Procedures for the Laboratory-Scale Treatment of Surplus and Waste Chemicals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safe Handling of Sodium Azide (SAZ)
Safe Handling of Sodium Azide (SAZ) 1,2 Sodium azide (SAZ, CAS# 26628-22-8) is a white crystalline solid [molecular formula of (NaN3)] used in organic synthesis and also as a well-known preservative at low concentrations in molecular biology reagents. Azide chemistry3,4 offers an effective means to synthesize a range of nitrogen-containing compounds with a wide variety of functional groups. But SAZ poses some significant risks. It is highly toxic and can react to form potentially explosive compounds. Azide reagents and intermediates react with some metals5, strong acids, and certain chlorinated solvents6 and this needs to be considered when using SAZ or when developing routes that involve azide-containing intermediates. Health Hazards & Physical Hazards of SAZ Hazard Statements Fatal if swallowed or in contact with skin. Very toxic to aquatic life with long lasting effects. Health Hazards: SAZ is highly toxic when ingested orally or absorbed through the skin. Azides form strong complexes with hemoglobin, and consequently block oxygen transport in the blood. They are more harmful to the heart and the brain than to other organs, because the heart and the brain use a lot of oxygen. Symptoms of exposure include headache, dizziness, nausea and vomiting, rapid breathing and heart rate, and skin burns and blisters (direct skin contact) and in the case of serious overexposure, convulsions and death. It will also react with acids to form hydrazoic acid (HN3). Unlike sodium azide, which is a crystalline solid, hydrazoic acid is a low-boiling, volatile, liquid. Hydrazoic acid is also highly toxic and its volatility makes it more readily inhaled causing lung irritation and potentially bronchitis and lung edema. -
Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin. -
Synthesis and Consecutive Reactions of Α-Azido Ketones: a Review
Molecules 2015, 20, 14699-14745; doi:10.3390/molecules200814699 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis and Consecutive Reactions of α-Azido Ketones: A Review Sadia Faiz 1,†, Ameer Fawad Zahoor 1,*, Nasir Rasool 1,†, Muhammad Yousaf 1,†, Asim Mansha 1,†, Muhammad Zia-Ul-Haq 2,† and Hawa Z. E. Jaafar 3,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan, E-Mails: [email protected] (S.F.); [email protected] (N.R.); [email protected] (M.Y.); [email protected] (A.M.) 2 Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore-54600, Pakistan; E-Mail: [email protected] 3 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang-43400, Selangor, Malaysia † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.F.Z.); [email protected] (H.Z.E.J.); Tel.: +92-333-6729186 (A.F.Z.); Fax: +92-41-9201032 (A.F.Z.). Academic Editors: Richard A. Bunce, Philippe Belmont and Wim Dehaen Received: 20 April 2015 / Accepted: 3 June 2015 / Published: 13 August 2015 Abstract: This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones. Keywords: α-azido ketones; synthetic applications; heterocycles; click reactions; drugs; azides 1. Introduction α-Azido ketones are very versatile and valuable synthetic intermediates, known for their wide variety of applications, such as in amine, imine, oxazole, pyrazole, triazole, pyrimidine, pyrazine, and amide alkaloid formation, etc. -
Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3':5'
Proc. Natl. Acad. Sci. USA Vol. 74, No. 8, pp. 3203-3207, August 1977 Biochemistry Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations (nitro compounds/adenosine 3':5'-cyclic monophosphate/sodium nitroprusside/sodium azide/nitrogen oxides) WILLIAM P. ARNOLD, CHANDRA K. MITTAL, SHOJI KATSUKI, AND FERID MURAD Division of Clinical Pharmacology, Departments of Medicine, Pharmacology, and Anesthesiology, University of Virginia, Charlottesville, Virginia 22903 Communicated by Alfred Gilman, May 16, 1977 ABSTRACT Nitric oxide gas (NO) increased guanylate cy- tigation of this activation. NO activated all crude and partially clase [GTP pyrophosphate-yase (cyclizing), EC 4.6.1.21 activity purified guanylate cyclase preparations examined. It also in- in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue creased cyclic GMP but not adenosine 3':5'-cyclic monophos- preparations examined. The extent of activation was variable phate (cyclic AMP) levels in incubations of minces from various among different tissue preparations and was greatest (19- to rat tissues. 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and MATERIALS AND METHODS cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal Male Sprague-Dawley rats weighing 150-250 g were decapi- muscle, adrenal, and epididymal fat. Activation was also ob- tated. Tissues were rapidly removed, placed in cold 0.-25 M served with partially purified preparations of guanylate cyclase. sucrose/10 mM Tris-HCl buffer (pH 7.6), and homogenized Activation of rat liver supernatant preparations was augmented in nine volumes of this solution by using a glass homogenizer slightly with reducing agents, decreased with some oxidizing and Teflon pestle at 2-4°. -
Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications Through Ligand Exchange and Direct Conjugation
Nanomaterials 2016, 6, 100; doi:nano6060100 S1 of S10 Supplementary Materials: Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation Tina Lam, Pramod K. Avti, Philippe Pouliot, Foued Maafi, Jean-Claude Tardif, Éric Rhéaume, Frédéric Lesage and Ashok Kakkar Experimental The following compounds were purchased and used as received; tetraethylene glycol, tetraethylene glycol monomethyl ether, p-toluene sulfonyl chloride (tosyl chloride), methane sulfonyl chloride (mesyl chloride), sodium hydroxide, lithium aluminium hydride (LiAlH4), 4- dimethylaminopyridine (DMAP), triethylamine, diethyl amine, sodium azide, tetrabutylammonium iodide, sodium ascorbate (Na Ascorbate), copper(II) sulphate hexahydrate, borane-THF, bis(triphenylphosphine) palladium(II) dichloride, 1-bromo-4-iodo benzene, disodium ethylenediamine tetraacetate (EDTA), iron(II) chloride tetrahydrate (FeCl2·4H2O), iron (III) chloride hexahydrate (FeCl3·6H2O), and oleic acid from Sigma Aldrich (St. Louis, MO, USA), triisopropylsilyl acetylene and trimethylsilyl acetylene from Oakwoods Chemicals (Estill, SC, USA), 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide from Chem Impex International (Wood Dale, IL, USA), and Iron standard # 13830 from Alfa Aesar (Haverhill, MA, USA). Polyvinylidene Fluoride (PVDF) Syringe filters of 17 mm diameter and pore size 0.45 μm were purchased from Sterlitech (Kent, WA, USA). The solvents triethylamine, diethylamine, tetrahydrofuran, acetic acid, acetic anhydride, acetone, chloroform, dichloromethane, benzene, methanol and toluene were purchased from Fisher scientific and ACP Chemicals and used as received. Solvents were obtained from drying columns and purged under N2 prior to use. Milli-Q Ultrapure water was doubly distilled by reverse osmosis though a Millipore RiOS8, followed by filtration through a Milli-Q Academic A10 filtration unit prior to use. -
Nitrous Acid)
5. Nitrogen Group Content 5.1 Occurrence 5.2 Group Properties Group 5.3 Physical Properties 15 or VA 5.4 Syntheses 7 1772 5.5 Chemical Behaviour N 15 5.6 Applications 1669 5.7 Chemistry of Elemental Nitrogen P 33 5.8 Compounds Made of Nitrogen and Hydrogen Antique 5.9 Nitrogen Compounds with Oxygen As 51 5.10 Nitrogen Compounds with Halides Antique Sb 5.11 Phosphorus/Hydrogen Compounds 83 1753 5.12 Phosphorus Oxides Bi 5.13 Oxo Acids of Phosphorus 115 2003 5.14 Phosphorus Compounds with Halides Mc 5.15 Arsenic, Antimony and Bismuth 5.16 Biological Aspects „Penteles“ Inorganic Chemistry I Slide 1 Prof. Dr. T. Jüstel 5.1 Occurrence Außer Phosphor kommen alle Pentele auch elementar (gediegen) vor Nitrogen (nitrogenium) N2 (78.1% in the air) NaNO3 Chile saltpetre KNO3 Saltpetre Phosphorus (phosphoros) Ca5(PO4)3(OH,F) Apatite greek: lightbearer Ca3(PO4)2 Phosphorite . Fe3(PO4)2 8H2O Vivianite Arsenic (arsenikos) FeAsS Arsenopyrite greek: mineral name As4S4 Realgar As4S3 Antimony (antimonium) Sb native Stibium = greek mineral name Sb2S3 Bismuth (bismutum) Bi native german: Wismut = Mutung “in the meadows” Bi2S3 Inorganic Chemistry I Slide 2 Prof. Dr. T. Jüstel 5.2 Group Properties Whereas Nitrogen Exhibits the Typical Properties of A Non-Metal, Bismuth Is Solely Metallic N P As Sb Bi Atomic number 7 15 33 51 83 Electronic [He] [Ne] [Ar] [Kr] [Xe]4f14 configuration 2s22p3 3s23p3 3d104s24p3 4d105s25p3 5d106s26p3 Electronegativity 3.0 2.1 2.2 1.8 1.7 Ionisation energy [eV] 14.5 11.0 9.8 8.6 7.3 Electronic affinity [eV] -0.3 0.6 0.7 0.6 > 0.7 Character of oxides acidic acidic amphoteric amphoteric alkaline Oxidation states -3, ...…, +5 With increasing atomic number, the oxidation state +3 becomes more stable, whilst the oxidation state +5 becomes instable. -
Supplementary Information
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Highly regioselective and sustainable solar click reaction: A new Post-synthetic modified triazole organic polymer as recyclable photocatalyst for regioselective azide-alkyne cycloaddition reaction Dolly Yadav,a Nem Singh,a Tae Wu Kim,b Jae Young Kim,a No-Joong Parka and Jin-Ook Baeg*a aArtificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea E-mail:[email protected] bCenter for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea. S. N. Contents Page no. 1. Experimental section S2-S3 2. Safety issues for handling azide compounds S3 3. Synthetic procedure S4-S18 4. Tables S1-S3 S19-S21 5. Figures S1-S12 S20-S28 6. Crystallographic data of 3bd- figure S12, table S4-S5 S29-S31 7. 1H, 13C and 19F NMR figure S13- S28 S32-S86 8. References S86 S1 Experimental Section 1.1 Materials All the reagents utilized in synthesis were purchased from commercial suppliers, unless or otherwise stated. Sodium Azide, disodium 4,4’-diaminostilbene disulfonate, sodium nitrite, 1,8- diazabicyclo[5,4,0]undec-7-ene, propargyl alcohol, propargyl bromide (80% in toluene), perylene tetracarboxylic anhydride were purchased from Sigma Aldrich Korea. 2,6-difluorobenzylbromide, 2,4-difluorobenzylbromide, 3,5-Dimethylbenzylbromide, 4-bromobenzylbromide, 4- fluorobenzylbromide propiolic acid and methyl propiolate were also purchased from Sigma Aldrich. The solvents DMF, DCM, acetone, ethyl acetate were purchase from Junsei Chemicals Company. Caution sodium azide is considered to be explosive, hence necessary precautions fume hood, safety glasses etc should be taken while carrying out the reaction. -
United States Patent Office Patented Aug
3,832,364 United States Patent Office Patented Aug. 27, 1974. 2 zene, o-, m- and p-dichlorobenzene, anisole, methyl. 3,832,364 benzyl ether, n-propyl phenyl ether, m-ethyl-anisole, 4 AMINATION OF AROMATIC COMPOUNDS IN methyldiphenyl ether, di-p-tolyl ether, ethyl 2-cyclohexyl LIQUID HYDROGEN FLUORIDE Dale Robert Coulson, Wilmington, Del assignor to E. I. phenyl ether, n-heptyl phenyl ether, isobutyl phenyl ether, du Pont de Nemours and Company, Wilmington, Del. 5 cyclohexyl phenyl ether, n-octyl phenyl ether, n-octyl p No Drawing. Filed May 25, 1972, Ser. No. 256,770 tolyl ether, n-octyl m-tolyl ether, decyl phenyl ether, 1 Int. C. C07c87/50, 97/12 benzylethylheptyl ether, benzoic acid, p-toluic acid, p U.S. C. 260-378 26 Claims chlorobenzoic acid, phthalic acid, nitrobenzene, m-dinitro benzene, o-, m- and p-nitrotoluene, acetophenone, methyl O benzyl ketone, p-methylacetophenone, 3-phenyl-2-buta ABSTRACT OF THE DISCLOSURE none, propriophenone, 2-methyl-1-tetralone, phenyl. n Disclosed herein is a process for making aromatic butyl ketone, benzophenone, p-methylbenzophenone, di amines from benzene or substituted benzene and an o-tolyl ketone, phenyl isobutyl ketone, phenyl n-hexyl aminating agent via direct amination in liquid hydrogen ketone, phenyl n - undecyl ketone, anthraquinone, 2 - fluoride medium as solvent and catalyst. 15 methylanthraquinone, and 1-methyl-4-isopropylanthra quinone. Preferred aromatic compounds are those containing BACKGROUND OF THE INVENTION two or fewer substituents. Especially preferred com 1. Field of the Invention pounds are those containing two or fewer substituents 20 selected from halogen and alkyl of up to four carbons. -
Chem 314 Preorganic Evaluation
Organic Reaction Guide Beauchamp 1 Chem 316 / Beauchamp Reactions Review Sheet Name SN2 Reactions - special features: biomolecular kinetics Rate = kSN2[RX][Nu ], single step concerted reaction, E2 is a competing reaction o o o o relative order of reactivity: CH3X > 1 RX > 2 RX >> 3 RX (based on steric hinderance, no SN2 at 3 RX) allylic & benzylic RX are very reactive, adjacent pi bonds help stabilize transition state and lower TS energy (Ea) o complete substitution at Cα (3 RX) or Cβ (neopentyl pattern) almost completely inhibits SN2 reactions vinyl & phenyl are very unreactive, bonds are stronger and poor backside approach leaving group ability: OTs = I > Br > Cl in neutral or basic conditions (just like E2, SN1 adn E1), and neutral molecule leaving groups are good from protonated, cationic intermediates in acid conditions, + + + + -OH2 , -ORH , -OR2 , -NR3 , etc. we will consider all anions, ammonia, amines, thiols and sulfides to be strong nucleophiles (favors SN2 and E2 reactions) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and - + + - + - some are mainly bases (t-BuO K , Na H2N , Na H ) polar, aprotic solvents work best for SN2 reactions because nucleophiles are relatively unencombered for electron doantion (dimethyl sulofoxide = DMSO, dimethylformamide = DMF, acetonitrile = AN, acetone, etc.) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and we will consider neutral solvent molecules such as water, alcohols and acids to be weak nucleophiles (favors SN1 and E1) stereoselectivity: 100% inversion of configuration from backside atack regioselectivity: reacts at carbon with leaving group, completely unambiguous chemoselectivity: N/A The following list is designed to emphasize SN2 reactions. -
Inorganic Seminar Abstracts
C 1 « « « • .... * . i - : \ ! -M. • ~ . • ' •» »» IB .< L I B RA FLY OF THE. UN IVERSITY Of 1LLI NOIS 546 1^52-53 Return this book on or before the Latest Date stamped below. University of Illinois Library «r L161— H41 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/inorganicsemi195253univ INORGANIC SEMINARS 1952 - 1953 TABLE OF CONTENTS 1952 - 1953 Page COMPOUNDS CONTAINING THE SILICON-SULFUR LINKAGE 1 Stanley Kirschner ANALYTICAL PROCEDURES USING ACETIC ACID AS A SOLVENT 5 Donald H . Wilkins THE SOLVENT PHOSPHORYL CHLORIDE, POCl 3 12 S.J. Gill METHODS FOR PREPARATION OF PURE SILICON 17 Alex Beresniewicz IMIDODISULFINAMIDE 21 G.R. Johnston FORCE CONSTANTS IN POLYATOMIC MOLECILES 28 Donn D. Darsow METATHESIS IN LIQUID ARSENIC TRICHLORIDE 32 Harold H. Matsuguma THE RHENI DE OXIDATION STATE 40 Robert L. Rebertus HALOGEN CATIONS 45 L.H. Diamond REACTIONS OF THE NITROSYL ION 50 M.K. Snyder THE OCCURRENCE OF MAXIMUM OXIDATION STATES AMONG THE FLUOROCOMPLEXES OF THE FIRST TRANSITION SERIES 56 D.H. Busch POLY- and METAPHOSPHATES 62 V.D. Aftandilian PRODUCTION OF SILICON CHLORIDES BY ELECTRICAL DISCHARGE AND HIGH TEMPERATURE TECHNIQUES 67 VI. £, Cooley FLUORINE CONTAINING OXYHALIDES OF SULFUR 72 E.H. Grahn PREPARATION AND PROPERTIES OF URANYL CARBONATES 76 Richard *• Rowe THE NATURE OF IODINE SOLUTIONS 80 Ervin c olton SOME REACTIONS OF OZONE 84 Barbara H. Weil ' HYDRAZINE BY ELECTROLYSIS IN LIQUID AMMONIA 89 Robert N. Hammer NAPHTHAZARIN COMPLEXES OF THORIUM AND RARE EARTH METAL IONS 93 Melvin Tecotzky THESIS REPORT 97 Perry Kippur ION-PAIR FORMATION IN ACETIC ACID 101 M.M. -
Sodium Azide [CAS No
LABORATORY SAFETY GUIDELINE Sodium Azide [CAS No. 26628-22-8] All users of sodium azide and sodium azide solutions should review this document. Sodium azide is classified as a particularly hazardous substance under the OSHA Lab Standard due to its high acute toxicity, particularly by the dermal route, and is dangerously reactive when heated. Consequently, labs should have a written SOP. EH&S does not require acutely toxic materials to be locked up, but your lab should consider security and access controls wherever it is stored. Highly toxic through skin contact, inhalation, and ingestion. Acute central nervous system (CNS) and cardiovascular effects. Irritation to eyes, skin, and respiratory tract. Chronic exposure may result in liver and kidney damage. Repeated exposure may cause damage to the spleen. Very toxic to aquatic life PRECAUTIONS Before starting work: • Review manufacture’s Safety Data Sheet and additional chemical information at ehs.harvard.edu/safety-data- sheets-sds. • Ensure that a written experimental protocol including safety information is available. • Make sure you are familiar with general University emergency procedures in the EHS Emergency Response Guide. • Order the most dilute solutions available that will meet experimental needs. Order only what you need. • Identify the location of the nearest eyewash and shower and verify that they are accessible. Storage considerations: • Sodium azide can be stored with other acutely toxic materials in a dark, cool, dry location away from acids. • Close proximity to acids, acid vapor or heat generating processes should be avoided. Contact with acids produces highly toxic gas – hydrazoic acid. • Sodium azide should be stored separately from metals, acids, carbon disulfide, bromine, chromyl chloride, sulfuric acid, nitric acid, hydrazine, and dimethyl sulfate. -
Sodium Azide Hazards and Disposal
Sodium Azide Hazards and Disposal Sodium azide is used at UNO in the preservation of samples and stock solutions. It is often a better choice for this purpose than thimerosal, as sodium azide does not contain mercury. However, sodium azide does have hazards. Heavy-metal azides are notoriously explosive. Sodium azide, a common preservative in clinical laboratories and a useful reagent in synthetic work, is not explosive except when heated near its decomposition temperature (300 C); heating sodium azide should be avoided. Sodium azide should never be flushed down the drain since this practice can cause serious incidents when the azide reacts with lead or copper in the drain lines and explodes. Moreover, sodium azide has high acute toxicity as well as high toxicity to bacteria in water treatment plants.1 Note that metal shelves and other metal items used to handle sodium azide (i.e., spatulas) can also result in the formation of heavy metal azides and thus should be avoided. Sodium azide solutions can be submitted to Environmental Health & Safety for disposal, or be chemically degraded in the laboratory using the following method: Sodium azide can be destroyed by reaction with nitrous acid. 2NaN3 + 2HNO2 3N2 + 2NO + 2NaOH The operation must be carried out in a hood due to the formation of nitric oxide. An aqueous solution containing no more than 5% sodium azide is put into a three-necked flask equipped with a stirrer, a dropping funnel, and an outlet with plastic tubing to carry nitrogen oxides to the hood flue. A 20% aqueous solution of sodium nitrite containing 1.5 g (about 40% excess) of sodium nitrite per gram of sodium azide is added with stirring.