IUPAC Provisional Recommendations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
NBO Applications, 2020
NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020. -
1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G
j1 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G. Hall 1.1 Introduction and Historical Background Structurally, boronic acids are trivalent boron-containing organic compounds that possess one carbon-based substituent (i.e., a CÀB bond) and two hydroxyl groups to fill the remaining valences on the boron atom (Figure 1.1). With only six valence electrons and a consequent deficiency of two electrons, the sp2-hybridized boron atom possesses a vacant p-orbital. This low-energy orbital is orthogonal to the three substituents, which are oriented in a trigonal planar geometry. Unlike carbox- ylic acids, their carbon analogues, boronic acids, are not found in nature. These abiotic compounds are derived synthetically from primary sources of boron such as boric acid, which is made by the acidification of borax with carbon dioxide. Borate esters, one of the key precursors of boronic acid derivatives, are made by simple dehydration of boric acid with alcohols. The first preparation and isolation of a boronic acid was reported by Frankland in 1860 [1]. By treating diethylzinc with triethylborate, the highly air-sensitive triethylborane was obtained, and its slow oxidation in ambient air eventually provided ethylboronic acid. Boronic acids are the products of a twofold oxidation of boranes. Their stability to atmospheric oxidation is considerably superior to that of borinic acids, which result from the first oxidation of boranes. The product of a third oxidation of boranes, boric acid, is a very stable and relatively benign compound to humans (Section 1.2.2.3). Their unique properties and reactivity as mild organic Lewis acids, coupled with their stability and ease of handling, are what make boronic acids a particularly attractive class of synthetic intermediates. -
C7sc03595k1.Pdf
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018 Mechanistic insights into boron-catalysed direct amidation reactions Sergey Arkhipenko,a Marco T. Sabatini,b Andrei Batsanov,a Valerija Karaluka,b Tom D. Sheppard,b Henry S. Rzepac and Andrew Whitinga* aCentre for Sustainable Chemical Processes, Department of Chemistry, Durham University, Science Site, South Road, Durham, DH1 3LE, UK. Email: [email protected] bDepartment of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK. cDepartment of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK. Contents Page 1. General experimental 2 2. Synthetic procedures and compound characterisation§ 2.A. Reaction of monomeric acyloxyboron species with amines 3 2.B. Synthesis of borinic acids and studies of their interactions 6 with amines and carboxylic acids 2.C. Interactions of boronic acids with amines and carboxylic acids 10 2.D. Interaction of B2O3 and B(OH)3 with amines and carboxylic acids 21 2.E. Kinetic studies 22 3. Tabulated summary of spectroscopic data 29 4. X-ray crystallographic information# 30 5. References 36 §Note that all NMR data and .cif crystallographic data is available for download from site: DOI: 10.14469/hpc/1620 and sub-collections therein. GENERAL EXPERIMENTAL All starting materials and solvents were obtained commercially from standard chemical suppliers and were used as received unless otherwise stated. Dry solvents were prepared using the Innovative Technology Inc. solvent purification system, or dried by known methods, including standing over 4 Å molecular sieves for 24 h in the case of toluene and CDCl3. -
Argonne Report.Pdf
CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive -
Validation of the PATHOGENA Electron-Activated Reactor For
ineering ng & E P l r a o c i c e m s Opoku-Duah et al., J Chem Eng Process Technol 2015, 6:3 e s Journal of h T C e f c h o DOI: 10.4172/2157-7048.1000239 l ISSN: 2157-7048 n a o n l o r g u y o J Chemical Engineering & Process Technology CommentryResearch Article OpenOpen Access Access Validation of the PATHOGENA Electron-Activated Reactor for Purifying Contaminated Water in the Parkersburg Area in West Stephen Opoku-Duah*, Gordon Wells1, Wycliff Kipkomoi1, Ashley Wilcox1, Dennis Johnson2 and Mark Wiley3 1Ohio Valley University College of Arts and Sciences, Ohio Valley University, 1 Campus View Drive, Vienna, WV 26105 2EcH2O International Group, 14 Inverness Drive East, Suite D-112, Englewood, CO 80138 3TCG Global, 14104 E. Davies Ave., Suite B, Centennial, CO 80112 Abstract This paper concerns validation of the PATHOGENA version of electron-activated reactors designed to purify contaminated water to make it potable. The basic design of PATHOGENA is a 100-gallon plastic tank batch reactor which houses a vapor-ion plasma (VIP) generator and 1-micron ion-separator (ION-SEP) porous water filter. While the VIP generator splits ambient air into aggressive water treatment agents in the form of charged ions, free electrons, hydroxyl and peroxyl radicals using UV radiation, the ION-SEP filter is designed to eliminate broad-spectrum bacteria and other microbes. The validation process was started with creation of water quality database from: (a) contaminated surface water; (b) EPA/West Virginia Water Quality Standards, and (c) Vienna City Council drinking water. -
Progress in the Chemistry of Dihydrogen Trioxide (HOOOH)
Acta Chim. Slov. 2005, 52, 1–12 1 Review Article Progress in the Chemistry of Dihydrogen Trioxide (HOOOH) Božo Plesničar Department of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, P.O.Box 537, 1000 Ljubljana, Slovenia, E-mail: [email protected] Received 23-02-2005 Abstract During the past 15 years, there has been considerable progress in understanding of the chemistry of dihydrogen trioxide (HOOOH). In this account, the preparation, characterization and structure (1H, 17O NMR, IR, quantum chemical methods), kinetics and mechanism of decomposition, and reactivity of this simplest of polyoxides are discussed. Dihydrogen trioxide is, in organic oxygen bases as solvents, far more stable than previously believed. For example, the half-life of HOOOH in acetone-d6 is 16 ± 2 min; however, it decomposes rather quickly in water solutions (t1/2 ≈ 20 ms) at room temperature. HOOOH is most likely involved in oxidation processes that span atmospheric, environmental, and biological systems. Key words: ozone, low-temperature ozonation, dihydrogen trioxide HOOOH, density-functional theory, ab-initio, molecular-structure, hydrogen-bonds, HOOO anion, HOOO radical, alkyl hydrotrioxides ROOOH, thermal- decomposition Contents Introduction ...............................................................................................................1 Origins of Dihydrogen Trioxide Chemistry .............................................................1 Direct Spectroscopic Detection of Dihydrogen Trioxide ......................................2 -
Particularly Hazardous Substances
Particularly Hazardous Substances In its Laboratory Standard, OSHA requires the establishment of additional protections for persons working with "Particularly Hazardous Substances" (PHS). OSHA defines these materials as "select" carcinogens, reproductive toxins and acutely toxic materials. Should you wish to add: explosive, violently reactive, pyrophoric and water-reactve materials to this category, the information is included. Carbon nanotubes have also been added due to their suspected carcinogenic properties. This table is designed to assist the laboratory in the identification of PHS, although it is not definitively conclusive or entirely comprehensive. *Notes on the proper use of this table appear on page 12. 1 6 5 2 3 4 Substance CAS National Toxicity National Program Carcinogen Toxin Acute Regulated OSHA Carcinogen Group IARC Carcinogen Toxin Reproductive Violently Reactive/ Explosive/Peroxide Forming/Pyrophoric A-a-C(2-Amino-9H-pyrido[2,3,b]indole) 2648-68-5 2B Acetal 105-57-7 yes Acetaldehyde 75-07-0 NTP AT 2B Acrolein (2-Propenal) 107-02-8 AT Acetamide 126850-14-4 2B 2-Acetylaminofluorene 53-96-3 NTP ORC Acrylamide 79-06-6 NTP 2B Acrylyl Chloride 814-68-6 AT Acrylonitrile 107-13-1 NTP ORC 2B Adriamycin 23214-92-8 NTP 2A Aflatoxins 1402-68-2 NTP 1 Allylamine 107-11-9 AT Alkylaluminums varies AT Allyl Chloride 107-05-1 AT ortho-Aminoazotoluene 97-56-3 NTP 2B para-aminoazobenzene 60-09-3 2B 4-Aminobiphenyl 92-67-1 NTP ORC 1 1-Amino-2-Methylanthraquinone 82-28-0 NTP (2-Amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole) 67730-11-4 2B -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
Ghs Reference Materials Health Hazard Criteria
APPENDIX F: GHS REFERENCE MATERIALS This appendix provides both an overview of GHS highly toxic hazard classification. A listing of Particularly Hazardous Substances that Carnegie Mellon University has published with their Chemical Hygiene plan is also provided as general reference. The list is useful cross check with GHS listings to determine which materials require prior approval for use BUT NO LIST IS COMPLETE you must check the SDS for possible additional chemicals rated as highly toxic. This appendix also provides the GHS (global harmonization system) for chemical hazard classification under the Hazard Communication Standard for highly toxic materials. This section provides overall information about categories under the classification of acute toxicity, mutagens’, reproductive and carcinogen hazards. When chemicals are rated on the GHS – Safety Data Sheet (SDS) as the following hazards then the PRIOR APPROVAL PROCESS WITH CHEMICAL HYGIENE OFFICER/COMMITTEE must be used: Acute toxicity category 1 and 2, Germ cell mutagenicity as a category 1A Substances known to induce heritable mutations in germ cells of humans and Category 1B: Substances which should be regarded as if they induce heritable mutations in the germ cells of humans, Reproductive Hazard as a category 1: Known or presumed human reproductive toxicants and Category 2; suspected human reproductive toxicant. Carcinogen as a Category 1 (includes 1A and 1B): Known or presumed human carcinogens, Category 2: Suspected human carcinogens. The Campus Chemical Hygiene Committee (Officer) must conduct a prior approval process. Appendix C Chemical Prior Approval Form on procedure for conducing prior approval. The following is from OSHA standard on the chemicals classifications that PCC Laboratory instructional operations shall use for defining the prior approval hazards. -
United States Patent Office Patented Mar
3,171,249 United States Patent Office Patented Mar. 2, 1965 i 2 fuel rocket engine. The above and other objects of this 3,171,249 PROPELLANT AND Rick |PROPULSSON METH invention will become apparent from the discussion OXD EMPLOYANG EYERAZINE WITH AMSNO which follows. TETRAZOLES The objects of this invention are accomplished by the Ronald E. Be, Canoga Park, Calif., assigner to use of compounds having the general formula: North American Aviatiosa, Bac. No Drawing. Fied Nov. 29, 1961, Ser. No. 155,803 NH2. (R) 8 Clains. (C. 60-35.4) N This invention relates to a novel rocket propellant. YS More particularly, this invention relates to a novel in 10 N--H proved rocket propellant and a method of operating a wherein x varies from 0 to 1 and R is selected from the rocket engine. class consisting of HCl, H2O, HNO3, and HCIO, as addi The criterion by which rocket propellants are classi tives to a hydrazine-based rocket fuel in an amount suffi fied is specific impulse, Is, defined as thrust in pounds 5 cient to depress the freezing point at least 40° C. while divided by the total mass flow of fuel and oxidizer in retaining about the same density impulse and specific pounds per second. Specific impulse is thus given in impulse. Hence, an embodiment of this invention com units of "seconds.” Oxidizer-fuel propulsion system prises a method of operating a rocket engine comprising compositions with a relatively high specific impulse are ejecting from the reaction chamber of the engine a gaseous known in the art. -
How to Identify and Report Hazardous Substances on The
OREGON COMMUNITY RIGHT TO KNOW AND PROTECTION ACT How to Identify and Report Hazardous Substances on the Hazardous Substance Information Survey February 2012 For assistance call the Mailing Address: Hazardous Substance Office of State Fire Marshal Information Hotline Community Right to Know Unit 4760 Portland Rd NE (503) 378-6835 Salem, OR 97305-1760 Toll Free (800) 454-6125 TDD (503) 390-4661 Monday – Friday Website: 8AM – 12PM and 1PM – 5PM http://www.oregon.gov/OSP/SFM/CR2K_Home.shtml Visit our website for more information: http://www.oregon.gov/OSP/SFM/CR2K_Home.shtml. These documents are currently available from our website: Blank Section D Chemical Form Blank Section E Additional Storage Location Form Survey Request Form Gas Conversion Chart Survey Mailing Schedule TABLE OF CONTENTS Introduction…………………………………………………………….. 1 Quick Steps to Complete the Survey …………………………………. 1 Reporting Requirements ……………………………...................... 2 What is a Hazardous Substance? ……………………………………... 3 What is a Reportable Quantity? ……………………………………….3 Reporting Compressed Gases ……………………………………….. 4 Liquefied and Cryogenic Gases …………………………………........ 4 Reporting Lead Acid Batteries ……………………………………….. 5 Tables for Completing the Survey ……………………………………... 6 Instructions and Definitions ……………………………………………. 7 Reporting Storage Locations …………………………………………..11 Frequently Asked Questions ………………………………………….. 13 EHS, 112r, PSM Questions …………………………………………… 14 EHS List ..............................................................................15 112(r) List ............................................................................18 -
Synthesis and Applications a Di
UNIVERSITY OF CALIFORNIA Los Angeles Trehalose Polymers and Ruthenium-Catalyzed Polymerizations: Synthesis and Applications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Jeong Hoon Ko 2018 © Copyright by Jeong Hoon Ko 2018 ABSTRACT OF THE DISSERTATION Trehalose Polymers and Ruthenium-Catalyzed Polymerizations: Synthesis and Applications by Jeong Hoon Ko Doctor of Philosophy in Chemistry University of California, Los Angeles, 2018 Professor Heather D. Maynard, Chair Since the definition of polymers as covalently linked macromolecules by Hermann Staudinger in 1920, polymers have become indispensable components of our society as industrial materials, consumer products, and medical devices only to name a few applications. This explosive growth of polymer use in the past century, referred to as “The Plastics Revolution”, was driven by research into polymerization techniques for various monomer types appropriate for the desired application. The past two decades have been marked by the development of controlled polymerization methods in addition to advances in new chemical reactions that are highly efficient. The combination of controlled polymerization techniques with methodologies in other fields of organic chemistry is expected to lead to a second plastics revolution, enabling polymers to further enhance our society by materials with new applications. The first five chapters of this dissertation are related to the use of controlled radical polymerization in combination with methods for protein-polymer conjugation, carbohydrate ii synthesis, and click chemistry to enhance the properties of protein drugs. Proteins have many desirable traits for therapeutic use, but their potential has yet to be fully realized due to their low physical stability and rapid clearance from the body by multiple elimination pathways.