Copper–Titanium Thin Film Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Copper–Titanium Thin Film Interaction Microelectronic Engineering 76 (2004) 153–159 www.elsevier.com/locate/mee Copper–titanium thin film interaction L. Castoldi a, G. Visalli a, S. Morin a, P. Ferrari a, S. Alberici b, G. Ottaviani c,d,*, F. Corni c,d, R. Tonini c,d, C. Nobili c,d, M. Bersani e a ST Microelectronis, Cornaredo, Milano, Italy b Central R&D, Physics and Material Characterization Laboratory, ST Microelectronis, Via Olivetti 2, I-20041 Agrate Brianza, Milano, Italy c Dipartimento di Fisica, via Campi 213/a 41100 Modena, Italy d MASEM, Materiali Avanzati per Sistemi, lElettroMeccanici, via Vivaldi 70, 41100 Modena, Italy e ITC-irst, via Sommarive 18, 38050 Povo, Trento, Italy Available online 12 August 2004 Abstract Interaction between 5 lm thick copper and 50 nm thin titanium films was investigated as a function of annealing temperature and time using MeV 4He+ Rutherford backscattering, X-ray diffraction and dynamic Secondary Ion Mass Spectrometry. Samples were made by depositing 10 nm of titanium on a PECVD silicon oxynitride, followed by 50 nm of titanium nitride and 50 nm of titanium in the said order. In the same system 100 nm of copper were subsequently sputtered; finally 5 lm of copper were grown by electroplating. This complex structure was chosen in order to inves- tigate the possibility of using copper interconnects also in power devices. To investigate the composition and growth of Ti–Cu compound on the buried interface, it was necessary to develop a special procedure. The results of the investiga- tion show the formation of a laterally non-uniform layer of TiCu4, which is presumably preceded by the formation of CuTi. The growth of the compound is kinetically controlled by means of a diffusion coefficient having 1.7 eV activation energy and a 5 · 10À2 cm2/s pre-exponential factor. The formation of a titanium–copper compound ensures a reliable and low resistance electrical contact especially at the vias. The Ti/TiN/Ti acts efficiently as a sacrificial and inert diffu- sion barrier. No copper was detected on the silicon oxynitride surface even after a 20-min 500 °C heat treatment. Ó 2004 Published by Elsevier B.V. PACS: 68.35.Fx; 6630.Xj; 68.55.Nq Keywords: Copper-titanium compounds; Power devices; Electrical contact; Diffusion barrier; Interconnect; Vias 1. Introduction * Corresponding author. Tel.: +39 039 6035168; fax: +39 039 6035530. Copper metallization is considered as a E-mail address: [email protected] substitute for aluminum-based interconnects for (G. Ottaviani). 0.1–0.15 lm advanced devices [1]. For these 0167-9317/$ - see front matter Ó 2004 Published by Elsevier B.V. doi:10.1016/j.mee.2004.07.043 154 L. Castoldi et al. / Microelectronic Engineering 76 (2004) 153–159 applications, a few hundredths nanometer thick and each piece was annealed (at the desired tem- films, generally in contact with low-k oxides, are perature–time couples) in a 10À6 mbar vacuum considered. To prevent copper diffusion, barriers furnace. are necessary; polycrystalline tantalum and amor- During the heat treatments Ti and Cu react; in phous tantalum nitride films are currently used [2]. order to observe the buried reacted film, the unre- The stability of such barriers against copper diffu- acted copper was selectively removed by a wet sion is very good, since, according to the equilib- chemical etching at room temperature with a mix- rium phase diagrams, no Ta–Cu compounds are ture of inorganic acids (phosphoric acid and acetic expected, and amorphous TaN inhibits grain acid) and hydrogen peroxide, diluted in water boundaries diffusion. (H2O2:H3PO4:CH3COOH:H2O = 1:1:1:20). Due to the advantage offered by copper in terms The surface morphology of the copper film was of resistance, electromigration properties, and unveiled by means of an atomic force microscope integrability in the process, its use has been consid- (AFM) and of a focused ion beam (FIB). Heat ered also for power devices. For these applications, treatments induce grain growth but no correlation mostly due to the necessity to deliver high power, was found with the Ti–Cu interaction process. Nu- the properties required to the interconnection clear techniques, Rutherford backscattering scheme, and as a consequence also the structures spectrometry (RBS) and elastic recoil detection and materials, are different than those necessary (ERD) techniques [3] with a 2–2.5 MeV 4He+ for memory or microprocessor applications. Actu- beam, were used to investigate the Cu–Ti interac- ally, for power devices the metal films are thicker, tions and the hydrogen redistribution. The experi- around a few microns for copper, the insulator is mental apparatus allows to acquire two spectra at generally PECVD deposited silicon oxynitride, two different scattering angles at the same time; and above all, the contact resistance in the vias 160° and 120° for RBS and 15° and 160° for should be as low as possible, as well as reproduci- ERD. In this way a double check can be per- ble. For the last requirement a metallization formed. Titanium and copper interact forming a scheme ensuring reproducibility through metallur- compound, to establish the nature of which RBS gical interaction is desirable. and X-ray diffraction have been used. Secondary The purpose of this paper is to investigate the ion mass spectrometry (SIMS) has been performed properties of a multilayer metallic structure in con- to monitor the diffusion of copper trough the Ti/ tact with PECVD deposited silicon oxynitride film. TiN/Ti layer [4,5]. The estimated sensitivity of The multilayer being considered consists of cop- such technique is 1017 atoms/cm3 of copper in tita- per, titanium and titanium nitride films. nium. The situation in the TiN layer is different, as the copper signal, mostly the 63 amu signal, inter- feres with the TiN signal and the sensitivity is not 2. Experimental better than a few atomic per cent. The results showed that, within the sensitivity of the tech- Samples have been prepared by depositing 1000 nique, there is no copper contamination at the nm of PECVD silicon oxynitride on p-type silicon Ti-oxynitride interface as far as all the annealed wafer, followed by 10 nm of titanium, 50 nm of conditions considered. titanium nitride and 50 nm of titanium. Subse- quently, 100 nm of copper were sputter-deposited, and finally 5 lm of copper were grown by electro- 3. Results plating in the same system. Before each heat treat- ment the copper films were kept at room Fig. 1 shows RBS spectra made with 2.2 MeV temperature. The resistivity decreased from 2.3 to 4He+ and the detector at the scattering angle of 1.8 lX-cm in 10 hrs, reaching its steady state value. 120° with respect to the incoming ion beam ob- To study in detail the Ti–Cu interaction processes tained from various samples after chemical etching 10 · 10 mm2 pieces where cut from a single wafer of copper. The positions of Ti and Cu on the sur- L. Castoldi et al. / Microelectronic Engineering 76 (2004) 153–159 155 Energy (MeV) Energy (MeV) 1.6 1.7 1.8 0.6 0.8 1.0 1.2 1.4 1.6 35 60 as-deposited 500C 20 min 30 350 C 10 min 400 C 5 min 400 C 5 min 50 25 40 20 30 15 20 NormalizedYield 10 Normalized Yield 5 10 Ti Cu N O Si Ti Cu 0 0 400 420 440 460 480 500 100 150 200 250 300 350 400 450 Channel Channel Fig. 1. 2.2 MeV 4He+ RBS spectra taken on as-deposited and Fig. 2. 2 MeV 4He+ RBS spectra taken in two samples post-annealing samples. The unreacted copper film has been annealed at two different temperatures, after unreacted copper removed by chemical etching. The spectra show only the copper etched. The signals from Ti and Cu are consistent with a layer and titanium portions; the position of the elements, if on the having a composition of Cu4Ti. surface, is shown. face are indicated. The signal between channels senting measurable thickness of the compound. 400 and 460 is due to Ti atoms, whereas above Fig. 2 shows the spectrum obtained from the sam- channel 460 the signal comes from Cu. The signal ple annealed at 500 °C 20 min with 2 MeV 4He+. from silicon oxynitride is not shown. The area un- The spectrum obtained from the sample annealed der the Ti peak is proportional to the total amount at 400 °C 5 min is plotted for comparison. The of titanium atoms in the sample for unit area. In position of the various elements, if located on the the as-deposited sample this quantity is 5.3 · 1017 surface, is indicated. On the surface, a slight oxy- atoms/cm2; within a small atomic percentage, the gen contamination of about 2 · 1016 atoms/cm2 is same value was found in all samples, independ- present. The simulation of the spectrum taken at ently of the heat treatments undergone and of 500 °C is quite complex due to the multilayer the quantity of compound formed. No copper is structure of the sample and to the fact that the present in the spectrum of the as-deposited sample, edges are not sharp, indicating a laterally non-uni- indicating that chemical etching is extremely effi- form sample, as the AFM pictures have also cient in removing metallic copper. The spectra of shown. Further complication in the analysis is the samples annealed at 350 °C for 10 min and due to the presence of hydrogen. at 400 °C for 5 min, show 5 · 1015 and 22 · 1015 By combining the results from RBS and ERD copper atoms/cm2 respectively.
Recommended publications
  • Process Integration Issues of Low-Permittivity Dielectrics with Copper for High-Performance Interconnects
    PROCESS INTEGRATION ISSUES OF LOW-PERMITTIVITY DIELECTRICS WITH COPPER FOR HIGH-PERFORMANCE INTERCONNECTS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Alvin Leng Sun Loke March 1999 © Copyright by Alvin Leng Sun Loke 1999 All Rights Reserved Prepared under the support of the Semiconductor Research Corporation, and Graduate Research Fellowships from the Natural Sciences and Engineering Research Council of Canada and Rockwell Semiconductor Systems Integrated Circuits Laboratory Center for Integrated Systems Stanford University, Stanford, CA 94305-4070 ii I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ S. Simon Wong (Principal Advisor) I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ Krishna C. Saraswat I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ James S. Harris, Jr. Approved for the University Committee on Graduate Studies: ___________________________ Dean of Graduate Studies iii iv To Papa, Mummy, Alan, and Selene... v vi Abstract The relentless drive toward high-speed and high-density silicon-based integrated cir- cuits (IC’s) has necessitated significant advances in interconnect technology. In current process technologies, transistors are interconnected by multilevel aluminum and tungsten conductors encased in silicon dioxide (oxide) insulators.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Optimization of the BEOL
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Optimization of the BEOL Interconnect Stack for Advanced Semiconductor Technology Nodes A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Electrical Engineering (Computer Engineering) by Pooja Pradeep Shah Committee in charge: Professor Andrew B. Kahng, Chair Professor Chung-Kuan Cheng Professor Bill Lin 2015 Copyright Pooja Pradeep Shah, 2015 All rights reserved. The thesis of Pooja Pradeep Shah is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2015 iii DEDICATION I dedicate this thesis to my loving husband Rakesh, my mother and my sister. This thesis would not have been possible without their encouragement and support. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . ix Acknowledgments . x Vita ......................................... xi Abstract of the Thesis . xii Chapter 1 Introduction . 1 1.1 Motivation . 2 1.2 Our Contributions . 3 1.3 Limitations . 5 1.4 Outline of the Thesis . 5 Chapter 2 Previous Works . 7 2.1 Landmark Works . 8 2.2 Wire Optimization at System Level . 11 2.3 Wire Optimization Considering Layer Assignment . 13 2.4 Wire Sizing and Repeater Insertion . 14 2.5 Other Works . 16 2.6 Predictive Technology Models . 18 2.7 Reliability . 19 2.8 The ITRS BEOL Structure and Prediction . 20 2.9 Pitch Prediction . 22 2.10 Summary of Previous Works . 23 Chapter 3 Experiments for Interconnect Dimension Optimization and Vali- dation . 26 3.1 Our Flow .
    [Show full text]
  • Preliminary Reliability Evaluation of Copper-Interconnect Metallization Technology
    Preliminary Reliability Evaluation of Copper-Interconnect Metallization Technology Ashok K. Sharma NASA/Goddard Space Flight Center, Greenbelt, MD 20771 Alexander Teverovsky QSS Group, Inc., Goddard Space Flight Center, Greenbelt, MD 20771 1.0 Background The advantages of using copper for interconnection in microcircuits are mostly due to its lower resistance compared to the aluminum metallization. Copper-based metallization has specific resistance of less than 2 µΩ-cm compared to more than 3 µΩ-cm for aluminum metallization. In combination with a reduced susceptibility to electromigration failures, this enables designing of highly scaled devices with significantly reduced time delays. These features are mostly beneficial for high-performance microprocessors and fast static RAMs (FSRAM). In addition, copper interconnect process uses the dual damascene technology for deposition of copper, which can potentially reduce the manufacturing cost by eliminating some labor intensive steps of aluminum etching. This makes copper interconnect use quite attractive for semiconductor industry, and positions this technology as a standard interconnect process for the most high performance microcircuits in the future. Major problems with copper metallization are due to some specific physical/electrochemical properties. Copper does not create a passive oxide film (as aluminum does), has poor adhesion and high rate of diffusion through silicon and dielectric layers (organic and inorganic). This introduces new failure mechanisms such as poisoning of the P-N junctions, charge instability and formation of resistive shorts caused by copper electrochemical migration. The first on the market, copper-based FSRAM was manufactured by Motorola (the part is available since 1999). This part was used to gain experience with the copper-based interconnect design and technology, to analyze problems related to their evaluation and to obtain preliminary results of destructive physical analysis (DPA) of the parts.
    [Show full text]
  • 3-D Multilayer Copper Interconnects for High-Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra
    3-D Multilayer Copper Interconnects for High-Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra To cite this version: Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra. 3-D Multi- layer Copper Interconnects for High-Performance Monolithic Devices and Passives. Components, Packaging and Manufacturing Technology, 2013, 3 (6), pp.935-942. 10.1109/TCPMT.2013.2258073. hal-00920609 HAL Id: hal-00920609 https://hal.archives-ouvertes.fr/hal-00920609 Submitted on 19 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 3D Multi-layer Copper Interconnects for High Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, and Thierry Parra suspended planar or 3D structures [9]-[12] are other Abstract—This paper presents a new and efficient low-cost technologies that enable direct above-IC integration of high-Q multi-layer 3D copper interconnect process for monolithic inductors. However, these approaches are either complex and devices and passives. It relies on the BPN and SU-8 photoresists, expensive or incompatible with standard silicon technologies associated with an optimized electroplating process to form which use low resistivity substrate.
    [Show full text]
  • Chapter 2 Fundamentals of Electromigration
    Chapter 2 Fundamentals of Electromigration Having shown in Chap. 1 that the future development of microelectronics will lead to more and more electromigration problems, let us now investigate in detail the actual low-level migration processes. A solid grounding in the physics of electro- migration (EM) and its specific effects on the interconnect will give us the knowledge to establish effective mitigation methods during the design of integrated circuits (ICs). We first explain the physical causes of EM (Sect. 2.1) and then present options to quantify the EM process (Sect. 2.2), which enable us to effectively characterize key aspects of the process and its effects. In Sect. 2.3, we introduce EM-influencing factors arising from the specific circuit technology, the environment, and the design. We then investigate detailed EM mechanisms with regard to circuit materials, frequencies, and mechanical stresses (Sect. 2.4). Since EM is closely related to other migration processes, such as thermal and stress migration that also occur in the conductors of electronic circuits, we examine their interdependencies (Sect. 2.5). IC designers must be especially aware of thermal and stress migration; both are introduced and described in their interaction with EM. Finally, Sect. 2.6 outlines the principles of a migration analysis through simu- lation. This honors the importance of finite element modeling (using the finite element method, FEM) in electromigration analysis and enables the reader to develop and apply similar modeling and simulation techniques. 2.1 Introduction The reliability of electronic systems is a central concern for developers, which is addressed by a variety of design measures that include, among others, the choice of materials to best suit an intended use.
    [Show full text]
  • Electrochemical Atomic Layer Deposition of Metals for Applications in Semiconductor Interconnect Metallization
    ELECTROCHEMICAL ATOMIC LAYER DEPOSITION OF METALS FOR APPLICATIONS IN SEMICONDUCTOR INTERCONNECT METALLIZATION by KAILASH VENKATRAMAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Professor Rohan Akolkar Department of Chemical & Biomolecular Engineering CASE WESTERN RESERVE UNIVERSITY January, 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Kailash Venkatraman Candidate for the Doctor of Philosophy degree* (signed) Prof. Rohan Akolkar (chair of the committee) Prof. Uziel Landau Prof. Christine Duval Prof. Mark De Guire Date: October 22, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. 1 DEDICATION Dedicated to my grandparents, Late Shri. S. Krishnaswamy and Smt. S. Sundaresan. 2 TABLE OF CONTENTS DEDICATION .....................................................................................................................2 LIST OF TABLES ...............................................................................................................6 LIST OF FIGURES .............................................................................................................7 ACKNOWLEDGEMENTS ...............................................................................................13 LIST OF SYMBOLS .........................................................................................................14 CHAPTER 1. Introduction ...........................................................................................
    [Show full text]
  • "Process Integration Issues of Low-Permittivity Dielectrics with Copper for High-Performance Interconnects", Chapter
    PROCESS INTEGRATION ISSUES OF LOW-PERMITTIVITY DIELECTRICS WITH COPPER FOR HIGH-PERFORMANCE INTERCONNECTS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Ph.D. CHAPTER 2 Alvin Leng Sun Loke March 1999 Chapter 2 Review of Interconnect Integration The investigations to be presented in subsequent chapters assume a basic command of interconnect process technologies. This chapter provides an overview of interconnect integration, emphasizing key features in both conventional Al and Damascene Cu technol- ogies. It is hoped that with this review, the less familiar reader will have acquired some relevant background information for comprehending the context of the work to follow. In conventional silicon IC technologies, the interconnects are incorporated after front- end processing. Frontend processing refers to the sequence of fabrication steps, typically at very high temperatures (700−1100°C), that form the MOS transistors in the active regions, the pockets of thick isolation in the field regions that separate adjacent transistors, and the silicidation of the transistor terminals for low-resistance contacts. The reader is directed to [38]−[40] for a representative flavor of manufacturable advanced frontend tech- nologies. The backend, referring to the interconnection of transistors, is subsequently formed by contacting the transistor terminals and then vertically stacking alternating layers of metal wires and vias encased in dielectric. Backend process temperatures typically do not exceed 450°C to avoid melting of the metals and to control stress. 17 Chapter 2: Review of Interconnect Integration 2.1 Conventional Technology The state-of-the-art 0.25-µm backend, shown in Figure 2-1, is revisited to illustrate the integration of conventional Al metallization.
    [Show full text]
  • Exploration of Carbon Nanotube and Copper-Carbon Nanotube Composite for Next Generation On-Chip Energy Efficient Interconnect Applications Jie Liang
    Exploration of carbon nanotube and copper-carbon nanotube composite for next generation on-chip energy efficient interconnect applications Jie Liang To cite this version: Jie Liang. Exploration of carbon nanotube and copper-carbon nanotube composite for next genera- tion on-chip energy efficient interconnect applications. Micro and nanotechnologies/Microelectronics. Université Montpellier, 2019. English. NNT : 2019MONTS022. tel-02378303 HAL Id: tel-02378303 https://tel.archives-ouvertes.fr/tel-02378303 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TH ESE` POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSIT E´ DE MONTPELLIER En Micro´electronique Ecole´ doctorale : Information, Structures, Syst`emes Unit´ede recherche LIRMM Exploration of Carbon Nanotube and Copper-Carbon Nanotube Composite for Next Generation On-chip Energy Efficient Interconnect Applications Pr´esent´ee par Jie LIANG le 17 Juin 2019 Sous la direction de Aida TODRI-SANIAL Devant le jury compos´ede Pascal Nouet Professeur LIRMM, UMR CNRS / Universit´ede Montpellier Pr´esident du Jury Aida Todri-Sanial Directrice de Recherche LIRMM, CNRS / Universit´ede Montpellier Directricedeth`ese Ian O’Connor Professeur Ecole´ Centrale de Lyon Rapporteur Jacques-Olivier Klein Professeur Universit´eParis-Sud Rapporteur Cristell Maneux Professeur Universit´ede Bordeaux Examinatrice Jean Dijon Directeur de Recherche CEA-LITEN, Universit´ede Grenoble Invit´e I dedicate my dissertation work to my family and many friends.
    [Show full text]
  • Interconnect Scaling.Pdf
    EE 311 Notes/Prof Saraswat Scaling of Interconnections Scaling of Minimum Feature size and Chip Area 104 10 pr oduction 103 1 logic de velopment 102 0.1 memor y 1 0.01 10 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 Year Year Ref. A. Loke, PhD Thesis, Stanford Univ. 1999 Once the active devices and regions are fabricated they must be electrically connected to each other to make circuits. They must also be connected to the outside world through their inputs and outputs on bonding pads. Making these connections is the job of contacts, vias and interconnects. Separating the interconnects from each other is the job of dielectric layers. All of these components are part of the “metallization” or “backend” structure. The figure below is a schematic diagram showing these components in a typical integrated circuit structure. In recent times the relative importance of the backend structures has greatly increased, and will likely to continue as integrated circuit technology progresses. EE 311 / Saraswat Interconnect Scaling Fig. 2 Schematic cross-section of backend structure, showing interconnects, contacts and vias, separated by dielectric layers. Interconnects can either be global or local. In general, local interconnects are the first, or lowest, level of interconnects. They usually connect gates, sources and drains in MOS technology, and emitters, bases, and collectors in bipolar technology. In MOS technology a local interconnect, polycrystalline silicon, also serves as the gate electrode material. Silicided gates and silicided source/drain regions also act as local interconnects. In addition, TiN, a by-product of a silicided gate process, can be used as a local interconnect, and W is sometimes used as well.
    [Show full text]
  • The Metal Resistivity Increase Is an Emerging Concern As the ITRS Projected Metal Widths Can Be Smaller Than the Mean Free Path
    Proceedings of the 22nd Advanced Metallization Conference, Colorado Springs, CO, September 27-29, 2005. Interconnect Modeling and Analysis in the Nanometer Era: Cu and Beyond Kaustav Banerjee1, Sungjun Im2 and Navin Srivastava1 1Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A. 2Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, U.S.A. ABSTRACT This paper highlights key emerging issues in the domain of interconnect modeling and analysis. The implications of various nanoscale effects on VLSI interconnect performance, reliability, power dissipation and parasitic extraction are also presented. Finally, promising new technologies are outlined which have the potential to meet these interconnect challenges in the nanometer era. INTRODUCTION As VLSI technology has progressed to pack smaller, faster and increasing number of transistors (doubling every 1.8 years as per Moore’s Law) on a single chip than ever before, the demands from wires that connect these devices have increased tremendously. In fact, Copper/Low-k interconnect technologies for sub-100 nm CMOS ICs are impacting system performance through increased power dissipation, signal delay, and cross-talk. With clock frequencies increasing into the GHz regime, the parasitic resistance, capacitance and inductance associated with these wires often lead to performance bottlenecks which have led the semiconductor and the electronic design automation (EDA) industries to adopt several technological innovations. Furthermore, prevalent high chip temperatures (aggravated by large power dissipation of nanometer scale ICs) and increasing current densities in wires make electromigration in copper a constant threat to VLSI circuits. Moreover, variability issues at the nanometer scale are evident in interconnects as they are in devices.
    [Show full text]
  • Advanced Copper Interconnects Application As an Adhesion
    Chemical Vapor Deposition of Cobalt Nitride and its Application as an Adhesion-Enhancing Layer for Advanced Copper Interconnects Harish B. Bhandari, Jing Yang, Hoon Kim, Youbo Lin, Roy G. Gordon, Qing Min Wang, Jean-Sébastien M. Lehn, Huazhi Li and Deo Shenai ECS J. Solid State Sci. Technol. 2012, Volume 1, Issue 5, Pages N79-N84. doi: 10.1149/2.005205jss Email alerting Receive free email alerts when new articles cite this article - sign up service in the box at the top right corner of the article or click here To subscribe to ECS Journal of Solid State Science and Technology go to: http://jss.ecsdl.org/subscriptions © 2012 The Electrochemical Society ECS Journal of Solid State Science and Technology, 1 (5) N79-N84 (2012) N79 2162-8769/2012/1(5)/N79/6/$28.00 © The Electrochemical Society Chemical Vapor Deposition of Cobalt Nitride and its Application as an Adhesion-Enhancing Layer for Advanced Copper Interconnects Harish B. Bhandari,a,b Jing Yang,a Hoon Kim,a,c Youbo Lin,a,d Roy G. Gordon,a,∗,z Qing Min Wang,e Jean-Sebastien´ M. Lehn,e Huazhi Li,e and Deo Shenaie aHarvard University, Cambridge, Massachusetts, 02138, USA bRMD - Radiation Monitoring Devices, Inc, Watertown, Massachusetts, 02472, USA cAlbany NanoTech, Globalfoundries, Albany, New York 12203, USA dIBM East Fishkill, Globalfoundries, Hopewell Junction, New York 12533, USA eDow Electronic Materials, The Dow Chemical Company, North Andover, Massachusetts 01845, USA An interlayer of face centered cubic (fcc) Co4N has demonstrated significant improvements in adhesion between copper and diffusion barrier layers. This fcc phase of Co4N was prepared by chemical vapor deposition (CVD) using bis(N-tert-butyl-N -ethyl- ◦ propionamidinato)cobalt(II) and a reactant mixture of NH3 and H2 at substrate temperatures from 100 to 180 C.
    [Show full text]
  • Copper Interconnects
    Copper interconnects Copper advantages: 1. slightly better conductivity 2. much less susceptibility to electromigration Copper disadvantages: 1. Creates deep level defects in silicon (i.e. poisonous for electronic devices) 2. Difficult (even impossible) to etch by plasma methods Any method to utilize the advantages of copper must: 1. Keep the copper away from the silicon. Cannot be used for ohmic contacts, only for interconnects. 2. Patterns must be formed in a way that doesn’t require directly etching the copper. EE 432/532 copper – 1 EE 432/532 copper – 2 Damascene process In middle ages, metal-smiths in Damascus developed processes for making intricately patterned, highly polished steel that was used extensively for making swords and knives. The steel was significantly better than anything else at the time. (Cutting edge technology!) Technique for Damascus steel has been lost. Modern analysis of the metal shows that carbon nanotubes (!) are present and may have played a role in determining the properties. EE 432/532 copper – 3 Damascene process 1. Using plasma-enhanced CVD, grow a stacked structure of silicon dioxide and silicon nitride. The silicon nitride will serve as an etch-stop layer. EE 432/532 copper – 4 2. Using lithography and plasma etching, etch a trench in the upper oxide layer. The etch stops at the silicon nitride layer. EE 432/532 copper – 5 3. Using sputtering, deposit a thin layer of titanium nitride – TiN – over the top surface. The thickness is 10 nm or less. TiN is a very dense ceramic and prevents Cu atoms from diffusing through. Thus, its primary purpose is to form a diffusion barrier to keep the copper from the silicon.
    [Show full text]