Exploration of Carbon Nanotube and Copper-Carbon Nanotube Composite for Next Generation On-Chip Energy Efficient Interconnect Applications Jie Liang

Total Page:16

File Type:pdf, Size:1020Kb

Exploration of Carbon Nanotube and Copper-Carbon Nanotube Composite for Next Generation On-Chip Energy Efficient Interconnect Applications Jie Liang Exploration of carbon nanotube and copper-carbon nanotube composite for next generation on-chip energy efficient interconnect applications Jie Liang To cite this version: Jie Liang. Exploration of carbon nanotube and copper-carbon nanotube composite for next genera- tion on-chip energy efficient interconnect applications. Micro and nanotechnologies/Microelectronics. Université Montpellier, 2019. English. NNT : 2019MONTS022. tel-02378303 HAL Id: tel-02378303 https://tel.archives-ouvertes.fr/tel-02378303 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TH ESE` POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSIT E´ DE MONTPELLIER En Micro´electronique Ecole´ doctorale : Information, Structures, Syst`emes Unit´ede recherche LIRMM Exploration of Carbon Nanotube and Copper-Carbon Nanotube Composite for Next Generation On-chip Energy Efficient Interconnect Applications Pr´esent´ee par Jie LIANG le 17 Juin 2019 Sous la direction de Aida TODRI-SANIAL Devant le jury compos´ede Pascal Nouet Professeur LIRMM, UMR CNRS / Universit´ede Montpellier Pr´esident du Jury Aida Todri-Sanial Directrice de Recherche LIRMM, CNRS / Universit´ede Montpellier Directricedeth`ese Ian O’Connor Professeur Ecole´ Centrale de Lyon Rapporteur Jacques-Olivier Klein Professeur Universit´eParis-Sud Rapporteur Cristell Maneux Professeur Universit´ede Bordeaux Examinatrice Jean Dijon Directeur de Recherche CEA-LITEN, Universit´ede Grenoble Invit´e I dedicate my dissertation work to my family and many friends. A special feeling of gratitude to my loving parents, whose words of encouragement and push for tenacity ring in my ears. R´esum´e Dans les soci´et´es modernes, le style de vie rapide et efficace n´ecessite un ´echange d’informations rapide, pr´ecis et sˆur. Cette masse d’information est acquise par le biais de divers dispositifs reposant en grande majorit´esur des r´eseaux ´electroniques complexes ainsi que sur Internet. La ville intelligente, l’Internet des objets (IoT) et l’intelligence artificielle des objets (AIoT) sont actuellement des tendances essen- tielles du d´eveloppement technologique futur. L’informatique quantique et neuro- morphique `atr`es grande vitesse laisse entrevoir la possibilit´ede reprendre les archi- tectures de Von Neumann. Cependant, tous ces ´evolutions consomment une ´enorme quantit´ed’´energie. Satisfaire `ala fois les hautes performances et les ultra-basses con- sommation est au centre des d´efis pos´es aux technologies de la prochaine g´en´eration. Afin de r´epondre `ala demande en termes de quantit´ede donn´ees et d’efficacit´e ´energ´etique, la miniaturisation des produits micro´electroniques, plus pr´ecis´ement des transistors, coupl´ee `aune am´elioration des fonctionnalit´es et un coˆut r´eduit, ouvre la possibilit´ede r´epondre aux demandes susmentionn´ees. Cependant, l’am´elioration seule des performances des transistors des prochaines g´en´erations de puce n’est pas suffisante. Malgr´eleurs importances, les puces en elles-mˆemes ne repr´esentent qu’une petite partie du tr`es vaste et complexe puz- zle de la technologie de l’information. Ainsi, pour fa¸conner l’avenir du monde num´erique, nous devons ´egalement examiner la situation dans son ensemble. Les performances des transistors ne valent que dans le syst`eme dans lequels ils sont int´egr´es. Les microprocesseurs les plus rapides sont inutiles si la capacit´edes lignes de donn´ees n’est pas augment´ee en cons´equence. C’est l`a que les interconnexions ´electriques en cuivre (Cu) actuelles approcheront leurs limites physiques et pour- raient ne plus ˆetre en mesure de suivre le d´ebit de donn´ees d’un processeur. En fait, la fr´equence de fonctionnement des processeurs d’aujourd’hui est d´ej`ar´egie par les retards d’interconnexion et, en cours de fonctionnement, la plus grande partie de leur puissance est dissip´ee dans les interconnexions. Par cons´equent, le manque d’interconnexions am´elior´ees est `al’origine de la tendance actuelle `aune simple r´eduction de la taille des circuits sans mise `al’´echelle simultan´ee des performances de la technologie CMOS, contrairement aux d´ecennies pr´ec´edentes. Parall`element `ala forte augmentation de la r´esistance des cˆables d’interconnexion induite par la diminution des dimensions, les performances globales d’une puce se trouve domin´ees par les interconnexions pour la r´egion submicronique. Par- all`element `ala miniaturisation de la taille caract´eristiques des dispositifs, le d´elai intrins`eque de porte diminue et le d´elai d’interconnexion augmente consid´erablement et devient dominant pour les performances globales. Ob´eissez `ala loi de Moore [ 110 ] indique que les transistors sur puce seront r´eduits et doubl´es tous les deux ans afin v d’am´eliorer les performances et la production en volume. Toutefois, l’augmentation des performances des puces risque de se voir entrav´ee si seuls les p´eriph´eriques sont optimis´es mais que ceux-ci ne disposent pas des interconnexions appropri´ees. Par cons´equent, l’exploration et la recherche de mat´eriaux alternatifs pour conducteurs d’interconnexion sur puce sont essentielles et n´ecessaire pour les futures puces hautes performances et faible consommation. Pendant plusieurs d´ecennies, l’aluminium (Al) a ´et´eutilis´epour les intercon- nexions sur puce. En raison des contraintes de mise `al’´echelle des fils et de faible r´esistances des fils, le cuivre, avec sa faible r´esistivit´e, son faible coˆut et moins d’oxydation que l’aluminium, a ´et´ejusqu’`apr´esent la silution privil´egi´ee pour les fils d’interconnexion. Cependant, avec la r´eduction continue de la largeur de ligne des interconnexions en Cu, les performances et la fiabilit´edes conduc- teurs d’interconnexion requi`erent une attention particuli`ere pour suivre la mise `a l’´echelle des transistors. L’avancement de la photolithographie par fil m´etallique est ´egalement une composante importante du d´efi pos´e, la rugosit´ede la surface augmentant avec la largeur de raie du m´etal. Une densit´ede courant ´elev´ee en- traˆınera la rupture du mat´eriau d’interconnexion le long du chemin conducteur, ce qui provoquera ´egalement un dysfonctionnement du circuit et acc´el´erera le d´elai de la puce. Les deux probl`emes principaux des interconnexions actuelles en Cu sont la r´esistivit´econsid´erablement accrue et l’effet d’´electromigration important, qui posent les limites physique des interconnexions en Cu. Le cuivre en tant qu’interconnexion sur puce suivant un proc´ed´edamasc`ene afin de r´eduire davantage la r´eduction d’´echelle. Cependant, l’existence d’une couche barri`ere de tranch´ees d’interconnexion en Cu est n´ecessaire et ne peut ˆetre r´ealis´ee en dessous d’une certaine ´epaisseurs( 2 nm); par cons´equent, la fraction effective des lignes de Cu diminue consid´erablement∼ si des lignes tr`es minces avec une barri`ere induisent une augmentation importante de la r´esistance, encore moins de r´esistance `a l’´electromigration (EM) et en cons´equence une d´egradation des performances encore plus s´ev`ere. Par cons´equent, il est propos´eque des m´etaux alternatifs tels que le Ruthenium (Ru) et le Cobalt (Co) remplacent le Cu en conservant le proc´ed´ede Damas. Mˆeme si Ru et Co ont une r´esistivit´esup´erieure `a celle de Cu, du fait qu’ils ne poss`edent pas de barri`ere, la r´esistance effective `ala tranch´ee est inf´erieure `acelle du Cu. Le Graphene a ´et´ed´ecouvert en 2004 [ 116 ]. Le graph`ene est un arrangement en r´eseau hexagonal monocouche d’atomes de carbone. En raison de sa nature semi-m´etalliques et des propri´et´es particuli`eres qui en d´ecoulent, o`ula bande de conduction et la bande de valence se croisent au point de Dirac, ses ´electrons se comportent comme des fermions de Dirac sans masse qui produisent du graph`ene ayant une vitesse de transport et une densit´ede courant ´elev´ees. Par cons´equent, de nombreuses recherches sur le graph`ene sont conduites pour des applications ciblant les dispositifs micro-´electroniques et les interconnexions. Une bande ´etroite de graph`ene, connue sous le nom de graphene nanoribbon (GNR), a ´et´e´etudi´ee comme candidat prometteur pour remplacer les canaux de transistors [ 11 , 117 ] et les interconnexions [ 130 ] pour les circuits int´egr´es de tr`es grande taille de prochaine g´en´eration (VLSI) . Le GNR pr´esente de nombreux avantages sur les propri´et´es ´electriques [ 107 ], m´ecaniques et thermiques [ 10 , 12 ]. Le GNR a une grande mo- bilit´edes porteurs et une conductivit´ethermique [ 134 ]. Le libre parcours moyen des ´electrons dans du GNR peut atteindre plusieurs microm`etres [ 15 ] et sa conductivit´e thermique est dans la gamme de 5300 W/mK. Cependant, Le GNR a des propri´et´es m´etalliques ou semi-conductrices en fonction de la disposition des atomes de bord. Un GNR `abords en zigzag se comporte de mani`ere m´etallique et `a”bord de fau- teuils” est semi-conducteur [ 112 ]. Il reste encore difficile de fabriquer des GNR enti`erement m´etalliques de haute qualit´epour les applications d’interconnexion `a grande ´echelle. Cependant, en raison de la quantification 2D et de la bande inter- dite ´etroite du GNR semi-conducteur, `ala temp´erature ambiante ou au-dessus, la transition des ´electrons induite par les effets thermiques peut rendre la bande inter- dite ´etroite n´egligeable.
Recommended publications
  • Nanosystems, Edge Computing, and the Next Generation Computing Systems
    sensors Review Nanosystems, Edge Computing, and the Next Generation Computing Systems Ali Passian * and Neena Imam Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] Received: 30 July 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle.
    [Show full text]
  • Numerical Investigation of Carbon Nanotube Thin-Film Composites and Devices
    NUMERICAL INVESTIGATION OF CARBON NANOTUBE THIN-FILM COMPOSITES AND DEVICES A Dissertation Presented to The Academic Faculty By Man Prakash Gupta In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Mechanical Engineering Georgia Institute of Technology May 2015 Copyright © Man Prakash Gupta 2015 NUMERICAL INVESTIGATION OF CARBON NANOTUBE THIN-FILM COMPOSITES AND DEVICES Approved by: Dr. Satish Kumar, Adviser Dr. Abhijit Chatterjee School of Mechanical Engineering School of Electrical and Computer Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Alexander Alexeev Dr. Manos Tentzeris School of Mechanical Engineering School of Electrical and Computer Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Baratunde Cola School of Mechanical Engineering Georgia Institute of Technology Date Approved: December 5, 2014 ACKNOWLEDGEMENTS The period of last five years during my PhD program has been profoundly transformational for me in many ways. Looking back, I find that it has been truly an enjoyable and intellectually satisfying journey which was made possible by the help and support of a number of people. Among them first and foremost, I would like to thank my mentor and adviser Dr. Satish Kumar for providing the necessary guidance and constant encouragement. He has been incredibly patient and supportive during the entire program. Needless to say, he has been a role model for me and I consider it my privilege to be one of the first graduate students in his research group. I am grateful to my collaborators Dr. Saibal Mukhopadhyay, Dr. Eric Pop, Dr. Minki Cho, Dr. David Estrada and Dr. Ashkan Behnam for allowing me to work with them and having fruitful discussions.
    [Show full text]
  • Carbon Nanotube-Based Three-Dimensional Monolithic Optoelectronic Integrated System
    ARTICLE Received 14 Aug 2016 | Accepted 15 Apr 2017 | Published 8 Jun 2017 DOI: 10.1038/ncomms15649 OPEN Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system Yang Liu1, Sheng Wang2, Huaping Liu3,4 & Lian-Mao Peng1,2 Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 Â 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm. 1 Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. 2 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China. 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
    [Show full text]
  • Process Integration Issues of Low-Permittivity Dielectrics with Copper for High-Performance Interconnects
    PROCESS INTEGRATION ISSUES OF LOW-PERMITTIVITY DIELECTRICS WITH COPPER FOR HIGH-PERFORMANCE INTERCONNECTS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Alvin Leng Sun Loke March 1999 © Copyright by Alvin Leng Sun Loke 1999 All Rights Reserved Prepared under the support of the Semiconductor Research Corporation, and Graduate Research Fellowships from the Natural Sciences and Engineering Research Council of Canada and Rockwell Semiconductor Systems Integrated Circuits Laboratory Center for Integrated Systems Stanford University, Stanford, CA 94305-4070 ii I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ S. Simon Wong (Principal Advisor) I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ Krishna C. Saraswat I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ___________________________ James S. Harris, Jr. Approved for the University Committee on Graduate Studies: ___________________________ Dean of Graduate Studies iii iv To Papa, Mummy, Alan, and Selene... v vi Abstract The relentless drive toward high-speed and high-density silicon-based integrated cir- cuits (IC’s) has necessitated significant advances in interconnect technology. In current process technologies, transistors are interconnected by multilevel aluminum and tungsten conductors encased in silicon dioxide (oxide) insulators.
    [Show full text]
  • Methods for Dispersing Carbon Nanotubes For
    Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control Sergio Manzetti, Jean Christophe Gabriel To cite this version: Sergio Manzetti, Jean Christophe Gabriel. Methods for dispersing carbon nanotubes for nanotechnol- ogy applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. International Nano Letters, 2019, 1, pp.1-19. 10.1007/s40089-018-0260-4. cea-01971413 HAL Id: cea-01971413 https://hal-cea.archives-ouvertes.fr/cea-01971413 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Nano Letters https://doi.org/10.1007/s40089-018-0260-4 REVIEW Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control Sergio Manzetti1,2 · Jean‑Christophe P. Gabriel3,4 Received: 1 November 2017 / Accepted: 15 December 2018 © The Author(s) 2018 Abstract Carbon nanotubes (CNTs) are a central part of advanced nanomaterials and are used in state-of-the-art technologies, based on their high tensile strength, excellent thermal transfer properties, low-band gaps and optimal chemical and physical stability. Carbon nanotubes are also intriguing given their unique π-electron-rich structures, which opens a variety of possibilities for modifcations and alterations of their chemical and electronic properties.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Optimization of the BEOL
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Optimization of the BEOL Interconnect Stack for Advanced Semiconductor Technology Nodes A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Electrical Engineering (Computer Engineering) by Pooja Pradeep Shah Committee in charge: Professor Andrew B. Kahng, Chair Professor Chung-Kuan Cheng Professor Bill Lin 2015 Copyright Pooja Pradeep Shah, 2015 All rights reserved. The thesis of Pooja Pradeep Shah is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2015 iii DEDICATION I dedicate this thesis to my loving husband Rakesh, my mother and my sister. This thesis would not have been possible without their encouragement and support. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . ix Acknowledgments . x Vita ......................................... xi Abstract of the Thesis . xii Chapter 1 Introduction . 1 1.1 Motivation . 2 1.2 Our Contributions . 3 1.3 Limitations . 5 1.4 Outline of the Thesis . 5 Chapter 2 Previous Works . 7 2.1 Landmark Works . 8 2.2 Wire Optimization at System Level . 11 2.3 Wire Optimization Considering Layer Assignment . 13 2.4 Wire Sizing and Repeater Insertion . 14 2.5 Other Works . 16 2.6 Predictive Technology Models . 18 2.7 Reliability . 19 2.8 The ITRS BEOL Structure and Prediction . 20 2.9 Pitch Prediction . 22 2.10 Summary of Previous Works . 23 Chapter 3 Experiments for Interconnect Dimension Optimization and Vali- dation . 26 3.1 Our Flow .
    [Show full text]
  • Preliminary Reliability Evaluation of Copper-Interconnect Metallization Technology
    Preliminary Reliability Evaluation of Copper-Interconnect Metallization Technology Ashok K. Sharma NASA/Goddard Space Flight Center, Greenbelt, MD 20771 Alexander Teverovsky QSS Group, Inc., Goddard Space Flight Center, Greenbelt, MD 20771 1.0 Background The advantages of using copper for interconnection in microcircuits are mostly due to its lower resistance compared to the aluminum metallization. Copper-based metallization has specific resistance of less than 2 µΩ-cm compared to more than 3 µΩ-cm for aluminum metallization. In combination with a reduced susceptibility to electromigration failures, this enables designing of highly scaled devices with significantly reduced time delays. These features are mostly beneficial for high-performance microprocessors and fast static RAMs (FSRAM). In addition, copper interconnect process uses the dual damascene technology for deposition of copper, which can potentially reduce the manufacturing cost by eliminating some labor intensive steps of aluminum etching. This makes copper interconnect use quite attractive for semiconductor industry, and positions this technology as a standard interconnect process for the most high performance microcircuits in the future. Major problems with copper metallization are due to some specific physical/electrochemical properties. Copper does not create a passive oxide film (as aluminum does), has poor adhesion and high rate of diffusion through silicon and dielectric layers (organic and inorganic). This introduces new failure mechanisms such as poisoning of the P-N junctions, charge instability and formation of resistive shorts caused by copper electrochemical migration. The first on the market, copper-based FSRAM was manufactured by Motorola (the part is available since 1999). This part was used to gain experience with the copper-based interconnect design and technology, to analyze problems related to their evaluation and to obtain preliminary results of destructive physical analysis (DPA) of the parts.
    [Show full text]
  • 3-D Multilayer Copper Interconnects for High-Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra
    3-D Multilayer Copper Interconnects for High-Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra To cite this version: Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, Thierry Parra. 3-D Multi- layer Copper Interconnects for High-Performance Monolithic Devices and Passives. Components, Packaging and Manufacturing Technology, 2013, 3 (6), pp.935-942. 10.1109/TCPMT.2013.2258073. hal-00920609 HAL Id: hal-00920609 https://hal.archives-ouvertes.fr/hal-00920609 Submitted on 19 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 3D Multi-layer Copper Interconnects for High Performance Monolithic Devices and Passives Ayad Ghannam, David Bourrier, Lamine Ourak, Christophe Viallon, and Thierry Parra suspended planar or 3D structures [9]-[12] are other Abstract—This paper presents a new and efficient low-cost technologies that enable direct above-IC integration of high-Q multi-layer 3D copper interconnect process for monolithic inductors. However, these approaches are either complex and devices and passives. It relies on the BPN and SU-8 photoresists, expensive or incompatible with standard silicon technologies associated with an optimized electroplating process to form which use low resistivity substrate.
    [Show full text]
  • Chapter 2 Fundamentals of Electromigration
    Chapter 2 Fundamentals of Electromigration Having shown in Chap. 1 that the future development of microelectronics will lead to more and more electromigration problems, let us now investigate in detail the actual low-level migration processes. A solid grounding in the physics of electro- migration (EM) and its specific effects on the interconnect will give us the knowledge to establish effective mitigation methods during the design of integrated circuits (ICs). We first explain the physical causes of EM (Sect. 2.1) and then present options to quantify the EM process (Sect. 2.2), which enable us to effectively characterize key aspects of the process and its effects. In Sect. 2.3, we introduce EM-influencing factors arising from the specific circuit technology, the environment, and the design. We then investigate detailed EM mechanisms with regard to circuit materials, frequencies, and mechanical stresses (Sect. 2.4). Since EM is closely related to other migration processes, such as thermal and stress migration that also occur in the conductors of electronic circuits, we examine their interdependencies (Sect. 2.5). IC designers must be especially aware of thermal and stress migration; both are introduced and described in their interaction with EM. Finally, Sect. 2.6 outlines the principles of a migration analysis through simu- lation. This honors the importance of finite element modeling (using the finite element method, FEM) in electromigration analysis and enables the reader to develop and apply similar modeling and simulation techniques. 2.1 Introduction The reliability of electronic systems is a central concern for developers, which is addressed by a variety of design measures that include, among others, the choice of materials to best suit an intended use.
    [Show full text]
  • High Performance Cnt Based Nanoelectronic Circuits An
    International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 11, Issue 8, August 2020, pp. 110-121, Article ID: IJARET_11_08_012 Available online at http://iaeme.com/Home/issue/IJARET?Volume=11&Issue=8 ISSN Print: 0976-6480 and ISSN Online: 0976-6499 DOI: 10.34218/IJARET.11.8.2020.012 © IAEME Publication Scopus Indexed HIGH PERFORMANCE CNT BASED NANOELECTRONIC CIRCUITS: AN ANALYSIS S. Bashiruddin Horned Coot Research in Aesthetic Decors Pvt Ltd, New Delhi, India ABSTRACT Carbon Nano Tubes (CNTs) with their unique electronic and geometric features have emerged as candidates in next generation high-performance nano-electronics application. CNTs have played a significant role in overcoming the challenges of scaling process of traditional silicon/conventional MOS based devices and therefore, carbon nanotube field effect transistor (CNTFET) based circuit development has been boosted in recent years. The present review encompasses inquisitive assessment of CNTs and its application in designing of CNTFET based circuits in nano-electronics. Recently reported CNTFET based nanoelectronic circuits like three stage operational amplifiers (OP AMP), novel operational trans-conductance amplifier (OTA), universal logic circuits, tristate buffer, Cascode Operational Transconductance Amplifiers (COTA), folded cascode operational transconductance amplifiers (FC- OTAs), Ternary Full Adder Cell and pure CNT based multistage operational amplifier, as well as improvement in their performance parameters (DC gain, output resistance, slew rate, average power, speed and power consumption) as compared to respective MOS based circuits have been extensively reviewed. In order to harness the high quality intrinsic features of CNTs further investigations of nanotube-based- electronics are anticipated and considered as future perspective beyond silicon-based- electronics.
    [Show full text]
  • Aligned Carbon Nanotube Synaptic Transistors for Large-Scale
    Article Cite This: ACS Nano XXXX, XXX, XXX−XXX www.acsnano.org Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing † ‡ § § § § Ivan Sanchez Esqueda,*, Xiaodong Yan, Chris Rutherglen, Alex Kane, Tyler Cain, Phil Marsh, ‡ § ‡ ‡ Qingzhou Liu, Kosmas Galatsis,*, Han Wang,*, and Chongwu Zhou*, † Information Sciences Institute, University of Southern California, Marina del Rey, California 90292, United States ‡ Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States § Carbonics Inc., Culver City, California 90230, United States ABSTRACT: This paper presents aligned carbon nanotube (CNT) synaptic transistors for large-scale neuromorphic computing systems. The synaptic behavior of these devices is achieved via charge-trapping effects, commonly observed in carbon-based nanoelectronics. In this work, charge trapping in the high-k dielectric layer of top-gated CNT field-effect transistors (FETs) enables the gradual analog programmability of the CNT channel conductance with a large dynamic range (i.e., large on/off ratio). Aligned CNT synaptic devices present significant improvements over conventional memristor technologies (e.g., RRAM), which suffer from abrupt transitions in the conductance modulation and/or a small dynamic range. Here, we demonstrate exceptional uniformity of aligned CNT FET synaptic behavior, as well as significant robustness and nonvolatility via pulsed experiments, establishing their suitability for neural network implementations. Additionally, this technology is based on a wafer-level technique for constructing highly aligned arrays of CNTs with high semiconducting purity and is fully CMOS compatible, ensuring the practicality of large- scale CNT+CMOS neuromorphic systems. We also demonstrate fine-tunability of the aligned CNT synaptic behavior and discuss its application to adaptive online learning schemes and to homeostatic regulation of artificial neuron firing rates.
    [Show full text]
  • Challenges of Molecular Nanotechnology for Space Exploration
    Challenges of Molecular Nanotechnology for Space Exploration Thomas L. McKendree* Raytheon, Fullerton, CA, 92646-3310 Robert A. Freitas Jr.† Institute of Molecular Manufacturing, Palo Alto, CA 94301 Al Globus‡ Computer Sciences Corporation, Moffett Field, CA, 94035 M. Creon Levit§ NASA Ames Research Center, Moffett Field, CA 94035-1000 and C. David Sherrill**, Mo Li†† and Ralph C. Merkle‡‡ Georgia Institute of Technology, Atlanta, GA, 30332 Molecular nanotechnology is the future capability to design and build systems to atomic precisions. This paper motivates the desire of molecular nanotechnology for space exploration with a review of potential benefits, and reviews relevant progress to date for molecular nanotechnology. It provides a framework of challenges that need to be resolved before molecular nanotechnology can be applied to space systems, with discussion on addressing those challenges. The primary focus is in the area of developing tools for automated design of molecular components, using molecular connector components as an example, and in developing tools for generating reaction pathways to fabricate molecular components that can integrate with tools for developing molecular components. The secondary focus is issues for the molecular fabrication system, including integration with the design of end product space systems. Nomenclature δ = material density σ = material strength ∆V = change in velocity I. Introduction olecular Nanotechnology, the emerging ability to design and build to atomic precision, offers significant M potential to contribute to future space exploration efforts, including greater strength-to-weight materials, * Principal Systems Engineer, Network Centric Systems, FU/676/X343, 92843-3310, Full Member. † Senior Research Fellow, 555 Bryant Street, Suite 354. ‡ Computer Scientist, Evolvable Systems Group, MS 269-3.
    [Show full text]