Isolement Et Caractérisation De Bactéries Cadmium-Résistantes De Sols Des Sites Pollués : Etude De L’Accumulation Des Ions Métalliques

Total Page:16

File Type:pdf, Size:1020Kb

Isolement Et Caractérisation De Bactéries Cadmium-Résistantes De Sols Des Sites Pollués : Etude De L’Accumulation Des Ions Métalliques N° d’ordre 05/2019-D/S.B UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE USTHB/ALGER FACULTE DES SCIENCES BIOLOGIQUES THESE de Doctorat en Sciences Présentée pour l’obtention du grade de Docteur en Sciences Biologiques Spécialité : Ecologie Microbienne de la Rhizosphère Par Yakoubi Lila SUJET Isolement et caractérisation de bactéries cadmium-résistantes de sols des sites pollués : Etude de l’accumulation des ions métalliques Soutenue publiquement le 07 / 02 /2019 devant le jury composé de : Mr Hacene H. Professeur à l‘ USTHB /FSB Président Mme Benmalek Y. Professeur à l’ USTHB /FSB Directrice de thèse Mme Abrous O. Professeur à l’ USTHB /FSB Examinatrice Mme Gana-Kebbouche S . Professeur à l’ UMBB Examinatrice Mr Jaouadi B. Maître de Conférences A au CBS /Tunisie Examinateur Mme Bouanane A. Professeur à l’ USTHB/FSB Examinatrice Mme Zermane N. Professeur à l’ Université d’Alger Invité d’honneur Résumé Au cours de cette étude, 103 bactéries cadmium -résistantes, ont été isolées de 9 sols provenant de différentes régions d'Algérie et pollués par les métaux lourds. 94% des isolats se sont révélés à Gram négatif, appartenant principalement aux genres Pseudomonas, Burkholderia, Aeromonas et à la famille des Enterobacteriaceae. Les Gram positifs (4%), appartiennent principalement aux genres Bacillus. Toutes les souches cadmium-résistantes ont affiché des CMIs très importantes, qui oscillent entre 400 et 2000 µg mL-1, et une multirésistance vis-à-vis de 12 antibiotiques testés. Quatre souches hautement résistantes au cadmium, ont été caractérisées au niveau moléculaire, par séquençage de l'ARNr 16S, étaient affiliées aux espèces Raoultella ornithinolytica (souche YL-ML1), Klebsiella pneumoniae (souche YL-SS2) ,Pseudomonas fluorescens (souche YL-SS3) et Bacillus infantis (souche YL-SS8). Ces souches ont accumulé de très grandes quantités de cadmium au cours des 24 premières heures d’incubation, malgré l’effet toxique du Cd, exprimé par une inhibition de leur croissance. L’accumulation du cadmium est légèrement meilleure lorsque les cellules sont immobilisées dans des billes d’alginate que lorsqu’elles sont libres en suspension. Le cadmium provoque une chute du contenu en protéines totale, mais induit en revanche, une surproduction d’Exopolysaccharides (EPS). Par ailleurs, le cadmium stimule les activités enzymatiques, de la catalase, de la superoxyde dismutase et du glutathion chez les trois Protéobactéries YL-ML1, YL-SS2 et YL-SS3. Cependant, la souche YL-SS8 (Gram-Positif) a affiché une réduction de ces trois paramètres. Nous avons noté une différence dans le profil protéique des souches testées en l'absence et en présence de cadmium. Ce changement s’est matérialisé par une surexpression, induction et/ou répression de protéines de différentes masses moléculaires. Une PCR nous a permis de détecter le gène cadA dans les souches sélectionnées, ce gène confère une résistance au cadmium en codant une protéine d'efflux. Ce gène a été confirmé par séquençage après clonage, au niveau de la souche YL-ML1. Ce résultat original, révèle le rôle du transfert latéral des gènes dans l’acquisition de la résistance de cette entérobactérie dans un sol pollué par le cadmium. Les résultats de la présente étude montrent que les souches répondent au stress généré par le cadmium, par une surproduction d’EPS, activation du système antioxydant et induction de certaines protéines de stress, ainsi qu’une possible extrusion des ions métalliques par des pompes d’efflux codées par le gène cadA. Mots clés : Pollution des sols, cadmium, toxicité, mécanismes de résistance , bactéries. Remerciements La présente étude a été réalisée au laboratoire de Microbiologie de la FSB/USTHB, sous la direction de Madame Benmalek Y. Au terme de ce travail, je tiens à exprimer ma reconnaissance et ma gratitude à ma directrice de thèse Mme Benmalek Y. professeur à l’ISN/USTHB, d’avoir accepté de diriger ce travail , je la remercie vivement pour ses conseils et ses orientations précieuses, qu’elle trouve ici l’expression de mon profond respect. J’adresse mes plus grands remerciements à Monsieur Hacène H. de m’avoir accueilli dans son laboratoire et de m’offrir une paillasse de travail et aussi pour l’honneur qu’il m’accorde en présidant ce jury ,et ce, en dépit de ses charges. Mes remerciements les plus profonds à mon enseignante Mme Abrous O., professeur à la FSB/USTHB de m’avoir accordé de son temps si précieux, j’imagine, pour évaluer mon travail .Je tiens très sincèrement à lui exprimer mon profond respect. Mon immense reconnaissance va à Monsieur Jaouadi B. pour avoir accepté de faire partie du jury ,mais aussi pour ses conseils et ses orientations. Il m’est spécialement agréable que mon travail soit évalué par Madame Gana S., laquelle j’ai eu l’honneur d’apprécier sa compétence et son sérieux . Madame Zermane , a qui j’exprime toute ma gratitude et mon respect pour le modèle de l’enseignant très soucieux de l’intérêt des étudiants ,qu’elle représente .Je tiens à la remercier vivement pour sa présence . Et en fin Madame Bouanane, que je ne remercierai jamais assez, pour l’âme qu’elle a insufflée à mon travail, c’est un grand plaisir pour moi de vous compter parmi le jury de ma soutenance.Merci pour votre soutien et votre agréable moralité ! Je remercie très chaleureusement l’ensemble des membres du laboratoire de Microbiologie, de la FSB spécialement Lydia,Khelifa, Fawzi,Nawel ,Okba ,et tout le reste. Afin de n’’oublier personne, je tiens à remercier tous ceux qui ont participé, à titre professionnel ou personnel, à la réalisation de cette thèse. Je pense particulièrement à Mme Rahmania F. ,Professeur à l’USTHB/FSB , Mr Benayad T.,directeur du laboratoire de la police scientifique. , Mme Berka S . Mme Djebari K . , enseignante à l’ENSA , Monsieur Djili ,chef de département de Biologie des sols à l’ENSA (El-Harrach). Et en fin, j’adresse mes plus grands remerciements à mon mari, qui a non seulement soutenu tant financièrement que moralement une éternelle étudiante !, mais qui, en plus a été présent et patient depuis déjà 10 ans. J’adresse une tendresse toute particulière à mes enfants, mes parents et toute ma famille et ma belle famille, pour leurs encouragements tout au long de mes études et vis à vis de mes choix. Je leur dédie ce travail. Liste des abréviations ADN acide désoxyrionucléique AFNOR association française de normalisation ATB antibiotique ARN acide ribonucléique ARN 16S Sous unité 16S de l’ARN ribosomal BSA bovine serum albumine BN Bouillon nutritif CAT Catalase CMI : concentration minimale inhibitrice Ca Calcium Cd Cadmium CaCl2 Calcium chloride Cr Chrome CMI Concentration minimale inhibitrice Cu cuivre DO : densité optique EPS Exopolysaccharides ERO espèces réactives d’oxygéne ETM Eléments Trace Métallique GN gélose Nutritive GSH glutathion réduit h heure K Potassium KDa kilo dalton mg milligramme mL Millilitre Mm Masse molaire PAGE Protein Analysis Gel Electrophoresis Pb plomb pb paire de base PCR abréviation anglaise de réaction en chaîne par polymérase ppm particule par million rpm r otation par minute SAA spectrophotométrie à absorption atomique SDS sodium dodecyl Sulfate T témoin Zn zinc Liste des tableaux Tableau I. Propriétés physico-chimiques du cadmium ………………………………………………………………………………….. ………….7 Tableau II. Protéines de transport des éléments métalliques chez les microorganismes ……………………………………………………………………………………………….19 Tableau III : Principaux groupements fonctionnels et constituants membranaires chez les bactéries…………………………………………………………………… ………………21 Tableau IV : Nomenclature des ATPases-P selon la classification d’Alxelsen et al., (1998) et correspondance entre les classes d’ATPases-P avec la classifcation de Lutsenko et al . , (1995)…………………………………………………………………………………………29 Tableau V. Classification et structure des protéines RND…………………………………..37 Tableau VI. Sites et souches isolées pour chaque prélèvement…………….. 44 Tableau VII .Les antibiotiques testés (Molécules, codes et charge des disques) …… 53 Tableau VIII. Résultats des analyses physico-chimiques des sols étudiés………… 63 Tableau IX .Classification des sols selon leur conductivité électrique……………….. 64 Tableau X .Distribution des genres bactériens cadmium-résistants en fonction de leur origine et les valeurs des CMI ………………………………………………………………. 70 Tableau XI. Profil de résistance des bactéries cadmium-résistantes vis-à-vis des antibiotiques testés…………………………………………………………………………………………..73 Tableau XII. Résultats de l’identification moléculaire des souches cadmium-résistantes…77 Tableau XIII. Effet de différentes concentrations de Cd sur les teneurs en protéines totales chez la souche test YL-ML.......................................................................................................92 Tableau XIV. Effet de différentes concentrations de Cd sur les teneurs en protéines totales chez la souche test YL-SS8………………………………………………………………….96 Tableau XV. Effet de différentes concentrations de Cd sur les teneurs en protéines totales chez la souche YL-SS3……………………………………………………………………..93 Tableau XVI. Effet de différentes concentrations de Cd sur les teneurs en protéines totales chez la souche test YL-SS2…………………………………………………………………94 Tableau XVII. Effet de différentes concentrations de Cd sur la production d’EPS chez la souche test YL-ML1.. …………………………………………………………….96 Tableau XVIII. Effet de différentes concentrations de Cd sur la production d’EPS chez la souche test YL-SS8………………………………………………………………………….97 Tableau XIX. Effet de différentes concentrations de Cd sur la production d’EPS chez la souche test
Recommended publications
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering
    Environmental Science Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering Environmental Science Series editors Rod Allan, Burlington, ON, Canada Ulrich Förstner, Hamburg, Germany Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters 123 Editor Shree Nath Singh Plant Ecology and Environmental Science Division CSIR—National Botanical Research Institute Lucknow, Uttar Pradesh India ISSN 1431-6250 ISBN 978-3-319-10941-1 ISBN 978-3-319-10942-8 (eBook) DOI 10.1007/978-3-319-10942-8 Library of Congress Control Number: 2014951157 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L
    applied sciences Article The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms Artur Banach 1,* , Agnieszka Ku´zniar 1, Radosław Mencfel 2 and Agnieszka Woli ´nska 1 1 Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] (A.K.); [email protected] (A.W.) 2 Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-454-5442 Received: 6 May 2019; Accepted: 24 May 2019; Published: 26 May 2019 Abstract: The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome.
    [Show full text]
  • Extreme Environments and High-Level Bacterial Tellurite Resistance
    microorganisms Review Extreme Environments and High-Level Bacterial Tellurite Resistance Chris Maltman 1,* and Vladimir Yurkov 2 1 Department of Biology, Slippery Rock University, Slippery Rock, PA 16001, USA 2 Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +724-738-4963 Received: 28 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments. Keywords: tellurite; tellurite resistance; extreme environments; metalloids; bioremediation; biometallurgy 1. Introduction Microorganisms possess a wide range of extraordinary abilities, from the production of bioactive molecules [1] to resistance to and transformation of highly toxic compounds [2–5]. Of great interest are bacteria which can convert the deleterious oxyanion tellurite to elemental tellurium (Te) through reduction. Currently, research into bacterial interactions with tellurite has been lagging behind investigation of the oxyanions of other metals such as nickel (Ni), molybdenum (Mo), tungsten (W), iron (Fe), and cobalt (Co).
    [Show full text]
  • COULD LIFE SURVIVE in ALIEN ENVIRONMENTS? Defining Environments Suitable for Life
    biology | B09 teach with space → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Defining environments suitable for life teacher guide & student worksheets Teacher guide Fast facts page 3 Introduction page 4 Background page 6 Activity: Life in space? page 8 Links page 10 Annex page 11 teach with space – could life survive in alien environments? | B09 www.esa.int/education The ESA Education Office welcomes feedback and comments [email protected] An ESA Education production in collaboration with ESERO Poland Copyright 2019 © European Space Agency → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Could life survive in alien environments? Fast facts Brief description Subject: Biology In this activity students will consider whether Age range: 13-16 years old life found in extreme environments on Earth could survive elsewhere in the Solar System. Type: student activity Students will examine the characteristics Complexity: medium of different places in the Solar System Cost: Low (0 - 10 euros) and then use fact cards of some example Lesson time required: 1 hour extremophiles to hypothesize which they think might be able to survive in the different Location: Classroom extra-terrestrial environments. Includes the use of: Internet, books, library Keywords: Biology, Solar System, Planets, Moons, Extremophiles, Abiotic factors, Search for life Learning objectives • Learn what extremophiles are. • Consider ecological tolerance. • Consider the abiotic factors that affect adaptation and survival of lifeforms. • Learn about the environmental conditions of various Solar System objects. • Understand that changes in environmental conditions have an impact on the evolution of living organisms. teach with space – could life survive in alien environments? | B09 3 → Introduction The more scientists look on Earth, the more life they find.
    [Show full text]
  • ABSTRACT OZDEMIR, INCI. Role of S-Layer Homology Domain
    ABSTRACT OZDEMIR, INCI. Role of S-layer Homology Domain Proteins in Plant Biomass Conversion to Biofuels by Extremely Thermophilic Caldicellulosiruptor species. (Under the direction of Robert M. Kelly.) Second-generation biofuels require the conversion of lignocellulose from agricultural waste, non-edible parts of crops, and grasses into fermentable sugars. Lignocellulose is composed of pectin, hemicellulose, cellulose and lignin, all of which form a matrix that must be penetrated and deconstructed by physical, chemical and biological methods to facilitate conversion to biofuels. Certain microorganisms have the capacity to extract the carbohydrate content of lignocellulose through the coordinated action of glycoside hydrolases and other metabolic processes, which together can contribute to biofuel production. Of interest here are extremely thermophilic bacteria from the genus Caldicellulosiruptor. One of the intriguing features of these bacteria is that they do not produce cellulosomes but rather produce multi-domain (hemi)cellulolytic enzymes. Some of these biocatalysts contain S-layer homology (SLH) domains, anchoring the enzymes to the cell envelope, and also have carbohydrate-binding domains (CBM), which bind the enzyme to the substrate. This can be a very efficient way of degrading plant biomass since enzymes are localized in close proximity of the cell where control its local microenvironment is possible. Six different groups of SLH-domain proteins with GH domains could be identified in the genome sequences of Caldicellulosiruptor species. Representatives from each group were produced recombinantly in E. coli and examined with respect to biochemical and biophysical properties. Csac_0678 (bifunctional cellulase/xylanase from C. saccharolyticus with homologs in all eight genome- sequenced Caldicellulosiruptor species), Calkr_2245 (xylanase from C.
    [Show full text]
  • Plant and Environment
    Plant and Environment https://journals.pagepal.org/index.php/plant-and-environment Application of Bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments Muhammad Mahroz Hussain*1,2, Zia Ur Rahman Farooqi*1,3, Waqas Mohy-Ud-Din1, Fazila Younas1, Muhammad Tahir Shahzad1, Muhammad Usman Ghani1,5, Muhammad Ashar Ayub1 and Abdul Qadeer1 1Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan-38040. 2University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany 3Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, Scotland, UK Article Info Abstract Keyword s: Bioremediation is a technique, which involves different organisms and different Pollutants types, sources, substances to treat or detoxify the pollutants in an eco-friendly way. It involves plants, contamination, toxicity, microbes, fungus, and different nutrients and gasses. It can detoxify an extensive array remediation erosion of pollutants both the organic and inorganic e.g. heavy metals and different types of pesticides. The use of microbes for this purpose is the most common practice as these Date: are ecofriendly and can be used anywhere i.e. in-situ and ex-situ. The pesticides and Received: 7 April 2020 the heavy metals are predictable. Regardless of their harmful effects, their use is Accepted: 16 September 2020 increasing. there are many techniques to cope with their harmful effects but there is Published: 15 February 2021 another issue regarding the side effects of these techniques.
    [Show full text]
  • Structural Studies of the Extremophilic Viruses P23-77 and STIV2
    Life on the Edge: Structural Studies of the Extremophilic Viruses P23-77 and STIV2 Lotta J. Happonen Institute of Biotechnology and Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki and Viikki Doctoral Programme in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences, University of Helsinki, in the auditorium 1041 of Biocenter 2, Viikinkaari 5, Helsinki, on June 8th 2012 at 12 o´clock noon. HELSINKI 2012 ii Supervisor Professor Sarah J. Butcher Institute of Biotechnology and Department of Biosciences University of Helsinki Finland Reviewers Nicola G. A. Abrescia, Ph.D. Structural Biology Unit Center for Cooperative Research in Biosciences (CIC bioGUNE) Bilbao Spain and Docent Pirkko Heikinheimo Department of Biochemistry and Food Chemistry University of Turku Finland Opponent Professor Timothy S. Baker Department of Chemistry and Biochemistry University of California San Diego USA Custos Professor Minna Nyström Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki Finland ©Lotta Happonen 2012 Cover picture: Pasi Laurinmäki and Lotta Happonen ISBN 978-952-10-8001-2 (paperback) ISBN 978-952-10-8002-9 (PDF) ISSN 1799-7372 UNIGRAFIA Helsinki 2012 iii The pursuit of truth and beauty is a sphere of activity in which we are permitted to remain children all our lives. – Albert Einstein iv ORIGINAL PUBLICATIONS The thesis is based on the following articles, which are referred to in the text by their Roman numerals, and which are reprinted at the end of this thesis with permission from the publishers.
    [Show full text]
  • WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT (51) International Patent Classification: #324, Charlottesville, Virginia 22901 (US). ZOMORODI, C12N 15/70 (2006.01) Sepehr; 1600 Jefferson Park Ave. #307, Charlottesville, Virginia 22903 (US). POURTAHERI, Payam; 4000 City (21) International Application Number: Walk Way #213, Charlottesville, Virginia 22902 (US). PCT/US20 18/052690 (74) Agent: HOLLY, David C. et al; 1299 Pennsylvania Av¬ (22) International Filing Date: enue NW, Suite 700, Washington, District of Columbia 25 September 2018 (25.09.2018) 20004-2400 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/562,723 25 September 2017 (25.09.2017) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/666,981 04 May 2018 (04.05.2018) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: AGROSPHERES, INC. [US/US]; 1180 Semi¬ KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, nole Trail, Suite 100, Charlottesville, Virginia 22901 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (72) Inventors: SHAKEEL, Ameer Hamza; 43 136 Shadow SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Terrace, Leesburg, Virginia 20176 (US).
    [Show full text]
  • In Tropical Iron Ore Systems Alan Levett B.Sc. H. Majoring in Geological
    Development of ferruginous duricrusts (canga) in tropical iron ore systems Alan Levett B.Sc. H. Majoring in Geological Sciences (UQ) 2014 B.Sc. Extended Major in Biomedical Sciences (UQ) 2011 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland – 2020 School of Earth and Environmental Sciences Abstract Iron-rich duricrusts (canga) that cap iron ore deposits in Brazil evolve by the redox-based cycling of iron oxide minerals, continually forming new iron-rich cements that effectively prevent the physical erosion of these landforms. This thesis aimed to understand the biological influences on the geochemical cycling of iron within canga, to determine if these processes could be used to accelerate iron cement formation, for example, in a post-mining context. Re- cementing waste material (canga) from iron ore mining may provide an environmentally- friendly solution for iron ore mine remediation in Brazil and the restoration of a rare ecosystem associated with canga outcrops. Field emission scanning electron microscopy revealed an array of microorganisms fossilised within canga, highlighting the innate role of microorganisms in the evolution of canga horizons. Nanoscale elemental mapping of these microfossils revealed a role for aluminium in the long-term preservation of organic and inorganic biosignatures. A suite of high-resolution analytical techniques were correlated to understand the fossilisation processes that contribute to biosignature preservation in near-neutral iron-rich environments. Further investigation of the microfossils in canga, revealed the complex weathering patterns induced by microorganisms. Grains within canga could be completely weathered and texturally replaced by microfossils; only remnants of the grain’s shape and traces of most immobile elements (for example, thorium) were left behind.
    [Show full text]
  • Συγκριτική Μελέτη Πρωτεϊνών Του Ακραιόφιλου Αρχαίου Metallosphaera Sedula Με Ομόλογες Πρωτεΐνες Άλλων Οργανισμών
    Πτυχιακή Εργασία Συγκριτική μελέτη πρωτεϊνών του ακραιόφιλου αρχαίου Metallosphaera sedula με ομόλογες πρωτεΐνες άλλων οργανισμών Σαμαράς Δημήτριος ΑΕΜ 1664 Επιβλέπουσα Καθηγήτρια: Δρ. Φαδούλογλου Βασιλική Αλεξανδρούπολη 2021 Περιεχόμενα Περιεχόμενα 1 Ευχαριστίες 2 Περίληψη 3 Abstract 4 1. Εισαγωγή 5 1.1. Οι ακραιόφιλοι οργανισμοί 5 Θερμόφιλα 7 Ψυχρόφιλα 8 Οξεόφιλα 9 Αλκαλόφιλα 9 Αλόφιλα 9 1.2. Εφαρμογές στη βιοτεχνολογία 10 1.3. Το αρχαίο Metallosphaera sedula 12 1.4. Σκοπός 13 2. Υλικά και μέθοδοι 14 3. Αποτελέσματα 17 3.1 Αναγωγάση του υδραργύρου 18 3.2 Μηλική αφυδρογονάση 23 3.3 Κιτρική συνθάση 29 3.4 Αποκαρβοξυλάση της 5’-μονοφωσφορικής οροτιδίνης 35 3.5 Δεϋδρατάση του 3-υδροξυπροπιονυλο-CoA 39 3.6 Vacuolar protein sorting 4 AAA-ATPase 44 4. Συμπεράσματα – Συζήτηση 50 5. Βιβλιογραφικές αναφορές 55 6. Παράρτημα 59 1 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω ειλικρινά την επιβλέπουσα καθηγήτριά μου Δρ. Βασιλική Φαδούλογλου που με δέχθηκε στο εργαστήριό της και μου έδωσε την ευκαιρία να εκπονήσω την πτυχιακή μου εργασία υπό την επίβλεψή της. Ήταν διαθέσιμη και πρόθυμη να μου παρέχει οποιαδήποτε βοήθεια και καθοδήγηση κάθε φορά που τη χρειάστηκα. Με την υπομονή και επιμονή που έδειξε με βοήθησε να αποκτήσω θεωρητικές γνώσεις πάνω στο αντικείμενο της εργασίας, μου έδωσε σημαντικά εφόδια για τη μετέπειτα σταδιοδρομία μου, ενώ συνέβαλε και στη γενικότερη βελτίωσή μου ως άνθρωπο και εκκολαπτόμενο επιστήμονα. Φυσικά δε θα μπορούσα να μην ευχαριστήσω την οικογένεια μου που στήριξε και συνεχίζει να στηρίζει την κάθε μου επιλογή και το κάθε μου βήμα. 2 Περίληψη Οι ακραιόφιλοι οργανισμοί (extremophiles) έχουν αναπτύξει πληθώρα μηχανισμών με τους οποίους καθίσταται δυνατή η επιβίωση τους σε περιβάλλοντα όπου επικρατούν ακραίες συνθήκες.
    [Show full text]
  • Yellowstone ABC's
    YELLOWSTONE ABC’s Acid, Base, Chemistry — Student Workbook Astrobiology Biogeocatalysis Research Center The Astrobiology Biogeocatalysis Research Center at Montana State University Our team supports the work of the NASA Astrobiology opportunities. Life in the extreme environments of Institute (NAI), a multidisciplinary umbrella for Yellowstone’s thermal features is thought to resemble conducting research on the origin and evolution of life conditions of early Earth. Yellowstone’s abundant and on Earth and elsewhere in the universe. unique thermal features give researchers insights into the origin, evolution and future of life. The origin of life, sustainable energy, and global climate change are intimately linked, and the answers we seek Whether you are a potential MSU student, a research to solve our energy needs of the future are etched into investigator, a teacher or a citizen, we welcome you Earth’s history. ABRC’s work supports NASA’s missions, to the world of astrobiology. ABRC is committed to such as Mars exploration and possibilities of habitation sharing our work and its impact with the people of of other worlds. Our research also focuses on the future Montana and beyond, through formal and informal of life on Earth. These efforts support the fundamental education; public outreach; and communications to groundwork for Goal 3 (Origins of Life) of the NASA many different audiences. Astrobiology Roadmap. Our outreach and education activities are strengthened ABRC involves investigators with expertise in by many factors, including MSU’s proximity to geochemistry, experimental and theoretical physical Yellowstone National Park, the expertise and chemistry, materials science, nanoscience, and experience of our faculty and close partners, the iron-sulfur cluster biochemistry who work to define outstanding commitment from our MSU students to and conduct integrated research and education in share their work with the public, and a rich network of astrobiology.
    [Show full text]