Experiences and Challenges of CAN Transceivers in Up- Integrated System Basis Chips

Total Page:16

File Type:pdf, Size:1020Kb

Experiences and Challenges of CAN Transceivers in Up- Integrated System Basis Chips iCC 2005 CAN in Automation Experiences and challenges of CAN transceivers in up- integrated system basis chips Wayne Chen, Narasimhan Trichy, Kannan Soundarapandian, Sameer Pendharkar, John Carpenter, and James Kohout Texas Instruments, Dallas, TX This paper will discuss the experiences and challenges with the implementation of up- integrated CAN transceivers found on system-basis chips (SBCs) for the automotive market segment. These SBCs exist in an extremely harsh environment, factors such as system interoperatibility, enhanced electrostatic protection, and electromagnetic interference need to be understood and designed in the integrated component to help reduce issues at system level. This is further complicated as the needs for up- integration forces a less than idea silicon process selection to maintain cost goals for the SBC. Detailed discussion of lessons learned include the silicon process development of ESD robust structures at the device level using a lateral-DMOS silicon controller reticifier; the addition of clamp structures to protect the device during short circuit conditions when a CAN choke is used; the influence of fault protection structures on the robustness of the receiver to electromagnetic interference during direct power injection testing; the future market trends for system-on-a-chip development and the impact of process selection to ensure the feasibility of an up- integrated transceiver; and system power up/down issues to minimize bus distrubances. The paper will conclude with future challenges related to up-integrated CAN transceivers. I. System Basis Chips (SBCs) 1 shows an SBC with several of the building blocks. Note that the CAN Over the last decade, the automotive transceiver utilizes only a fraction of the industry trend has been to move to highly die area needed for the IC. Although the up-integrated, smart power Integrated transceiver serves an important Circuits (ICs), also known as system basis communications function, the circuitry chips. Systems previously containing alone is not sufficient to drive process multiple ICs, each providing a specific definition. function, now contain one or two system- on-a-chip ICs containing a wide range of analog, power, and digital functions. Like GPIO and K-line CAN Transceiver Wheel many ICs today, they have a digital core (2) Sensors comprised from a standard cell library 10-bit ADC similar to a digital application specific IC (ASIC). They also include analog building blocks such as operation amplifiers, comparators, data converters, and Core Logic Solenoid Solenoid Drivers voltage/current references. Somewhat Drivers more unique is that power circuits are also incorporated into the IC to add the ability Voltage to control motors, switches, and solenoids, NVM & and to generate power supplies, both Current Charge Pump Biases switching and linear, for internal and Watch- dog external circuitry. On a single piece of Regulators Fault Monitor silicon, one can find low power circuitry biased only with few microamperes of Figure 1: Example System Basis Chip current that may be next to a power device switching several amps of current. Figure 09-1 iCC 2005 CAN in Automation II. The Challenge the standard recommends protection to short circuit faults from battery and ground, To build an up-integrated CAN transceiver as well as shorted load conditions, the use on a highly integrated IC is a challenge as of chokes to improve radiated emissions the semiconductor technology that is can cause higher than expected transient chosen is not based solely for the voltages along the CAN bus which the transceiver. Higher levels of integration transceiver must tolerate without failure. force semiconductor process development engineers to choose fabrication steps and create components that offer higher levels III. ESD Protection of digital integration with high precision Insufficient ESD protection on the CAN analog devices and high voltage power bus pins is one of the leading causes of devices. The addition of power devices failures and device returns. As the bus also benefits CAN transceiver design as pins are the means of communication higher voltage components allow the between different modules within the car, it common-mode range specification to be is susceptible to mishandling during met. assembly or maintenance as the pins are However, the process must also be a low- exposed to an unprotected environment. cost solution. To achieve this goal, a Although every company quality target is junction isolated process is used instead of zero DPPM (defective parts per million), the more expensive dielectric isolated automotive companies insist on it. process. Junction isolation requires fewer Defective parts can come during the process steps, and is hence less assembly process, initial testing, or field expensive to manufacture. However, failures. The failures due to ESD dielectric isolation benefits from the lack of exposure must be reduced or eliminated, active parasitic components which and increasing protection levels is one of complicate circuit design and often cause the methods that can be implemented on unsuspected operation. These parasitic ICs. components often become active if the node is allowed to traverse above or below the supplies, thereby forward biasing PN 30 A ESD Model junctions . Furthermore, it is important to 30 Amp Peak Resd realize that these PN junctions can be the Current!! Cesd base emitter junction of NPN or PNP 8kV IEC transistors. Figure 2 shows a CMOS HBM: 15 A Resd=1.5kohm, Cesd=100pF cross-section with the numerous parasitic IEC: components that exist. Resd=300ohm, Cesd=150pF 8kV HBM Parasitic NPN formed Parasitic PNP formed if NMOS drain goes if PMOS drain goes below ground above supply 50 ns 100 ns NMOS PMOS sourcedrain ground supply drain source Figure 3: IEC and HBM ESD model comparison. n+n+ p+ n+ p+ p+ There are two main models for the ESD event: human body model and the N-well International Electrotechnical Commission p-sub (IEC). Although human body is the most Figure 2: CMOS cross-section with active parasitic familiar to IC manufactures, IEC is more components important to system engineers. The IEC Regardless of these process technology strike is much more severe due to the challenges, the automotive environment higher capacitance and voltage, as well as requires a robust transceiver design. the requirement that the strike occur when While needing to meet the ISO11898 the device is both powered-on and –off. standard, additional requirements are IEC is presently a focus as it is believed to needed in the areas of electrostatic be representative of actual ESD events in discharge protection (ESD) and the field. Figure 3 illustrates the electromagnetic immunity (EMI). While differences between the HBM and IEC 09-2 iCC 2005 CAN in Automation ESD model, as well as the transient were to fire while the bus was shorted to current waveform for an 8kV strike. battery, then there would be no way to Car makers and tier-1 suppliers (module unlatch the SCR. Under these conditions, suppliers to the carmakers) have the SCR would be destroyed. This can be continued to increase demands on ESD protected, but it is then important to performance. European companies have understand situations that could cause the been steadily increasing performance SCR to trigger. requirements from 8kV to 15kV over the past few years, with the Japanese Source Drain manufactures requesting as high as 25kV. Lpoly Traditional ESD structures that clamp the output voltage to protect internal circuitry nsd have been tried. However, it is important p- to keep in mind that for a 25kV IEC ESD strike, it is expected that currents of 45 psd nsd amps are expected to exist for 50nsec. n-well Although ESD structures are able to handle this amount of energy (<30uJ), it is Figure 4a: Standard LDMOS cross-section difficult to create a traditional clamp Drain structure that has sufficiently low Source Lpoly resistance to protect the internal circuitry. The characteristic of a good ESD psd nsd protection device is a low impedance when p- conducting under ESD strike, completely inactive during normal operating condition, psd nsd fast turn on and capability to turn off the n-well low impedance path at the conclusion of the ESD strike. An SCR, if it can be successfully turned off without latch up or Figure 4b: SCR-LDMOS cross-section other problems in the IC, is a very attractive ESD protection device because IV. Inductive kicks – another problem of the very low impedance in the on state. This is accomplished by allowing the One aspect of the CAN bus that can cause voltage to “snap-back” once the triggering excessive voltage transients is the voltage is reached, enough margin is inductance associated with the wiring gained to offset any issues caused by under short circuit conditions. Figure 5 parasitic on-resistance. shows a system under short circuit The device is built in a bipolar conditions and the current circuit complimentary MOS (BiCMOS) process. i configuration to protect against positive The SCR structure is based on the voltage transients. As the driver is turned standard LDMOS device with on, CANL goes into current limit, characteristics which have been reported establishing a current in the inductor. in [ii]. Figures 4a and 4b compares the When the driver turns off, inductance in cross sections of the standard 60V the wiring tries to maintain the same level LDMOS device and the new SCR-LDMOS of current and since the CANL node is now device. As can be seen from Figure 4b, high-impedance, the voltage on CANL current flowing underneath the drain side rises until the energy in the inductor is p-region can forward bias the p-n junction removed. As the inductance of the line is on the drain side, thus helping trigger the small, it does not have significant amounts pnpn SCR structure. Details of this of energy.
Recommended publications
  • TI Designs: TIDA-01428 Automotive Discrete SBC Pre-Buck, Post-Boost with CAN Reference Design
    TI Designs: TIDA-01428 Automotive Discrete SBC Pre-Buck, Post-Boost With CAN Reference Design Description Features The TIDA-01428 reference design implements a • Wide-Input Voltage, Fixed 3.3-V Buck Converter discrete system basis chip (SBC) with a 1-A, wide-VIN, • Low-Input Voltage, Fixed 5-V Boost Converter buck converter to 3.3 V followed by a compact, low- • CAN Transceiver With Flexible Data-Rate (FD) up input voltage, fixed 5-V boost converter for powering a to 5 MBPS controller area network (CAN) physical layer interface. The design has been tested for CISPR 25 radiated • Passes Class 4 CISPR 25 Radiated Emissions emissions and conducted emissions using the voltage • Passes Class 4 CISPR 25 Conducted Emissions method and for immunity to bulk current injection (BCI) • Passes ISO 11452-4 Bulk Current Injection per ISO 11452-4 with CAN communication operating at 500 KBPS. The TIDA-01428 is an EMC-vetted • Able to Survive Load Dump Voltages up to 42 V power tree plus CAN reference design that can be • Maintains Regulated 3.3-V and 5-V Supplies used in many automotive applications. Through Battery Input Voltages Down to 4.3 V Resources Applications • Automotive Body Control Module (BCM) TIDA-01428 Design Folder LM53601-Q1 Product Folder • Automotive Front Camera TPS61240-Q1 Product Folder • Automotive Head Unit TMS320F28030PAGQ Product Folder TCAN1042V-Q1 Product Folder SN74LVC2G06-Q1 Product Folder CSD17313Q2 Product Folder ASK Our E2E Experts 3.3-V .uck 5-V La53601-v1 TtS61240-v1 CANH a/h t]}o}¡ CAb TMS320 TCAb1042V-v1 C28030tADv CANL Copyright © 2017, Texas Instruments Incorporated An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
    [Show full text]
  • D4.1 Preliminary BMS Design and Sensor Integration Concept
    Ref. Ares(2021)2904016 - 30/04/2021 Delivering the 3b generation of LNMO cells for the xEV market of 2025 and beyond Preliminary BMS design and sensor integration concept Horizon 2020 | LC-BAT-5-2019 Research and innovation for advanced Li-ion cells (generation 3b) GA # 875033 Deliverable No. D4.1 Deliverable Title Preliminary BMS design and sensor integration concept Due Date 2020-04-30 Deliverable Type Report Dissemination level Public Written By Stefan Waldhör (FhG) 2021-04-30 Checked by Simone Mannori (ENEA) 2021-04-24 Approved by Claudio Lanciotti (MIT), Boschidar Ganev (AIT) 2021-04-29 Status Final 2021-04-30 This project has received funding from the European Union’s H2020 research and innovation programme under Grant Agreement no. 875033. This publication reflects only the author’s view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains. Revision History Version Date Who Changes 1.1 2021-04-30 AIT • Reviewed final version of the document 1.0 2021-04-28 FhG • Final version of the document 0.14 2021-04-28 MIT • Review of the document 0.13 2021-04-21 FHG • Add conclusion • Add section on mechanical integration 0.12 2021-04-21 VALEO • Add section on thermal management system • Add image of foxBMS 2 Master Unit • Add paragraph on foxBMS 2 Master Unit • Update system architecture block diagram with TMB 0.11 2021-04-19 FhG • Add section on the Interface Board • Add section on data storage and connectivity • Add section on mechanical integration • Fix
    [Show full text]
  • Fault Tolerant Design Techniques for Smart Power Drivers and Diagnostic Circuits
    Fault Tolerant Design Techniques for Smart Power Drivers and Diagnostic Circuits Fehlertolerante Design-Techniken für Smart Power-Treiber und Diagnoseschaltungen Der Technischen Fakultat der Friedrich-Alexander Universität Erlangen-Nürnberg Zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Sri Navaneethakrishnan Easwaran Erode, India 1 Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 23.05.2017 Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch Gutachter: Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel Prof. Dr.-Ing. Martin März 2 Dedicated to my family 3 Abstract The demand for electronic control is increasing and is replacing most of the hydraulics in the automotive. Automobiles produced today have a longer life expectancy than at any time in the past. One of the strongest contributors for this is the increase in electronic equipment and systems that have replaced mechanical devices. Without proper electrical protection, however, these electronic systems in automobiles can fail without warning there by creating risk for the driver and passengers including injuries and life threat. Power semiconductor devices that are used in these electronic systems handle high currents in the order of 2A at 40V. Due to this high voltage and high current several design measures have to be considered in the design to make these circuits fault tolerant. The unintentional or inadvertent activation of the powerFETs should be avoided else it would trigger very high currents. In the light of this, the purpose of the present doctoral dissertation is set to contribute to the design of Smart Power Drivers for airbag squib driver applications.
    [Show full text]
  • MC33907 08 Safe System Basis Chip Hardware Design and Product Guidelines
    NXP Semiconductors Document Number: AN4766 Application Note Rev. 6.0, 2/2019 MC33907_08 safe system basis chip hardware design and product guidelines 1 Introduction Contents 1 Introduction . 1 This application note provides design guidelines for integrating the 2 Overview . 1 MC33907_08 system basis chip (SBC) into automotive and 2.1 Typical block diagram . 2 industrial electronic systems. It shows how to optimize PCB layout 2.2 Voltage regulators . 3 and gives recommendations regarding external components. 2.3 Built-in CAN transceiver . 4 2.4 Built-in LIN transceiver . 4 To minimize the EMC impact from embedded DC/DC converters, 2.5 Analog multiplexer . 4 pay attention to PCB component routing when designing with the 2.6 Configurable I/Os . 4 MC33907_08. 2.7 Safety outputs . 4 2.8 Fail-safe machine . 5 2.9 Low-power mode off . 5 2.10 Watchdog . 5 2.11 MCU flash programming . 5 2 Overview 2.12 Simplified internal power tree . 6 3 Known device behaviors . 7 The MC33907 and MC33908 are multi-output power supply 3.1 Unexpected current limitation report after start up . 7 integrated circuits dedicated to the automotive market. The 4 Application schematic . 8 MC33907_08 simplifies system implementation by providing ISO 5 Optional configurations . 9 26262 system solutions, documentation, and an optimized MCU 5.1 Pre-regulator, buck or buck-boost configuration . 9 interface, enabling customers to minimize the cost and complexity 5.2 VCCA, current capability . 10 of their designs. The MC33907_08’s integral EMC and ESD 5.3 VAUX . 10 protection also facilitates less complex system designs with 5.4 IO_0 ignition connection .
    [Show full text]
  • TLIN1028-Q1 Automotive Local Interconnect Network (LIN)
    TLIN1028-Q1 www.ti.com SLLSEX4A – AUGUST 2019 – REVISEDTLIN1028-Q1 OCTOBER 2020 SLLSEX4A – AUGUST 2019 – REVISED OCTOBER 2020 TLIN1028-Q1 Automotive LIN 125-mA System Basis Chip (SBC) 1 Features 2 Applications • AEC-Q100 (Grade 1): Qualified for automotive • Body electronics and lighting applications • Hybrid, electric & powertrain systems • Local interconnect network (LIN) physical layer • Automotive infotainment and cluster specification ISO/DIS 17987–4 compliant and • Appliances conforms to SAE J2602 recommended practice for LIN 3 Description • Functional Safety-Capable The TLIN1028-Q1 is a local interconnect network – Documentation available to aid functional safety (LIN) physical layer transceiver, compliant to LIN 2.2A system design ISO/DIS 17987–4 standards, with an integrated low • Supports 12-V applications dropout (LDO) voltage regulator. • Wide operating ranges This LIN system basis chip (SBC) reduces system – ±58 V LIN bus fault protection complexity by providing a 3.3 V or 5 V rail with up to – LDO output supporting 3.3 V or 5 V 70 mA (D) or 125 mA (DRB and DDA) of current to – Sleep mode: Ultra-low current power microprocessors, sensors or other devices. consumption allows wake-up event from: The TLIN1028-Q1 has an optimized current-limited • LIN bus or local wake through EN pin wave-shaping driver which reduces electromagnetic – Power-up and down glitch-free operation emissions (EME). The TLIN1028-Q1 converts the LIN protocol data stream on the TXD input into a LIN bus • Protection features: signal. The receiver converts the data stream to logic- – ESD protection, VSUP under-voltage protection level signals that are sent to the microprocessor – TXD dominant time out (DTO) protection, through the open-drain RXD pin.
    [Show full text]
  • Automotive Solutions for Electro-Mobility Contents
    Automotive Solutions for Electro-Mobility Contents 3 Smart Mobility 4 Electro-Mobility 5 Key Applications 6 Main Traction Inverter 7 On-Board Charger (OBC) 8 48V Start-Stop System 9 Bidirectional DC/DC Converter 10 Battery Management System 11 48V Electric Traction 12 Acoustic Vehicle Alerting System (AVAS) 13 HV Battery Disconnect & Fire-off System 14 Vehicle Control Unit (VCU) 16 Key Technologies 18 Development Tools 18 Product Selectors samples, Evaluation Boards 19 SPC5 Automotive MCU Evaluation Tools 21 AutoDevKit Smart Mobility It is estimated that 80% of all innovations in the automotive industry today are directly or indirectly enabled by electronics. With vehicle functionality improving with every new model this means a continuous increase in the semiconductor content per car. With over 30 years’ experience in automotive electronics, ST is a solid, innovative, and reliable partner with whom to build the future of transportation. ST’s Smart Mobility products and solutions are making driving safer, greener and more connected through the combination of several of our technologies. SAFER Driving is safer thanks to our Advanced Driver Assistance Systems (ADAS) – vision processing, radar, imaging and sensors, as well as our adaptive lighting systems, user display and monitoring technologies. GREENER Driving is greener with our automotive processors for engine management units, engine management systems, high-efficiency smart power electronics at the heart of all automotive sub-systems and devices for hybrid and electric vehicle applications. 80% MORE CONNECTED And vehicles are more connected using our infotainment-system and telematics of all innovations processors and sensors, as well as our radio tuners and amplifiers, positioning in the automotive technologies, and secure car-to-car and car-to-infrastructure (V2X) connectivity solutions.
    [Show full text]
  • Automotive Power Selection Guide Ultimate Power – Perfect Control
    Automotive Power Selection Guide Ultimate power – perfect control www.infineon.com/automotivepower The ultimate power to control your applications including automotive, transportation, industrial, lighting and motor control. For a comprehensive and reliable portfolio of products Our commitment to quality is demonstrated through for automotive and other applications, look no further than our focus on automotive excellence, the most rigorous zero the product range from Infineon. We have used our 40 defect program in the industry. years of experience of developing and producing products to meet the demands of the automotive market, and our This selection guide provides an overview of our ICs innovative technologies to design and produce a large and their packages, which are automotive qualified and number of power products that meet all requirements of available for your current and future electronic system the automotive industry and also the transportation, designs. lighting and motor-drive industries. 2 Automotive applications › Electric sunroof › Rear wiper › Airbag › Suspension › Window li › Power seat › Electric mirrors Power door › Font wiper › › Body control module/gateway › Starter alternator › Steering › Lighting › Throttle control › Headlight leveling › Engine control › Transmission › HVAC › Hybrid › Brake system Automotive power components used in other applications Industrial drives Electric toys 3 We meet all requirements for cost-effective application solutions Smart Power ICs Power System ICs Embedded Power ICs › Smart multi-channel
    [Show full text]
  • Power Supply Platform and Functional Safety Concept Proposals for a Powertrain Transmission Electronic Control Unit
    electronics Article Power Supply Platform and Functional Safety Concept Proposals for a Powertrain Transmission Electronic Control Unit Diana Raluca Biba 1, Mihaela Codruta Ancuti 1,*, Alexandru Ianovici 2, Ciprian Sorandaru 1 and Sorin Musuroi 1 1 Electrical Engineering Department, Faculty of Electrical and Power Engineering, University Politehnica Timisoara, 300223 Timisoara, Romania; [email protected] (D.R.B.); [email protected] (C.S.); [email protected] (S.M.) 2 Continental Automotive, Powertrain Transmission Department, 90411 Nurnberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +40-766-699556 Received: 12 May 2020; Accepted: 15 September 2020; Published: 27 September 2020 Abstract: In the last decade, modern vehicles have become very complex, being equipped with embedded electronic systems which include more than a thousand of electronic control units (ECUs). Therefore, it is mandatory to analyze the potential risk of automotive systems failure because it could have a significant impact on humans’ safety. This paper proposes a novel, functional safety concept at the power management level of a system basis chip (SBC), from the development phase to system design. In the presented case, the safety-critical application is represented by a powertrain transmission electronic control unit. A step-by-step design guideline procedure is presented, having as a focus the cost, safety, and performance to obtain a robust, cost-efficient, safe, and reliable design. To prove compliance with the ISO 26262 standard, quantitative worst-case evaluations of the hardware have been done. The assessment results qualify the proposed design with automotive safety integrity levels (ASIL, up to ASIL-D).
    [Show full text]
  • AN13091, EV Traction Motor Power Inverter Control Reference Platform
    AN13091 EV Traction Motor Power Inverter Control Reference Platform Rev. 1 — 19 March 2021 Application note 1 Acronyms Table 1. Acronyms Acronym Definition PIM Power Inverter Module VCU Vehicle Control Unit ECU Electronic Control Unit TC Traction Control SDK Software Development Kit SBC System Basis Chip SPI Serial Peripheral Interface MCU Micro-Controller Unit IGBT Insulated-Gate Bipolar Transistor GD Gate Driver ASIL Automotive Safety Integrity Level RDC Resolver-to-Digital Converter SiC Silicon Carbide CMF Common Mode Failure NXP Semiconductors AN13091 EV Traction Motor Power Inverter Control Reference Platform 2 General Description The NXP EV Power Inverter Control Reference Platform provides a hardware reference design, system basic software, and a complete system functional safety enablement as a foundation on which to develop a complete ASIL-D compliant high voltage, high-power traction motor inverter for electric vehicles. The Reference Platform has been designed into an evaluation prototype demonstrating 150 kW peak output power and >96% electrical efficiency operating from a 320 V supply voltage. The hardware reference platform is comprised of four boards: • System control board – Same design and components apply when transitioning from IGBT to SiC • Power stage driver board – GD3100 can be used for IGBT and SiC • Current sensor board • Vehicle interface board Figure 1. Inverter Control Reference Platform boards System control board: AN13091 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved. Application note Rev. 1 — 19 March 2021 2 / 42 NXP Semiconductors AN13091 EV Traction Motor Power Inverter Control Reference Platform • This board contains three key NXP integrated circuits.
    [Show full text]
  • Product Catalog 2021/2022 Product Catalog 2021/2022
    Product Catalog 2021/2022 Product Catalog 2021/2022 Elmos Product Catalog | 2021/2022 1 Driving future mobility Made for you: Perfectly fitting ICs Elmos ICs bring innovation into the customer’s system. Innovation Matters - this is our Next to a broad range of ASSPs (Application Specific Standard Product) Elmos offers claim. We are one of the world’s most experienced semiconductor companies for the ASICs (Application Specific Integrated Circuit), that are specifically designed to the cus- automotive industry. Our components communicate, measure, regulate and control tomer’s needs. The advantage of an ASIC: The special chip is tailor-made for use in the safety, comfort, powertrain and network functions. For over 35 years, Elmos has been customer application and its individual design stays protected. bringing new functions to life and making mobility worldwide safer, more comfortable and more energy efficient. With our solutions we are already the worldwide #1 in appli- Best possible system integration, which means creating a higher functionality whilst cations with great future potential, such as ultrasonic distance measurement, ambient simultaneously reducing the complexity at system level, is the target of the work. System light and intuitive HMI. knowledge combined with expertise and the optimal choice of possible integration strat- egies are prerequisites for success. Elmos ICs serve the following global megatrends: Autonomous driving Our design teams are experts in the following application fields: Electromobility/CO reduction 2 Sensor ICs Safety, connectivity and comfort Ultrasonic Distance, Sensor Signal Processor, Optical IR, Smoke Detector, Passive Infrared With locations all over the world, we are represented in all key markets and always close Motor Control ICs to the customer.
    [Show full text]
  • High Power X-Band RF Test Stand Development and High Power Testing of the CLIC Crab Cavity
    High Power X-band RF Test Stand Development and High Power Testing of the CLIC Crab Cavity Benjamin J. Woolley This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy August 2015 Abstract This thesis describes the development and operation of multiple high power X-band RF test facilities for high gradient acceleration and deflecting structures at CERN, as re- quired for the e+ e- collider research programme CLIC (Compact Linear Collider). Signif- icant improvements to the control system and operation of the first test stand, Xbox-1 are implemented. The development of the second X-band test stand at CERN, Xbox-2 is followed from inception to completion. The LLRF (Low Level Radio Frequency) system, interlock system and control algorithms are designed and validated. The third test stand at CERN, Xbox-3 is introduced and designs for the LLRF and control systems are pre- sented. The first of the modulator/klystron units from Toshiba and Scandinova is tested. CLIC will require crab cavities to align the bunches in order to provide effective head- on collisions. An X-band travelling wave cavity using a quasi-TM11 mode for deflection has been designed, manufactured and tested at the Xbox-2 high power test stand. The cavity reached an input power level in excess of 50 MW, at pulse widths of 150 ns with a measured breakdown rate (BDR) of better than 10 -5 breakdowns per pulse (BDs/pulse). At the nominal pulse width of 200 ns, the cavity reached an input power level of 43 MW with a BDR of 10-6 BDs/pulse.
    [Show full text]
  • 33742 33742S Advance Information System Basis Chip
    查询MC33742DWR2供应商Freescale Semiconductor,捷多邦,专业PCB打样工厂,24小时加急出货 Inc. MOTOROLA Document order number: MC33742 SEMICONDUCTOR TECHNICAL DATA Rev 2.0, 10/2004 Advance Information 33742 33742S System Basis Chip (SBC) with Enhanced High-Speed CAN Transceiver SYSTEM BASIS CHIP WITH ENHANCED The 33742 and the 33742S are monolithic integrated circuits combining HIGH-SPEED CAN many functions frequently used by automotive environmental control units (ECUs). The 33742 is an SBC having a fully protected fixed 5.0 V low-drop regulator with current limit, overtemperature pre-warning, and reset. An output drive with . sense input is also provided to implement a second 5.0 V regulator, using an . external PNP bipolar junction transistor. The 33742 has normal, standby, stop, c and sleep modes, an internally switched high-side power supply output with n four wake-up inputs, programmable window watchdog, interrupt, reset, SPI I input control, and a high-speed CAN transceiver compatible with CAN 2.0 A , and B protocols for module-to-module communication. r DW SUFFIX o Features CASE 751F-05 t • High-Speed 1.0 Mbps CAN Interface with Bus Diagnostic Capability 28-TERMINAL SOICW c (Detection of CANH and CANL Short to Ground, to VDD, and to VSUP) u • Low-Drop Voltage 5.0 V, 200 mA V Regulator with Current-Limiting, d DD ORDERING INFORMATION n Overtemperature Pre-Warning, and Output Monitoring with Reset Temperature o • Additional 5.0 V Regulator with External Series Pass Transistor Device Package Range (TA) c • Normal, Standby, Stop, and Sleep Modes with Low Sleep
    [Show full text]