Συγκριτική Μελέτη Πρωτεϊνών Του Ακραιόφιλου Αρχαίου Metallosphaera Sedula Με Ομόλογες Πρωτεΐνες Άλλων Οργανισμών

Total Page:16

File Type:pdf, Size:1020Kb

Συγκριτική Μελέτη Πρωτεϊνών Του Ακραιόφιλου Αρχαίου Metallosphaera Sedula Με Ομόλογες Πρωτεΐνες Άλλων Οργανισμών Πτυχιακή Εργασία Συγκριτική μελέτη πρωτεϊνών του ακραιόφιλου αρχαίου Metallosphaera sedula με ομόλογες πρωτεΐνες άλλων οργανισμών Σαμαράς Δημήτριος ΑΕΜ 1664 Επιβλέπουσα Καθηγήτρια: Δρ. Φαδούλογλου Βασιλική Αλεξανδρούπολη 2021 Περιεχόμενα Περιεχόμενα 1 Ευχαριστίες 2 Περίληψη 3 Abstract 4 1. Εισαγωγή 5 1.1. Οι ακραιόφιλοι οργανισμοί 5 Θερμόφιλα 7 Ψυχρόφιλα 8 Οξεόφιλα 9 Αλκαλόφιλα 9 Αλόφιλα 9 1.2. Εφαρμογές στη βιοτεχνολογία 10 1.3. Το αρχαίο Metallosphaera sedula 12 1.4. Σκοπός 13 2. Υλικά και μέθοδοι 14 3. Αποτελέσματα 17 3.1 Αναγωγάση του υδραργύρου 18 3.2 Μηλική αφυδρογονάση 23 3.3 Κιτρική συνθάση 29 3.4 Αποκαρβοξυλάση της 5’-μονοφωσφορικής οροτιδίνης 35 3.5 Δεϋδρατάση του 3-υδροξυπροπιονυλο-CoA 39 3.6 Vacuolar protein sorting 4 AAA-ATPase 44 4. Συμπεράσματα – Συζήτηση 50 5. Βιβλιογραφικές αναφορές 55 6. Παράρτημα 59 1 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω ειλικρινά την επιβλέπουσα καθηγήτριά μου Δρ. Βασιλική Φαδούλογλου που με δέχθηκε στο εργαστήριό της και μου έδωσε την ευκαιρία να εκπονήσω την πτυχιακή μου εργασία υπό την επίβλεψή της. Ήταν διαθέσιμη και πρόθυμη να μου παρέχει οποιαδήποτε βοήθεια και καθοδήγηση κάθε φορά που τη χρειάστηκα. Με την υπομονή και επιμονή που έδειξε με βοήθησε να αποκτήσω θεωρητικές γνώσεις πάνω στο αντικείμενο της εργασίας, μου έδωσε σημαντικά εφόδια για τη μετέπειτα σταδιοδρομία μου, ενώ συνέβαλε και στη γενικότερη βελτίωσή μου ως άνθρωπο και εκκολαπτόμενο επιστήμονα. Φυσικά δε θα μπορούσα να μην ευχαριστήσω την οικογένεια μου που στήριξε και συνεχίζει να στηρίζει την κάθε μου επιλογή και το κάθε μου βήμα. 2 Περίληψη Οι ακραιόφιλοι οργανισμοί (extremophiles) έχουν αναπτύξει πληθώρα μηχανισμών με τους οποίους καθίσταται δυνατή η επιβίωση τους σε περιβάλλοντα όπου επικρατούν ακραίες συνθήκες. Συνθήκες όπως ακραίες τιμές θερμοκρασίας, pH, αλατότητας, πίεσης ή και συνδυασμός αυτών μπορεί να οδηγήσουν στην αποδιάταξη και απώλεια ενεργότητας των πρωτεϊνών με φυσικό επακόλουθο το θάνατο του οργανισμού. Ένας τρόπος με τον οποίο πολλοί οργανισμοί επιβιώνουν σε ακραίες συνθήκες είναι η απομόνωση του εξωτερικού τους περιβάλλοντος από το εσωτερικό τους. Παραδείγματος χάριν, ορισμένοι οξεόφιλοι οργανισμοί διαθέτουν αντλίες με τις οποίες αποβάλουν ιόντα υδρογόνου με αποτέλεσμα να διατηρούν σχέδον ουδέτερο pH στο εσωτερικό τους, ανεξάρτητα με το όξινο pH που επικρατεί στο εξωτερικό τους περιβάλλον. Ωστόσο, πολλές φορές κάτι τέτοιο δεν είναι δυνατόν. Χαρακτηριστικό παράδειγμα αποτελούν οι οργανισμοί που ζουν σε περιβάλλοντα όπου επικρατούν ακραίες θερμοκρασίες. Οι οργανισμοί αυτοί δεν μπορούν να απομονώσουν το εσωτερικό τους από τις ακραίες θερμοκρασίες και επομένως αναγκάστηκαν να αναπτύξουν άλλους μηχανισμούς για να επιβιώσουν. Στους μηχανισμούς αυτούς μπορεί να ενέχονται προσαρμογές της πρωτεϊνικής δομής και αμινοξικής αλληλουχίας, οι οποίες αποσκοπούν στη διατήρηση της σταθερότητας και ενεργότητας των πρωτεϊνών τους κάτω από τις ακραίες συνθήκες στις οποίες ζουν. Στην παρούσα εργασία μελετήσαμε πρωτεΐνες του θερμόφιλου και οξεόφιλου αρχαίου Metallosphaera sedula και τις συγκρίναμε με ομόλογες πρωτεΐνες τους απο μεσόφιλους ή ακραιόφιλους οργανισμούς. Σκοπός μας ήταν ο πιθανός εντοπισμός χαρακτηριστικών που έχουν την τάση να εμφανίζονται ή να απουσιάζουν από πρωτεΐνες που έχουν εξελιχθεί έτσι ώστε να παραμένουν λειτουργικές σε ακραίες συνθήκες. 3 Abstract Extremophilic organisms have developed a wide variety of mechanisms which enable them to survive in environments where the conditions seem incompatible with life to humans. Conditions like extreme temperature, pH, salinity, pressure or a combination of those can lead to the denaturation of proteins and loss of their activity, which naturally leads to the death of the organism. One way which enables organisms to survive extreme conditions is by isolating their external from their internal environment. For example, some acidophiles have proton pumps that allow them to keep their cytoplasm at pH values near neutral, regardless of their extremely acidic external environment. However, this is not always possible. Organisms that live in extremely hot or cold environments is one such example. These organisms cannot shut out heat or cold, so they had to develop different mechanisms to survive. In the mechanisms developed by extremophilic organisms there could be adaptations to the protein structure and amino acid sequence, which aim to the retention of the proteins’ stability and activity under the extreme conditions in which they live. In the present study, we studied proteins of the thermoacidophilic archaeon Metallosphaera sedula and we compared them with homologous proteins from mesophilic or extremophilic organisms. Our goal was to identify protein traits that tend to appear or be absent from specific proteins and could possibly be associated with their ability to remain functional under extreme conditions. 4 1. Εισαγωγή 1.1 Οι ακραιόφιλοι οργανισμοί Η Διεθνής Ένωση Θεωρητικής και Εφαρμοσμένης Χημείας (IUPAC) ορίζει ως κανονικές συνθήκες θερμοκρασίας και πίεσης περιβάλλοντος τους 25oC και 1 atm αντίστοιχα. Ως προς το pH και την αλατότητα, pH 5-9 και αλατότητα που δεν ξεπερνά το 1.2% NaCl (w/v) αποτελούν τιμές ευρέως αποδεκτές ως “φυσιολογικές” (Merino et al. 2019; Schröder et al. 2020). Στον πλανήτη μας υπάρχει πληθώρα περιβαλλόντων όπου τουλάχιστον ένας από τους παραπάνω παράγοντες μπορεί να παίρνει τιμές εκτός αυτών των ορίων. Τέτοιου είδους περιβάλλοντα περιλαμβάνουν ιαματικές πηγές, υδροθερμικές αναβλύσεις και τα ηφαίστεια όπου επικρατεί θερμοκρασία που πλησιάζει ή και ξεπερνά τους 100oC, την Αρκτική και την Ανταρκτική που χαρακτηρίζονται από πολύ χαμηλές θερμοκρασίες, ενώ υπάρχουν και περιβάλλοντα όπως οι έρημοι όπου παρατηρούνται μεγάλες θερμοκρασιακές διακυμάνσεις στη διάρκεια ενός εικοσιτετραώρου. Παράδειγμα αποτελεί η έρημος Σαχάρα όπου η θερμοκρασία μπορεί να κυμαίνεται από τους 50oC την ημέρα στους -4oC κατά τη διάρκεια της νύχτας. Ακραία περιβάλλοντα αποτελούν επίσης τα βάθη των ωκεανών που χαρακτηρίζονται από έλλειψη φωτός και υψηλή πίεση που μπορεί να ξεπερνά τα 110 MPa, όξινες λίμνες όπως η λίμνη Kawah Ijen όπου επικρατεί pH<0.3, καθώς και αλκαλικές λίμνες όπως η λίμνη Bogoria η οποία χαρακτηρίζεται από αλατότητα >40% και pH>10.3 (Peoples et al. 2019; Löhr et al. 2004; Jirsa et al. 2013; Rothschild and Mancinelli 2001;). Ορισμένα από τα περιβάλλοντα αυτά καθώς και η τοποθεσία τους φαίνονται στην Εικόνα 1. 5 Εικόνα 1: Πάνω αριστερά: Η έρημος Σαχάρα, μια έρημος στη νότια Αφρική όπου η θερμοκρασιακή διακύμανση μπορεί να ξεπερνά τους 40oC κατά τη διάρκεια ενός εικοσιτετραώρου. Η τοποθεσία της φαίνεται στο χάρτη της εικόνας με την κόκκινη πινέζα. Πάνω δεξιά: Φωτογραφία από το βυθό της τάφρου των Μαριανών, το βαθύτερο σημείο των Ωκεανών του πλανήτη όπου επικρατεί πολύ υψηλή πίεση και έλλειψη φωτός. Η τοποθεσία της φαίνεται στο χάρτη της εικόνας με την μπλε πινέζα. Κάτω αριστερά: H πιο όξινη λίμνη στον πλανήτη. Η λίμνη Kawah Ijen σχηματίστηκε στον κρατήρα του ηφαιστείου Ijen στην Ινδονησία και η θέση της φαίνεται στο χάρτη με την πράσινη πινέζα. Κάτω δεξιά: Η λίμνη Bogoria, μια λίμνη στην Κένυα στην οποία επικρατεί πολύ υψηλό pH και αλατότητα. Η τοποθεσία της φαίνεται στο χάρτη της εικόνας με την πορτοκαλί πινέζα. 6 Οι άνθρωποι όπως και τα περισσότερα ζώα κατατάσσονται στους μεσόφιλους οργανισμούς, δηλαδή προτιμούν θερμοκρασίες στο εύρος 20-45oC (βέλτιστη ανάπτυξη σε θερμοκρασία 30-39oC) και pH κοντά στο 7 (Schiraldi and De Rosa 2014). Ως εκ τούτου η επιβίωση του ανθρώπου σε ακραία περιβάλλοντα όπως αυτά που αναφέρθηκαν πιο πάνω είναι από πολύ δύσκολη έως αδύνατη. Γνωρίζουμε όμως πως υπάρχει ένας τεράστιος αριθμός οργανισμών που ευδοκιμούν σε περιβάλλοντα όπου επικρατούν ακραίες συνθήκες (Madigan and Marrs 1997). Πέρα από την ικανότητα τους να επιβιώνουν, κάποιοι από τους οργανισμούς αυτούς έχουν εξελιχθεί σε αυτές τις συνθήκες με τρόπο που αδυνατούν να επιβιώσουν σε άλλες συνθήκες. Παραδείγματα τέτοιων οργανισμών αποτελούν το βακτήριο Anaerobranca gottschalkii που αναπτύσσεται μόνο απουσία οξυγόνου (Prowe and Antranikian 2001), το αρχαίο Pyrococcus furiosus που αδυνατεί να αναπτυχθεί σε θερμοκρασία χαμηλότερη των 65oC (Fiala and Stetter 1986) κ.ά. Περισσότεροι ακραιόφιλοι οργανισμοί και λεπτομέρειες για αυτούς μπορούν να βρεθούν στον πίνακα του παραρτήματος τον οποίο κατασκευάσαμε στα πλαίσια της παρούσας εργασίας. Στον πίνακα αυτό υπάρχει ένας μεγάλος αριθμός ακραιόφιλων οργανισμών καθώς και στοιχεία για αυτούς, όπως η επικράτεια στην οποία ανήκουν, οι ακραίες συνθήκες στις οποίες επιβιώνουν, τα μέρη στα οποία εντοπίζονται και η μοριακή βάση της ανθεκτικότητά τους όπου αυτή είναι γνωστή. Οι οργανισμοί που μπορούν να αναπτύσσονται σε ακραίες συνθήκες χωρίζονται σε 2 κατηγορίες. Μια κατηγορία αποτελούν οι οργανισμοί που μπορούν μεν να επιβιώνουν σε ακραίες συνθήκες, αναπτύσσονται όμως βέλτιστα σε φυσιολογικές συνθήκες (extremotolerant). Η δεύτερη κατηγορία αποτελείται από τους ακραιόφιλους οργανισμούς, δηλαδή οργανισμούς που αναπτύσσονται βέλτιστα σε ακραίες συνθήκες (Merino et al. 2019). Οι ακραιόφιλοι οργανισμοί χωρίζονται με τη σειρά τους σε κατηγορίες με βάση τις ιδιαίτερες συνθήκες στις οποίες αναπτύσσονται. Οργανισμοί που αναπτύσσονται σε ακραία χαμηλή ή υψηλή θερμοκρασία ονομάζονται ψυχρόφιλοι και θερμόφιλοι αντίστοιχα. Με την ίδια λογική οργανισμοί που αναπτύσσονται σε πολύ όξινο ή βασικό pH ονομάζονται οξεόφιλοι και αλκαλόφιλοι αντίστοιχα. Οργανισμοί που για την ανάπτυξή τους απαιτούν υψηλή συγκέντρωση άλατος κατατάσσονται στους αλόφιλους οργανισμούς. Άλλες κατηγορίες ακραιόφιλων οργανισμών αποτελούν οι πιεζόφιλοι και
Recommended publications
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering
    Environmental Science Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering Environmental Science Series editors Rod Allan, Burlington, ON, Canada Ulrich Förstner, Hamburg, Germany Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters 123 Editor Shree Nath Singh Plant Ecology and Environmental Science Division CSIR—National Botanical Research Institute Lucknow, Uttar Pradesh India ISSN 1431-6250 ISBN 978-3-319-10941-1 ISBN 978-3-319-10942-8 (eBook) DOI 10.1007/978-3-319-10942-8 Library of Congress Control Number: 2014951157 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L
    applied sciences Article The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms Artur Banach 1,* , Agnieszka Ku´zniar 1, Radosław Mencfel 2 and Agnieszka Woli ´nska 1 1 Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] (A.K.); [email protected] (A.W.) 2 Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-454-5442 Received: 6 May 2019; Accepted: 24 May 2019; Published: 26 May 2019 Abstract: The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome.
    [Show full text]
  • Extreme Environments and High-Level Bacterial Tellurite Resistance
    microorganisms Review Extreme Environments and High-Level Bacterial Tellurite Resistance Chris Maltman 1,* and Vladimir Yurkov 2 1 Department of Biology, Slippery Rock University, Slippery Rock, PA 16001, USA 2 Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +724-738-4963 Received: 28 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments. Keywords: tellurite; tellurite resistance; extreme environments; metalloids; bioremediation; biometallurgy 1. Introduction Microorganisms possess a wide range of extraordinary abilities, from the production of bioactive molecules [1] to resistance to and transformation of highly toxic compounds [2–5]. Of great interest are bacteria which can convert the deleterious oxyanion tellurite to elemental tellurium (Te) through reduction. Currently, research into bacterial interactions with tellurite has been lagging behind investigation of the oxyanions of other metals such as nickel (Ni), molybdenum (Mo), tungsten (W), iron (Fe), and cobalt (Co).
    [Show full text]
  • COULD LIFE SURVIVE in ALIEN ENVIRONMENTS? Defining Environments Suitable for Life
    biology | B09 teach with space → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Defining environments suitable for life teacher guide & student worksheets Teacher guide Fast facts page 3 Introduction page 4 Background page 6 Activity: Life in space? page 8 Links page 10 Annex page 11 teach with space – could life survive in alien environments? | B09 www.esa.int/education The ESA Education Office welcomes feedback and comments [email protected] An ESA Education production in collaboration with ESERO Poland Copyright 2019 © European Space Agency → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Could life survive in alien environments? Fast facts Brief description Subject: Biology In this activity students will consider whether Age range: 13-16 years old life found in extreme environments on Earth could survive elsewhere in the Solar System. Type: student activity Students will examine the characteristics Complexity: medium of different places in the Solar System Cost: Low (0 - 10 euros) and then use fact cards of some example Lesson time required: 1 hour extremophiles to hypothesize which they think might be able to survive in the different Location: Classroom extra-terrestrial environments. Includes the use of: Internet, books, library Keywords: Biology, Solar System, Planets, Moons, Extremophiles, Abiotic factors, Search for life Learning objectives • Learn what extremophiles are. • Consider ecological tolerance. • Consider the abiotic factors that affect adaptation and survival of lifeforms. • Learn about the environmental conditions of various Solar System objects. • Understand that changes in environmental conditions have an impact on the evolution of living organisms. teach with space – could life survive in alien environments? | B09 3 → Introduction The more scientists look on Earth, the more life they find.
    [Show full text]
  • ABSTRACT OZDEMIR, INCI. Role of S-Layer Homology Domain
    ABSTRACT OZDEMIR, INCI. Role of S-layer Homology Domain Proteins in Plant Biomass Conversion to Biofuels by Extremely Thermophilic Caldicellulosiruptor species. (Under the direction of Robert M. Kelly.) Second-generation biofuels require the conversion of lignocellulose from agricultural waste, non-edible parts of crops, and grasses into fermentable sugars. Lignocellulose is composed of pectin, hemicellulose, cellulose and lignin, all of which form a matrix that must be penetrated and deconstructed by physical, chemical and biological methods to facilitate conversion to biofuels. Certain microorganisms have the capacity to extract the carbohydrate content of lignocellulose through the coordinated action of glycoside hydrolases and other metabolic processes, which together can contribute to biofuel production. Of interest here are extremely thermophilic bacteria from the genus Caldicellulosiruptor. One of the intriguing features of these bacteria is that they do not produce cellulosomes but rather produce multi-domain (hemi)cellulolytic enzymes. Some of these biocatalysts contain S-layer homology (SLH) domains, anchoring the enzymes to the cell envelope, and also have carbohydrate-binding domains (CBM), which bind the enzyme to the substrate. This can be a very efficient way of degrading plant biomass since enzymes are localized in close proximity of the cell where control its local microenvironment is possible. Six different groups of SLH-domain proteins with GH domains could be identified in the genome sequences of Caldicellulosiruptor species. Representatives from each group were produced recombinantly in E. coli and examined with respect to biochemical and biophysical properties. Csac_0678 (bifunctional cellulase/xylanase from C. saccharolyticus with homologs in all eight genome- sequenced Caldicellulosiruptor species), Calkr_2245 (xylanase from C.
    [Show full text]
  • Plant and Environment
    Plant and Environment https://journals.pagepal.org/index.php/plant-and-environment Application of Bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments Muhammad Mahroz Hussain*1,2, Zia Ur Rahman Farooqi*1,3, Waqas Mohy-Ud-Din1, Fazila Younas1, Muhammad Tahir Shahzad1, Muhammad Usman Ghani1,5, Muhammad Ashar Ayub1 and Abdul Qadeer1 1Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan-38040. 2University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany 3Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, Scotland, UK Article Info Abstract Keyword s: Bioremediation is a technique, which involves different organisms and different Pollutants types, sources, substances to treat or detoxify the pollutants in an eco-friendly way. It involves plants, contamination, toxicity, microbes, fungus, and different nutrients and gasses. It can detoxify an extensive array remediation erosion of pollutants both the organic and inorganic e.g. heavy metals and different types of pesticides. The use of microbes for this purpose is the most common practice as these Date: are ecofriendly and can be used anywhere i.e. in-situ and ex-situ. The pesticides and Received: 7 April 2020 the heavy metals are predictable. Regardless of their harmful effects, their use is Accepted: 16 September 2020 increasing. there are many techniques to cope with their harmful effects but there is Published: 15 February 2021 another issue regarding the side effects of these techniques.
    [Show full text]
  • Structural Studies of the Extremophilic Viruses P23-77 and STIV2
    Life on the Edge: Structural Studies of the Extremophilic Viruses P23-77 and STIV2 Lotta J. Happonen Institute of Biotechnology and Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki and Viikki Doctoral Programme in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences, University of Helsinki, in the auditorium 1041 of Biocenter 2, Viikinkaari 5, Helsinki, on June 8th 2012 at 12 o´clock noon. HELSINKI 2012 ii Supervisor Professor Sarah J. Butcher Institute of Biotechnology and Department of Biosciences University of Helsinki Finland Reviewers Nicola G. A. Abrescia, Ph.D. Structural Biology Unit Center for Cooperative Research in Biosciences (CIC bioGUNE) Bilbao Spain and Docent Pirkko Heikinheimo Department of Biochemistry and Food Chemistry University of Turku Finland Opponent Professor Timothy S. Baker Department of Chemistry and Biochemistry University of California San Diego USA Custos Professor Minna Nyström Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki Finland ©Lotta Happonen 2012 Cover picture: Pasi Laurinmäki and Lotta Happonen ISBN 978-952-10-8001-2 (paperback) ISBN 978-952-10-8002-9 (PDF) ISSN 1799-7372 UNIGRAFIA Helsinki 2012 iii The pursuit of truth and beauty is a sphere of activity in which we are permitted to remain children all our lives. – Albert Einstein iv ORIGINAL PUBLICATIONS The thesis is based on the following articles, which are referred to in the text by their Roman numerals, and which are reprinted at the end of this thesis with permission from the publishers.
    [Show full text]
  • WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT (51) International Patent Classification: #324, Charlottesville, Virginia 22901 (US). ZOMORODI, C12N 15/70 (2006.01) Sepehr; 1600 Jefferson Park Ave. #307, Charlottesville, Virginia 22903 (US). POURTAHERI, Payam; 4000 City (21) International Application Number: Walk Way #213, Charlottesville, Virginia 22902 (US). PCT/US20 18/052690 (74) Agent: HOLLY, David C. et al; 1299 Pennsylvania Av¬ (22) International Filing Date: enue NW, Suite 700, Washington, District of Columbia 25 September 2018 (25.09.2018) 20004-2400 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/562,723 25 September 2017 (25.09.2017) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/666,981 04 May 2018 (04.05.2018) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: AGROSPHERES, INC. [US/US]; 1180 Semi¬ KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, nole Trail, Suite 100, Charlottesville, Virginia 22901 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (72) Inventors: SHAKEEL, Ameer Hamza; 43 136 Shadow SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Terrace, Leesburg, Virginia 20176 (US).
    [Show full text]
  • In Tropical Iron Ore Systems Alan Levett B.Sc. H. Majoring in Geological
    Development of ferruginous duricrusts (canga) in tropical iron ore systems Alan Levett B.Sc. H. Majoring in Geological Sciences (UQ) 2014 B.Sc. Extended Major in Biomedical Sciences (UQ) 2011 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland – 2020 School of Earth and Environmental Sciences Abstract Iron-rich duricrusts (canga) that cap iron ore deposits in Brazil evolve by the redox-based cycling of iron oxide minerals, continually forming new iron-rich cements that effectively prevent the physical erosion of these landforms. This thesis aimed to understand the biological influences on the geochemical cycling of iron within canga, to determine if these processes could be used to accelerate iron cement formation, for example, in a post-mining context. Re- cementing waste material (canga) from iron ore mining may provide an environmentally- friendly solution for iron ore mine remediation in Brazil and the restoration of a rare ecosystem associated with canga outcrops. Field emission scanning electron microscopy revealed an array of microorganisms fossilised within canga, highlighting the innate role of microorganisms in the evolution of canga horizons. Nanoscale elemental mapping of these microfossils revealed a role for aluminium in the long-term preservation of organic and inorganic biosignatures. A suite of high-resolution analytical techniques were correlated to understand the fossilisation processes that contribute to biosignature preservation in near-neutral iron-rich environments. Further investigation of the microfossils in canga, revealed the complex weathering patterns induced by microorganisms. Grains within canga could be completely weathered and texturally replaced by microfossils; only remnants of the grain’s shape and traces of most immobile elements (for example, thorium) were left behind.
    [Show full text]
  • Yellowstone ABC's
    YELLOWSTONE ABC’s Acid, Base, Chemistry — Student Workbook Astrobiology Biogeocatalysis Research Center The Astrobiology Biogeocatalysis Research Center at Montana State University Our team supports the work of the NASA Astrobiology opportunities. Life in the extreme environments of Institute (NAI), a multidisciplinary umbrella for Yellowstone’s thermal features is thought to resemble conducting research on the origin and evolution of life conditions of early Earth. Yellowstone’s abundant and on Earth and elsewhere in the universe. unique thermal features give researchers insights into the origin, evolution and future of life. The origin of life, sustainable energy, and global climate change are intimately linked, and the answers we seek Whether you are a potential MSU student, a research to solve our energy needs of the future are etched into investigator, a teacher or a citizen, we welcome you Earth’s history. ABRC’s work supports NASA’s missions, to the world of astrobiology. ABRC is committed to such as Mars exploration and possibilities of habitation sharing our work and its impact with the people of of other worlds. Our research also focuses on the future Montana and beyond, through formal and informal of life on Earth. These efforts support the fundamental education; public outreach; and communications to groundwork for Goal 3 (Origins of Life) of the NASA many different audiences. Astrobiology Roadmap. Our outreach and education activities are strengthened ABRC involves investigators with expertise in by many factors, including MSU’s proximity to geochemistry, experimental and theoretical physical Yellowstone National Park, the expertise and chemistry, materials science, nanoscience, and experience of our faculty and close partners, the iron-sulfur cluster biochemistry who work to define outstanding commitment from our MSU students to and conduct integrated research and education in share their work with the public, and a rich network of astrobiology.
    [Show full text]
  • The Extremes of Life and Extremozymes: Diversity and Perspectives
    ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 3 Issue 1 January 2020 Review Article The Extremes of Life and Extremozymes: Diversity and Perspectives Jagdish Parihar and Ashima Bagaria* Received: November 12, 2019 Department of Physics, Manipal University Jaipur, Rajasthan, India Published: December 23, 2019 *Corresponding Author: Ashima Bagaria, Department of Physics, © All rights are reserved by Jagdish Parihar Manipal University Jaipur, Rajasthan, India. and Ashima Bagaria DOI: 10.31080/ASMI.2020.03.0466 Abstract In mid 60’s and 70’s the discovery of Thermus aquaticus from Yellowstone National park in USA which could survive at extremely high temperatures of 80°C, opened gates towards exploration of extremophiles that emerged as a new field of microbiology. extremophiles. These microorganisms are found mainly in hot water springs, deep ocean vents, volcano pits, deep ice zones, deserts, The microorganisms that can thrive at extreme environmental conditions where normal organisms fail to sustain are known as saline lakes, mines, rocks beds and radiation zones etc. Since last two decades, the research data on extremophiles has increased paper and pulp, leather, detergent, diary textiles, food and beverages, pharma, medicines and biotech industries. The current review exponentially as the enzymes extracted from the extremophilic microorganisms have shown potency in various industries like Extremophiles; Extremozymes; Adaptations and Industrial Applications encapsulatesKeywords: the knowledge about various extremophiles and their potential therapeutic and biotechnological applications. Introduction Extremophile term is derived from Latin word ‘Extremus’ mean- Microorganisms have the capability to survive in all extremity’s environments. The most preferred range of environmental condi- ing 'extreme' and Greek word ‘philia’ meaning ‘love’.
    [Show full text]