Rhizosphere Microbial Communities and Heavy Metals

Total Page:16

File Type:pdf, Size:1020Kb

Rhizosphere Microbial Communities and Heavy Metals microorganisms Review Rhizosphere Microbial Communities and Heavy Metals Anna Barra Caracciolo * and Valentina Terenzi Water Research Institute, National Research Council, 00010 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: The rhizosphere is a microhabitat where there is an intense chemical dialogue between plants and microorganisms. The two coexist and develop synergistic actions, which can promote plants’ functions and productivity, but also their capacity to respond to stress conditions, includ- ing heavy metal (HM) contamination. If HMs are present in soils used for agriculture, there is a risk of metal uptake by edible plants with subsequent bioaccumulation in humans and animals and detrimental consequences for their health. Plant productivity can also be negatively affected. Many bacteria have defensive mechanisms for resisting heavy metals and, through various complex processes, can improve plant response to HM stress. Bacteria-plant synergic interactions in the rhizosphere, as a homeostatic ecosystem response to HM disturbance, are common in soil. However, this is hard to achieve in agroecosystems managed with traditional practices, because concentrating on maximizing crop yield does not make it possible to establish rhizosphere interactions. Improving knowledge of the complex interactions mediated by plant exudates and secondary metabolites can lead to nature-based solutions for plant health in HM contaminated soils. This paper reports the main ecotoxicological effects of HMs and the various compounds (including several secondary metabo- lites) produced by plant-microorganism holobionts for removing, immobilizing and containing Citation: Barra Caracciolo, A.; toxic elements. Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Keywords: plants; prokaryotic communities; microbiome; chemical dialogue; exudates; secondary Microorganisms 2021, 9, 1462. metabolites; stress response; holobiont; hologenome; metaorganism https://doi.org/10.3390/ microorganisms9071462 Academic Editors: Maria 1. Introduction Ludovica Saccà and Luisa Agroecosystems provide several ecosystem services [1], such as food and raw materi- Maria Manici als (e.g., wood, biofuels and fibers), which are essential for human life and activity. The surface covered by arable agriculture is about 13% of the global land surface and another Received: 9 June 2021 13% is represented by grassland for grazing [2]. The growth in human population requires Accepted: 6 July 2021 Published: 8 July 2021 an increase in food resources and many types of agriculture have been showing a growing trend over the last decade. For example, tree crops have a global extent of about 10 Mha ∼ Publisher’s Note: MDPI stays neutral and a 20% increase in productivity for many fruit varieties was reported in the decade with regard to jurisdictional claims in 2004–2014 [3]. published maps and institutional affil- Soil is a resource of enormous importance, but a finite and non-renewable one, and iations. several anthropogenic activities are threatening its quality and long-term use, with loss of its key functions. Soil overexploitation by non-sustainable agriculture and over-grazing, contamination by industry and urbanization are the main causes of its deterioration and more than 24% of global land area is estimated to be degraded [2]. Fertile and unpolluted soils are necessary for ensuring healthy crops destined for human and animal use. In par- Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. ticular, soil contamination (e.g., from heavy metals) can seriously hamper soil biodiversity, This article is an open access article fertility and crop productivity [4,5] and make agricultural products toxic. Heavy metals distributed under the terms and (HMs) are among the most common soil contaminants and their presence in concentrations conditions of the Creative Commons higher than is natural poses a risk because of their toxicity, [6–8], bioaccumulation and Attribution (CC BY) license (https:// biomagnification [9]. creativecommons.org/licenses/by/ Microorganisms are a key soil component, ensuring the soil quality and fertility 4.0/). necessary for high-rate production of crops [4,10]. Soil microorganisms, above all Bacteria Microorganisms 2021, 9, 1462. https://doi.org/10.3390/microorganisms9071462 https://www.mdpi.com/journal/microorganisms Microorganisms 2021, 9, 1462 2 of 20 and Archaea, represent the majority of soil biomass and are termed “chemical engineers” [4], because they decompose organic matter and make it possible to recycle nutrients through anaerobic and aerobic reactions, involving up to 90% of soil energy flux. Thanks to their small dimensions and fast reproduction capability, prokaryotic cells adapt promptly to environmental changes. They show homeostatic capabilities versus contaminants and can be considered good biological indicators of soil quality [11–14]. The rhizosphere is a microhabitat, comprising roots and the 1–2 mm soil immediately surrounding them, where there is an intense chemical dialogue between plants and microorganisms [15,16]. In the rhizosphere, plants release root exudates, which promote bacterial population development. The rhizosphere offers a variety of carbon rich micro-habitats, which can be colonized by beneficial bacterial populations using such substrates [3,15]. Microorganisms communicate with plants through chemical messages and develop synergistic actions which influence plant functions and productivity, in both optimal and stress conditions [15–18]. Microorganisms have been found both on and inside plant tissues, but especially at root level [19]. The plant microbiome comprises the rhizosphere, phyllosphere and endosphere [20]. Healthy plants host symbiotic and non-symbiotic rhizo-epiphytic and/or endophytic microorganisms, which do not cause diseases, but support the host nutri- tionally, by stimulating germination and growth, or helping plants to overcome biotic or abiotic stress. Plants can be considered metaorganisms with close relationships with their associated microorganisms [21]. Indeed, according to the holobiont theory, hosts, such as plants and their microbiome, are symbionts [19,22]. Plant life is closely linked to key microbes, which can influence several aspects of plant ecology, such as growth, germination, biotic and abiotic stress resistance and fitness [19,21,22]. This theory suggests which host-microbiome relationships evolve over time, not just during a single host life- time, but also through a coevolutionary process, leading to very complex relationships in microorganism-root systems [23]. However, most complex plant-microorganism interac- tions and chemical dialogues have not so far been understood. Most microorganisms are uncultivable and there are practical difficulties in collecting and separating rhizo-epiphytic and endophytic microorganisms [24]. Developing new technologies and nature-based solutions to prevent deterioration of soil and remediation of contaminated sites, while at the same time maintaining soil functions, is a matter of great interest for science and a challenge for the coming decade. In accordance with the One Health Concept, human, animal and environmental wellness and health are tightly related to each other and it is not possible to take an action concerning one of them without considering the others. This approach is of special importance in guaranteeing food safety and sustainable crop production [25–27]. The complex and synergistic actions established in the rhizosphere between tree roots and natural underground microbiota make it possible to remove, convert or contain toxic substances in soils, including trace elements [28,29]. Heavy metals (HMs) are among the most widespread soil contaminants worldwide and their presence is reported in 60% of polluted land [30]. The presence of heavy metals at concentrations higher than natural ones poses a risk because of their toxicity [6–8], bioaccumulation and biomagnification [9]. These contaminants are a major risk, especially in the most industrialized and populated regions of the earth, endangering human safety and altering ecosystem functions [29,31]. If heavy metals are present in soils used for agricultural practices, there is a risk of metal uptake by edible plants, with a subsequent possible bioaccumulation in human and animals and detrimental consequences for their health [31,32]. A better knowledge of plant–microorganism interactions is therefore urgently needed to develop correct agronomic management and naturally based solutions, such as phy- totechnology for remediation purposes. For this purpose, an ecological approach, taking site-specific biotic and abiotic interactions between plants and microorganisms into consid- eration, is necessary. Microorganisms 2021, 9, 1462 3 of 20 Although, overall, rhizosphere interactions also include fungal mycorrhizae, this review summarizes current knowledge of rhizosphere chemical communication between plant roots and the prokaryotic community associated with them. Particular attention will also be paid to plant and bacteria secondary metabolites. Central to this discussion is the recent progress made in understanding rhizosphere chemical dialogues between plants and different components of the microbial community and how they can improve plant response to stress by HMs, reducing the effects and toxicity of these chemicals. 2. Heavy Metals HMs are generally considered those metals and metalloids with an atomic number
Recommended publications
  • Manipulation of Phytobiome: a New Concept to Control the Plant Disease and Improve the Productivity
    Journal of Bacteriology & Mycology: Open Access Mini Review Open Access Manipulation of phytobiome: a new concept to control the plant disease and improve the productivity Abstract Volume 6 Issue 6 - 2018 Various strategies are currently being developed to improve sustainable agricultural Manoj V Parakhia, Golakiya BA production. Many concepts at present in market to control the plant disease. Most Department of Biotechnology, Junagadh Agricultural University, widely used were chemicals or pesticides. Commercial biological control products India for the use against plant diseases must be highly efficient against the targeted disease. Second concept to control the disease through bio-agents. Many bio-agents available Correspondence: Manoj V Parakhia, Department of in market but not effective as chemical agents so not popularized as compare to Biotechnology, Junagadh Agricultural University, Junagadh, chemical agents. Microbes more diversity found in rhizosphere so rhizosphere is Gujarat, India, Email called house of microbes. Interaction of microbes in rhizosphere will decide the health of plant. It is now widely recognised that plant micro biota provide important Received: June 11, 2018 | Published: November 23, 2018 functions for their host’s performance, and mediate functions like nutrient delivery, fitness, stress tolerance, and pathogen or pest control. Current understanding of plant- microbe interactions is helping to develop microbial products, new applications to improve crop production, and create alternatives to chemicals. Two types of microbes present in rhizosphere culturable and non-culturable. Plant health not depend on only culturable microbes but also depend on non-culturable microbes. it is necessary to study non-culturable microbes. Today new era of microbiology is metagenomics.
    [Show full text]
  • The Untapped Potential of Plant Microbiomes in Agriculture
    The Untapped Potential of Plant Microbiomes in Agriculture Jan E. Leach Colorado State University American Society of Plant Biologists American Phytopathological Society Plant Microbiomes: Assemblages of microbes living in, on and around plants Hirsch & Mauchline, Nature Biotech 2012 Plant microbiomes are components of Phytobiomes: . all organisms living in, on and around plants . microbes . animals . other plants . the Environment Phytobiomes initiative focused on agriculture Plant and their microbiomes are partners for LIFE • Plant microbiomes can influence or be influenced by plants or the plant environment • How can that relationship be tapped to improve crop health, safety, quality and productivity? Quality Health Safety Productivity Nutrition Why now? • Advances in systems-level approaches – High-throughput sequencing – Metagenomics & other ‘-omics technologies – Data sciences (data mining, predictive analytics, …) – Computer science (machine learning, image processing and graphics, …) • Human microbiome discoveries – Conserved patterns despite variation – Strength of longitudinal vs cross-sectional studies – Unexpected impacts on the host – Successful translation to treatments (fecal transplants, probiotics) • International microbiomes attention – OSTP process (NSTC report out SOON!) – Unified Initiative (Science, Nature) • Management strategies in agriculture – Precision Ag – Decision support systems Lessons from the human microbiome When Gut Bacteria Changes Brain Function “…. the microbiome may play a role in regulating how
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering
    Environmental Science Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering Environmental Science Series editors Rod Allan, Burlington, ON, Canada Ulrich Förstner, Hamburg, Germany Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters 123 Editor Shree Nath Singh Plant Ecology and Environmental Science Division CSIR—National Botanical Research Institute Lucknow, Uttar Pradesh India ISSN 1431-6250 ISBN 978-3-319-10941-1 ISBN 978-3-319-10942-8 (eBook) DOI 10.1007/978-3-319-10942-8 Library of Congress Control Number: 2014951157 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Probing the Phytobiome to Advance Agriculture Carolyn Beans, Science Writer
    CORE CONCEPTS CORE CONCEPTS Probing the phytobiome to advance agriculture Carolyn Beans, Science Writer The Colorado potato beetle had Gary Felton stumped. That something else turned out to be bacteria. If he Felton, an entomologist at Pennsylvania State Univer- applied antibiotics, the plants could launch a defense sity, has built his career on revealing how plants defend and inhibit potato beetle larvae growth (1). Bacteria in themselves against voracious insects. Plants often de- the insect’s oral secretions were tricking the plants into tect chemicals in an insect’s oral secretions and respond defending against microbial invaders instead of insect by producing proteins that wreak havoc on insect di- ones. Kill the bacteria and the cover is blown. gestion and nutrient absorption. Myriad factors affect crop health, such as genetics, But the Colorado potato beetle was different. Felton insects, microbes, weather, soil nutrients, weeds, fertilizer, found that oral secretions from its larvae actually pre- tilling. Until recently, scientists typically studied one vented potato and tomato plants from launching a proper variable at a time, says plant pathologist Jan Leach of defense. He tested chemical factors in the secretions that Colorado State University. “When a plant is sitting in the might help the beetle foil the plant, but came up short. field, it’s not just exposed to one pathogen, one tem- “Maybethereissomethingelseherethatwe’ve totally perature, one insect. It’s exposed to everything at once,” overlooked,” he recalls thinking. says Leach. “If we want to understand how plants Bacteria in the oral secretions of Colorado potato beetle larvae can trick potato and tomato plants into defending against microbes instead of the insect pest.
    [Show full text]
  • Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Terrence H
    Masthead Logo Plant Pathology Presentations and Posters Plant Pathology and Microbiology 3-13-2019 Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Terrence H. Bell The Pennsylvania State University Gwyn A. Beattie Iowa State University, [email protected] Kurt P. Kowalski U.S. Geological Survey Amy T. Welty Iowa State University, [email protected] et al. Follow this and additional works at: https://lib.dr.iastate.edu/plantpath_conf Part of the Agriculture Commons, Ecology and Evolutionary Biology Commons, and the Plant Sciences Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ plantpath_conf/7. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Conference Proceeding is brought to you for free and open access by the Plant Pathology and Microbiology at Iowa State University Digital Repository. It has been accepted for inclusion in Plant Pathology Presentations and Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Abstract This white paper presents a series of perspectives on current and future phytobiome management, discussed at the Wild and Tamed Phytobiomes Symposium in University Park, PA, USA, in June 2018. To enhance plant productivity and health, and to translate lab- and greenhouse-based phytobiome research to field applications, the academic community and end-users need to address a variety of scientific, practical, and social challenges. Prior discussion of phytobiomes has focused heavily on plant-associated bacterial and fungal assemblages, but the phytobiomes concept covers all factors that influence plant function.
    [Show full text]
  • Rhizosphere Microbiomes Modulated by Pre-Crops Assisted Plants in Defense Against Plant-Parasitic Nematodes
    fmicb-09-01133 May 31, 2018 Time: 17:22 # 1 ORIGINAL RESEARCH published: 04 June 2018 doi: 10.3389/fmicb.2018.01133 Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes Ahmed Elhady1,2, Shimaa Adss1, Johannes Hallmann1 and Holger Heuer1* 1 Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Braunschweig, Germany, 2 Department of Plant Protection, Faculty of Agriculture, Benha University, Benha, Egypt Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, Edited by: or not inoculated. After the microbiome was established, the root lesion nematode Jesús Mercado-Blanco, Consejo Superior de Investigaciones Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly Científicas (CSIC), Spain reduced on soybean plants inoculated with the microbiome from maize or soybean Reviewed by: compared to tomato or bulk soil, or the uninoculated control. In the analogous Juan Emilio Palomares-Rius, Consejo Superior de Investigaciones experiment with tomato plants inoculated with either P. penetrans or the root knot Científicas (CSIC), Spain nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato Nuria Escudero, reduced root invasion by P.
    [Show full text]
  • The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L
    applied sciences Article The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms Artur Banach 1,* , Agnieszka Ku´zniar 1, Radosław Mencfel 2 and Agnieszka Woli ´nska 1 1 Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] (A.K.); [email protected] (A.W.) 2 Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-454-5442 Received: 6 May 2019; Accepted: 24 May 2019; Published: 26 May 2019 Abstract: The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome.
    [Show full text]
  • BER SFA Categories 1. Foundational Genomics 2. Environmental Genomics 3. Biosystems Design
    SFA Categories – April 2020 BER SFA Categories All Science Focus Areas (SFA) will be identified as belonging to one of the following six (7) SFA categories. 1. Foundational Genomics Foundational genomics supports fundamental systems biology research to achieve a predictive understanding of gene function and regulatory networks at the genome scale. Through interdisciplinary approaches that integrate multiomics data and computational modeling, this research advances towards a comprehensive understanding of genotype-phenotype relationships in microbes and plants relevant to DOE. The results yield an increased range of microorganisms and plants as model systems to expand and complement available microbial and plant species for bioenergy and biotechnology research. These efforts underpin leadership advances in biotechnology crucial for competitiveness in a global market. 2. Environmental Genomics Environmental genomics supports research focused on understanding plants and soil microbial communities and how they impact the cycling and fate of carbon, nutrients, and contaminants in the environment. This research area includes the study of a range of natural and model microbiomes in targeted field environments relevant to BER’s research efforts. With a long history in plant and microbial genomics research coupled with substantial biotechnological and computational capabilities available within the DOE user facilities, BER is well positioned to make transformative contributions in biotechnology and understanding microbiome and phytobiome function. 3. Biosystems Design Biosystems Design develops the fundamental understanding of genome biology needed to design, engineer, and optimize plants, microbes, and biomes for sustainable production of biofuels and bioproducts from renewable sources. By developing novel genome-scale synthetic biology technologies and computer-aided design tools, Biosystems Design accelerates the “design-build- test-learn” cycle to engineer biological systems.
    [Show full text]
  • A Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease (2018)
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25026 SHARE A Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease (2018) DETAILS 288 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-47214-2 | DOI 10.17226/25026 CONTRIBUTORS GET THIS BOOK Committee on a Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease; Board on Agriculture and Natural Resources; Division on Earth FIND RELATED TITLES and Life Studies; National Academies of Sciences, Engineering, and Medicine SUGGESTED CITATION National Academies of Sciences, Engineering, and Medicine 2018. A Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease. Washington, DC: The National Academies Press. https://doi.org/10.17226/25026. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. A Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Fighting... Committee on a Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease Board on Agriculture and Natural Resources Division on Earth and Life Studies A Consensus Study Report of Copyright National Academy of Sciences.
    [Show full text]
  • Extreme Environments and High-Level Bacterial Tellurite Resistance
    microorganisms Review Extreme Environments and High-Level Bacterial Tellurite Resistance Chris Maltman 1,* and Vladimir Yurkov 2 1 Department of Biology, Slippery Rock University, Slippery Rock, PA 16001, USA 2 Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +724-738-4963 Received: 28 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments. Keywords: tellurite; tellurite resistance; extreme environments; metalloids; bioremediation; biometallurgy 1. Introduction Microorganisms possess a wide range of extraordinary abilities, from the production of bioactive molecules [1] to resistance to and transformation of highly toxic compounds [2–5]. Of great interest are bacteria which can convert the deleterious oxyanion tellurite to elemental tellurium (Te) through reduction. Currently, research into bacterial interactions with tellurite has been lagging behind investigation of the oxyanions of other metals such as nickel (Ni), molybdenum (Mo), tungsten (W), iron (Fe), and cobalt (Co).
    [Show full text]
  • "Phytobiomes, the Reason Why Microbiologists and Botanists
    Annual Plant Reviews (2019) 2, 1–34 http://onlinelibrary.wiley.com doi: 10.1002/9781119312994.apr0699 PHYTOBIOMES, THE REASON WHY MICROBIOLOGISTS AND BOTANISTS SHOULD WORK TOGETHER Michelle Snoeijenbos1, Martha Cárdenas1,3, Marcela Guevara-Suarez1,3, Adriana Bernal1, Pedro Jiménez2 and Silvia Restrepo1,3 1Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia 2Facultad de ciencias básicas y aplicadas, Universidad Militar Nueva Granada, Bogotá, Colombia 3Vicerrectoría de Investigaciones, Universidad de los Andes, Bogotá, Colombia Abstract: Phytobiomes consist of plants, their environment, and their associated communities of macro and microorganisms. Within the phytobiome, the micro- biome consists of the microorganisms associated with the plants comprising the endophytes and epiphytes. Endophytes are microorganisms, mainly consisting of bacteria and fungi, which colonise internal plant tissues without causing any dis- ease symptom or tissue damage in different hosts. All these organisms associated to the plant contribute to its fitness. In this article, we revised a total of 103stud- ies containing the terms phytobiomes and microbiomes and endophytes, with the aims of reviewing: (i) the evolution of the term endophyte and the evolution of the endophyte condition; (ii) the current literature on studies considering the endo- phyte community within phytobiomes; and (iii) the literature on the bacteria living in fungal endophytes. In our analyses, we highlighted the biases that have been introduced in the phytobiomes’ studies. For example, the presence of endohyphal bacteria could have contributed to overestimating the number of bacterial endo- phytes in the scientific literature. This is the first article that includes studies that evaluate endophytes that are not considered alone but belonging to a complex interacting community, the phytobiome.
    [Show full text]