A Review of the Citrus Greening Research and Development Efforts Supported by the Citrus Research and Development Foundation: Fighting a Ravaging Disease (2018)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invasive Insects (Adventive Pest Insects) in Florida1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. ENY-827 Invasive Insects (Adventive Pest Insects) in Florida1 J. H. Frank and M. C. Thomas2 What is an Invasive Insect? include some of the more obscure native species, which still are unrecorded; they do not include some The term 'invasive species' is defined as of the adventive species that have not yet been 'non-native species which threaten ecosystems, detected and/or identified; and they do not specify the habitats, or species' by the European Environment origin (native or adventive) of many species. Agency (2004). It is widely used by the news media and it has become a bureaucratese expression. This is How to Recognize a Pest the definition we accept here, except that for several reasons we prefer the word adventive (meaning they A value judgment must be made: among all arrived) to non-native. So, 'invasive insects' in adventive species in a defined area (Florida, for Florida are by definition a subset (those that are example), which ones are pests? We can classify the pests) of the species that have arrived from abroad more prominent examples, but cannot easily decide (adventive species = non-native species = whether the vast bulk of them are 'invasive' (= pests) nonindigenous species). We need to know which or not, for lack of evidence. To classify them all into insect species are adventive and, of those, which are pests and non-pests we must draw a line somewhere pests. in a continuum ranging from important pests through those that are uncommon and feed on nothing of How to Know That a Species is consequence to humans, to those that are beneficial. -
Manipulation of Phytobiome: a New Concept to Control the Plant Disease and Improve the Productivity
Journal of Bacteriology & Mycology: Open Access Mini Review Open Access Manipulation of phytobiome: a new concept to control the plant disease and improve the productivity Abstract Volume 6 Issue 6 - 2018 Various strategies are currently being developed to improve sustainable agricultural Manoj V Parakhia, Golakiya BA production. Many concepts at present in market to control the plant disease. Most Department of Biotechnology, Junagadh Agricultural University, widely used were chemicals or pesticides. Commercial biological control products India for the use against plant diseases must be highly efficient against the targeted disease. Second concept to control the disease through bio-agents. Many bio-agents available Correspondence: Manoj V Parakhia, Department of in market but not effective as chemical agents so not popularized as compare to Biotechnology, Junagadh Agricultural University, Junagadh, chemical agents. Microbes more diversity found in rhizosphere so rhizosphere is Gujarat, India, Email called house of microbes. Interaction of microbes in rhizosphere will decide the health of plant. It is now widely recognised that plant micro biota provide important Received: June 11, 2018 | Published: November 23, 2018 functions for their host’s performance, and mediate functions like nutrient delivery, fitness, stress tolerance, and pathogen or pest control. Current understanding of plant- microbe interactions is helping to develop microbial products, new applications to improve crop production, and create alternatives to chemicals. Two types of microbes present in rhizosphere culturable and non-culturable. Plant health not depend on only culturable microbes but also depend on non-culturable microbes. it is necessary to study non-culturable microbes. Today new era of microbiology is metagenomics. -
The Untapped Potential of Plant Microbiomes in Agriculture
The Untapped Potential of Plant Microbiomes in Agriculture Jan E. Leach Colorado State University American Society of Plant Biologists American Phytopathological Society Plant Microbiomes: Assemblages of microbes living in, on and around plants Hirsch & Mauchline, Nature Biotech 2012 Plant microbiomes are components of Phytobiomes: . all organisms living in, on and around plants . microbes . animals . other plants . the Environment Phytobiomes initiative focused on agriculture Plant and their microbiomes are partners for LIFE • Plant microbiomes can influence or be influenced by plants or the plant environment • How can that relationship be tapped to improve crop health, safety, quality and productivity? Quality Health Safety Productivity Nutrition Why now? • Advances in systems-level approaches – High-throughput sequencing – Metagenomics & other ‘-omics technologies – Data sciences (data mining, predictive analytics, …) – Computer science (machine learning, image processing and graphics, …) • Human microbiome discoveries – Conserved patterns despite variation – Strength of longitudinal vs cross-sectional studies – Unexpected impacts on the host – Successful translation to treatments (fecal transplants, probiotics) • International microbiomes attention – OSTP process (NSTC report out SOON!) – Unified Initiative (Science, Nature) • Management strategies in agriculture – Precision Ag – Decision support systems Lessons from the human microbiome When Gut Bacteria Changes Brain Function “…. the microbiome may play a role in regulating how -
Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied. -
Probing the Phytobiome to Advance Agriculture Carolyn Beans, Science Writer
CORE CONCEPTS CORE CONCEPTS Probing the phytobiome to advance agriculture Carolyn Beans, Science Writer The Colorado potato beetle had Gary Felton stumped. That something else turned out to be bacteria. If he Felton, an entomologist at Pennsylvania State Univer- applied antibiotics, the plants could launch a defense sity, has built his career on revealing how plants defend and inhibit potato beetle larvae growth (1). Bacteria in themselves against voracious insects. Plants often de- the insect’s oral secretions were tricking the plants into tect chemicals in an insect’s oral secretions and respond defending against microbial invaders instead of insect by producing proteins that wreak havoc on insect di- ones. Kill the bacteria and the cover is blown. gestion and nutrient absorption. Myriad factors affect crop health, such as genetics, But the Colorado potato beetle was different. Felton insects, microbes, weather, soil nutrients, weeds, fertilizer, found that oral secretions from its larvae actually pre- tilling. Until recently, scientists typically studied one vented potato and tomato plants from launching a proper variable at a time, says plant pathologist Jan Leach of defense. He tested chemical factors in the secretions that Colorado State University. “When a plant is sitting in the might help the beetle foil the plant, but came up short. field, it’s not just exposed to one pathogen, one tem- “Maybethereissomethingelseherethatwe’ve totally perature, one insect. It’s exposed to everything at once,” overlooked,” he recalls thinking. says Leach. “If we want to understand how plants Bacteria in the oral secretions of Colorado potato beetle larvae can trick potato and tomato plants into defending against microbes instead of the insect pest. -
Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Terrence H
Masthead Logo Plant Pathology Presentations and Posters Plant Pathology and Microbiology 3-13-2019 Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Terrence H. Bell The Pennsylvania State University Gwyn A. Beattie Iowa State University, [email protected] Kurt P. Kowalski U.S. Geological Survey Amy T. Welty Iowa State University, [email protected] et al. Follow this and additional works at: https://lib.dr.iastate.edu/plantpath_conf Part of the Agriculture Commons, Ecology and Evolutionary Biology Commons, and the Plant Sciences Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ plantpath_conf/7. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Conference Proceeding is brought to you for free and open access by the Plant Pathology and Microbiology at Iowa State University Digital Repository. It has been accepted for inclusion in Plant Pathology Presentations and Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities Abstract This white paper presents a series of perspectives on current and future phytobiome management, discussed at the Wild and Tamed Phytobiomes Symposium in University Park, PA, USA, in June 2018. To enhance plant productivity and health, and to translate lab- and greenhouse-based phytobiome research to field applications, the academic community and end-users need to address a variety of scientific, practical, and social challenges. Prior discussion of phytobiomes has focused heavily on plant-associated bacterial and fungal assemblages, but the phytobiomes concept covers all factors that influence plant function. -
Rhizosphere Microbiomes Modulated by Pre-Crops Assisted Plants in Defense Against Plant-Parasitic Nematodes
fmicb-09-01133 May 31, 2018 Time: 17:22 # 1 ORIGINAL RESEARCH published: 04 June 2018 doi: 10.3389/fmicb.2018.01133 Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes Ahmed Elhady1,2, Shimaa Adss1, Johannes Hallmann1 and Holger Heuer1* 1 Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Braunschweig, Germany, 2 Department of Plant Protection, Faculty of Agriculture, Benha University, Benha, Egypt Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, Edited by: or not inoculated. After the microbiome was established, the root lesion nematode Jesús Mercado-Blanco, Consejo Superior de Investigaciones Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly Científicas (CSIC), Spain reduced on soybean plants inoculated with the microbiome from maize or soybean Reviewed by: compared to tomato or bulk soil, or the uninoculated control. In the analogous Juan Emilio Palomares-Rius, Consejo Superior de Investigaciones experiment with tomato plants inoculated with either P. penetrans or the root knot Científicas (CSIC), Spain nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato Nuria Escudero, reduced root invasion by P. -
Data Sheets on Quarantine Pests
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Unaspis citri IDENTITY Name: Unaspis citri (Comstock) Synonyms: Chionaspis citri Comstock Prontaspis citri (Comstock) Dinaspis veitchi Green & Laing Taxonomic position: Insecta: Hemiptera: Homoptera: Diaspididae Common names: Citrus snow scale, white louse scale (English) Schneeweisse Citrusschildlaus (German) Cochinilla blanca, piojo bianco, escama de nieve de los cítricos (Spanish) Bayer computer code: UNASCI EPPO A1 list: No. 226 EU Annex designation: II/A1 HOSTS U. citri is polyphagous, attacking plant species belonging to 12 genera in 9 families. The main hosts of economic importance are Citrus spp., especially oranges (C. sinensis) but the insect has also been recorded on a wide range of other crops, mostly fruit crops and ornamentals, including Annona muricata, bananas (Musa paradisiaca), Capsicum, coconuts (Cocos nucifera), guavas (Psidium guajava), Hibiscus, jackfruits (Artocarpus heterophyllus), kumquats (Fortunella), pineapples (Ananas comosus), Poncirus trifoliata and Tillandsia usneoides. The main potential hosts in the EPPO region are Citrus spp. growing in the southern part of the region, around the Mediterranean. GEOGRAPHICAL DISTRIBUTION U. citri originated in Asia and has spread widely in tropical and subtropical regions. EPPO region: A closely related species, the arrowhead scale (Unaspis yanonensis (Kuwana)), also a pest of citrus, has recently been introduced into France and possibly into Italy (EPPO/CABI, 1996). Specimens of U. citri were collected in Portugal (Azores) in the 1920s, but there have been no records since; there is no suggestion that the pest is established there now. There has recently been an isolated record in Malta. -
The Biology and Ecology of Armored Scales
Copyright 1975. All rights resenetl THE BIOLOGY AND ECOLOGY +6080 OF ARMORED SCALES 1,2 John W. Beardsley Jr. and Roberto H. Gonzalez Department of Entomology, University of Hawaii. Honolulu. Hawaii 96822 and Plant Production and Protection Division. Food and Agriculture Organization. Rome. Italy The armored scales (Family Diaspididae) constitute one of the most successful groups of plant-parasitic arthropods and include some of the most damaging and refractory pests of perennial crops and ornamentals. The Diaspididae is the largest and most specialized of the dozen or so currently recognized families which compose the superfamily Coccoidea. A recent world catalog (19) lists 338 valid genera and approximately 1700 species of armored scales. Although the diaspidids have been more intensively studied than any other group of coccids, probably no more than half of the existing forms have been recognized and named. Armored scales occur virtually everywhere perennial vascular plants are found, although a few of the most isolated oceanic islands (e.g. the Hawaiian group) apparently have no endemic representatives and are populated entirely by recent adventives. In general. the greatest numbers and diversity of genera and species occur in the tropics. subtropics. and warmer portions of the temperate zones. With the exclusion of the so-called palm scales (Phoenicococcus. Halimococcus. and their allies) which most coccid taxonomists now place elsewhere (19. 26. 99). the armored scale insects are a biologically and morphologically distinct and Access provided by CNRS-Multi-Site on 03/25/16. For personal use only. Annu. Rev. Entomol. 1975.20:47-73. Downloaded from www.annualreviews.org homogenous group. -
Redalyc.CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE
Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Machkour-M’rabet, S.; Ferral-Piña, J.; Henaut, Y. CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Acta Zoológica Mexicana (nueva serie), vol. 31, núm. 3, diciembre, 2015, pp. 512-517 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57542699025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 512ISSN 0065-1737 Machkour-M’rabetActa Zoológica et al.: MexicanaChilocorus (n.s.), cacti 31(3):and the 512-517 red palm (2015) mite Nota Científica (Short Communication) CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Recibido: 12/05/2015; aceptado: 14/08/2015 Machkour-M’rabet, S., Ferral-Piña, J. y Henaut, Y. 2015. Chilo- potentially infest a wide diversity of plants, many of corus cacti (Coleoptera: Coccinellidae), enemigo natural potencial which are economically and ecologically important (Car- del ácaro rojo de las palmas en México. Acta Zoológica Mexicana rillo et al. 2012a). In Mexico, 16 species of commercially (n. s.), 31(3): 512-517. grown plants (some of which form entire genus) belong- RESUMEN. Raoiella indica Hirst (Acari: Tenuipalpidae), el ácaro ro- ing to four families (Arecaceae, Heliconiaceae, Musaceae jo de las palmas, es una plaga importante en el mundo, dañando plan- and Strelitziaceae) have been reported as hosts of the red tas comerciales y ornamentales. -
Phylogenetic Placement of Ivodea and Biogeographic Affinities Of
Plant Systematics and Evolution (2020) 306:7 https://doi.org/10.1007/s00606-020-01633-3 ORIGINAL ARTICLE Phylogenetic placement of Ivodea and biogeographic afnities of Malagasy Rutaceae Marc S. Appelhans1,2 · Jun Wen2 Received: 6 December 2018 / Accepted: 8 January 2020 / Published online: 1 February 2020 © The Author(s) 2020 Abstract The genus Ivodea is endemic to Madagascar and the Comoros and consists of 30 species. This study is the frst to include the genus in a molecular phylogenetic analysis. We sequenced the plastid trnL–trnF and the nuclear ITS regions for three Ivodea species and revealed that the genus is monophyletic and most closely related to the African and Malagasy Vepris, refuting earlier suggestions of a close relationship between Ivodea and the Asian, Malesian, Australasian and Pacifc genera Euodia and Melicope. Ivodea and Vepris provide another example of closely related pairs of Rutaceous groups that have drupaceous and capsular/follicular fruits, respectively, thus further confrming that fruit types are not suited to delimit sub- families in Rutaceae, as has often been done in the past. Ivodea was the last of the seven Malagasy genera to be included in the Rutaceae phylogeny, making it possible to conduct an assessment of biogeographic afnities of the genera that occur on the island. Our assessments based on sister-group relationships suggest that the eight lineages (representing seven genera) of Malagasy Rutaceae either have African or have Asian afnities. Two lineages have an African origin, and one lineage has an Asian origin. Taxon sampling is insufcient to interpret the directionality of dispersal events in the remaining lineages. -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................