender Geologisch- (SE-France) and Albian of NE-Texas: Biostratigraphic and Palaöntologisches Institut der Universität Hamburg, 60: Paleoceanographic Implications by Plankticforaminifera 205–246 Faunas: [Dissertation]. Erlangung des Grades eines Kurilov, D. V., Vishnevskaya, V. S., 2011. Early Cretaceous Ra- Doktors der Naturwissenschaften, Université de Tübingen. diolarian Assemblages from the East Sakhalin Mountains. 125 Stratigraphy and Geological Correlation, 19(1): 44–62 Rigane, A., Feki, M., Gourmelen, C., et al., 2010. The «Aptian Lehmann, J., Heldt, M., Bachmann, M., et al., 2009. Aptian Crisis» of the South-Tethyan Margin: New Tectonic Data in (Lower Cretaceous) Biostratigraphy and Cephalopods from Tunisia. Journal of African Earth Sciences, 57(4): 360–366 North Central Tunisia. Cretaceous Research, 30(4): 895–910 Robaszynski, F., Amedro, F., Gonzalez-Donoso, J. M., et al., 2008. Meddeb, S., 1986. Sédimentationet Tectonique Polyphaséedans The Albian (Vraconnian)-Cenomanian Boundary at the Lesdômes d' Sahel Tunisien. Thèsededoctorat3e Western Tethyan Margins (Central Tunisia and Southeastern Cycle, Univ. Paris-Sud. 15 France). Bull. Soc. Géol. Fr., 179(3): 245–256 Memmi, L., 1999. L’Aptien et l’Albien de Tunisie. Robaszynski, F., Caron, M., Amédro, F., et al., 1994. Le Biostratigraphie à Partir des Ammonites. Bull. Soc. Geol. de Cénomanien de la Région de Kalaat Senan (Tunisie Centrale): France, 170(3): 303–309 Litho-Biostratigraphie et Interpré-Tation Séquentielle. Revue Michalík, J., Soták, J., Lintnerová, O., et al., 2008. The Strati- de Paléobiologie, 12(2): 351–505

60 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

Saadi, J. M., Ben Youssef, P., Souquet, B., et al., 1994. Ocean: ODP Leg 103 (Sites 638, 640 and 641) and DSDP Stratigraphie Séquentielle du Crétacé Inférieur de la Région Legs 93 (Site 603) and 47B (Site 398). In: Boillot, G., Win- d’Enfidha (NE de la Tunisie). Comp. Ren. Acad. Sci. de tere, E. L., et al., eds., Proceedings of the Ocean Drilling Paris, 319: 119–125 Program, Scientific Results, 103: 379–418 Saadi, J., 1990. Exemple de Sédimentation Syntectonique au Tsikos, H., Karakitsios, V., van Breugel, Y., et al., 2004. Organic Crétacé Inférieur le Long d’une Zone de Décrochement NS. Carbon Deposition in the Cretaceous of the Ionian Basin, Les Structures d’Enfidha (Tunisie Nord-Orientale). NW Greece: The Paquier Event (OAE 1b) Revisited. Geo- Géodynamique, 5: 17–33 logical Magazine, 141(4): 401–416 Saadi, J., 1991. Sedimentation en Zone Mobile Coulissante, Tyszka, J., 2006. of Albian Gavelinellidae (Foraminif- l'exemple du Crétacé Inferieur des Structures era) from the Lower Saxony Basin, Germany. Palaeontology, Submeridiennes de La région d'Enfidha. (Prolongement 49(6): 1303–1334 Septentrional de l’Axe N.S-Tunisie Nord-Orientale): Vila, J. M., Ben Youssef, M., Charrière, A., et al., 1994. [Dissertation]. Université de Pau, France Découverte en Tunisie, au SW du Kef, de Matériel Triasique Saadi, J., Duee, G., 1991. Importance des Phenomenes de Interstratifié dans l’Albien: Extension du Domaine à Resedimentation au Passage Jurassique-Crétace et ‘‘Glaciers de sel” Sous-Marins des Confins Algéro-Tunisiens. Aptien-Albien dans les Structures d'Enfidha (Tunisie Comp. Ren. Acad. Sci., 318(II): 1661–1667 Nord-Orientale) and Consequences Tectono-Eustatiques. Vila, J. M., Ben Youssef, M., Chikhaoui, M., et al., 1996. Geol. Medit., 18: 135–147 Deuxième étude de Surface d’un Grand «Glacier de Sel» Schlanger, S. O., Jenkyns, H. C., 1976. Cretaceous Oceanic An- Sous-Marin Albien (250 km2): les Masses Triasiques du oxic Events: Causes and Consequences. Geol. Mijnb., «Diapir» de Ben Gasseur et de l’anticlinal du Kef (NW 55(3–4): 179–184 Tunisien). Bull Soc. Géol. Fr., 167: 235–246 Silva, I. P, Sliter, W. V., 1999. Cretaceous Paleoceanography: Vila, J. M., Ghanmi, M., Ben Youssef, M., et al., 2002. Les Evidence from Planktic Foraminiferal Evolution. In: Barrera, «Glaciers de Sel» Sous-Marins des Marges Continentales E., Johnson, C. C., eds., Evolution of the Cretaceous Passives du Nord-Est du Maghreb (Algérie-Tunisie) et de la Ocean-Climate System. Geol. Soc. Am., Special Paper, 332: Gulf Coast (USA): Comparaisons, Nouveau Regard sur les 301–328 «Glaciers de Sel Composites, Illustré par celui de Fedj el Slaczka, A., Gasiñski, M. A., Bąk, M., et al., 2009. The Clasts of Adoum (Nord-Ouest Tunisien) et Revue Globale». Eclogae Cretaceous Marls in the Conglomerates of the Konradsheim Geol. Hel., 95: 347–380 Formation (Pöchlau Quarry, Gresten Klippen Zone, Austria). Yurtsever, T. S., Tekin, U. K., Demirel, I. H., 2003. First Evidence Geol. Carpath., 60: 151–164 of the Cenomanian/Turonian Boundary Event (CTBE) in the Sliter, W. V., 1989. Biostratigraphic Zonation for Cretaceous Alakircay Nappe of Antalya Nappes, Southwest Turkey. Planktic Foraminifers Examined in Thin Section. J. Foram. Cretaceous Research, 24: 41–53 Res., 19(1): 1–19 Zghal, I., Ben Hadjali, N., Razgallah, S., et al., 1997. Soua, M., Zaghbib-Turki, D., O’Dogherty, L., 2006. Les Foraminifères et Ostracodes de l’Aptien-Albien du Jebel Réponses Biotiques des Radiolaires à l’événement Anoxique Hameima (Region de Tadjerouine, Tunisie): Biostratigraphie, du Cénomanien Supérieur dans la Marge sud Téthysienne Paleoécologie. Africa Geosc. Rev., 4: 361–372 (Tunisie). Proceeding of the 10th Tunisian Petroleum Zyabrev, S. V., 2011. Stratigraphy and Structure of the Central Exploration & Production Conference. 195–216 East Sakhalin Accretionary Wedge (Eastern Russia). Russian Talbi, R., 1991. Etude Géologique et Géochimique des Faciès Journal of Pacific Geology, 5(4): 313–335 Riches en Matière Organique d’âge Albien du Bassin de Bir Zyabrev, S. V., Aitchison, J. C., Abrajevitch, A. V., et al., 2003. M’Cherga (NE de Tunisie): Déterminisme de leur Genèse et Precise Radiolarian Age Constraints on the Timing of Ophio- Intérêt pétrolier de la Région: [Dissertation]. University de lite Generation and Sedimentation in the Dazhuqu Terrane, Tunis, Tunisie Yarlung-Tsangpo Suture Zone, Tibet. J. Geol. Soc. London, Thurow, J., 1988. Cretaceous Radiolarians of the North Atlantic 160(6): 591–599

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 61

Plate 1

1. Globigerinelloides ferreolensis (Moullade), 100 µm, AS3; 2. Microhedbergella rischi (Moullade), 100 µm, AS11; 3. Hedbergella excelsa Longoria, 50 µm, AS6; 4. Ticinella aff. yezoana? Takayanagi and Iwamoto, 50 µm, RAG 3; 5. Paraticinella eubejaouaensis Randrianasolo and Anglada, 50 µm, AS9. 6. Microhedbergella pseudodelrioensis Huber and Leckie, 50 µm, GA21; 7. Clavihedber- gella (Lilliputianella) bizonae (Chevalier), 100 µm, AS3; 8. Hedbergella planispira (Tappan), 100 µm, RAG8; 9. Globigerinelloides aptiensis (Longoria), 100 µm, AS3; 10. Planomalina cheniourensis Sigal, 100 µm, AS3; 11. Globigerinelloides bentonensis (Mor- row), 100 µm, AS13; 12. Ticinella aff. madecassiana SIGAL, 50 µm, AS13.

62 M Ben Fadhel, T Zouaghi, A Amri and M Ben Youssef

Plate 2

1. Dictyomitra cf. montisserei (Squinabol), 50 µm, GA8; 2. Pseudodictyomitra lodogaensis Pessagno, 50 µm, GA8; 3. Archaeodic- tyomitra cf. montisserei (Squinabol), 50 µm, GA21; 4. Hiscocapsa sp., 50 µm, GA9; 5. Archeodictyomitra sp., 50 µm GA8; 6. Dic- tyomitra cf. montisserei (Squinabol), 100 µm GA24; 7. Pseudoeucyrtis cf. hanni 100 µm, GA8; 8. Cryptamphorella conara (Fore- man), 50 µm, GA21; 9. Archaeodictyomitra cf. montisserei (Squinabol), 100 µm, GA21; 10. Thanarla cf. pseudodecora? (Tan), 50 µm, GA8; 11. Pseudodictyomitra lodogaensis Pessagno, 50 µm, GA21; 12. Pseudodictyomitra cf. lodogaensis Pessagno 200 µm, GA20.

Radiolarian and Planktic Foraminifera Biostratigraphy of the Early Albian Organic Rich Beds of Fahdene Formation 63

Plate 3

1. Stichomitra cf. communis Squinabol, 100 µm, GA25; 2. Pseudodictyomitra sp., 100 µm, GA25; 3. Stichocapsa sp., 100 μm, GA20; 4. Dactyliosphaera maxima (Pessagno), 100 µm, BLH3; 5. Distylocapsa cf. micropora (Squinabol), 100 µm, BLH8; 6. Holocrypto- canium barbui Dumitrica, 50 µm, BLH8; 7. Pessagnobrachia cf. rara (Squinabol) 100 µm, BLH8; 8. Cavaspongia sphaerica O’Dogherty, 100 µm, BLH3; 9. Dactyliosphaera maxima (Pessagno), 100 µm, BLH3; 10. Godia concava (Li & Wu), 100 µm, BLH8; 11. Cavaspongia sphaerica O’Dogherty, 50 µm, BLH8; 12. Savaryella cf. quadra (Foreman), 100 µm, BLH8; 13. Stichomitra cf. communis Squinabol, 100 µm, BLH8; 14. Godia cf. concava (Tumanda), 100 µm, BLH8.