Freescale Iot Solutions APF-SHB-T1454

Total Page:16

File Type:pdf, Size:1020Kb

Freescale Iot Solutions APF-SHB-T1454 Freescale IoT Solutions APF-SHB-T1454 James Huang | Asia MICRO Business Development M A Y . 2 0 1 5 TM External Use The Internet of Things is Driving Explosive Growth 50 In Connected Devices BILLION 25 BILLION 12.5 BILLION 7.6B 7.2B 6.8B 6.5B World 6.3B Population # Connected <1x 1x 2x 3.5x 6.5x Devices/Person 2003 2008 2010 2015 2020 TM External Use 1 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 IoT emerging as the next mega-trend Internet subscribers over time Source: Goldman Sachs Global Investment Research TM External Use 2 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 Our Products Power The Internet of Things Microcontrollers | Digital Networking | Auto MCU | Analog and Sensors | RF Traffic Monitoring Metro Cells Base Stations Small Cells Advanced Safety Security Networked Printers Infotainment Radar + Vision Enterprise Gateways, Cloud Data Switchers, Routers Computing Center Home Health Monitors + Fitness Energy Management, Wind + Solar Telehealth Industrial Smart Energy Connected Networking Connected Grid Farms Appliances Digital Power Conversion Energy Human – Machine Meters Interface Home Hubs Machine – Machine Security TM External Use 3 IoT Is More Than M2M The Internet of Things (IoT) is about Machine to Entity (M2E): • Machine to Machine: − Automatic diagnostics for cars: Automatic information collection from your car’s engine management system and sending real- time alerts to drivers or service centers Machine to • Machine to Infrastructure: Machine (M2M) − Automatic bridge monitoring: Sensing and monitoring refers to technologies that the structural integrity of a bridge in case of flooding allow both wireless and wired systems to communicate • Machine to Human: with other devices of the − Automatic health monitoring for people: Implant same ability monitoring services or disease management via implantable electronics • Machine to Nature/Environment: − Early detection of earthquakes: Distributed sensors to detect early tremors in specific places TM External Use 4 Smart Home & Smart Health Power Pervasive Remote Monitoring and /or Control Home Hub The Cloud Monitor Anywhere NAN Wireless Automobile WAN Operations Center Wired WAN PAN/BAN WAN Various Service Provider Operations Center HVAC At-HomeCharging & CommunicationsCenter LAN • Human beings’ vital statistics monitored via edge nodes communicating through body area network s(BAN) and personal area networks (PAN) • Many other “things” in the smart home using local area network (LAN) • All communicate with a home hub/gateway, which in turn communicates to the cloud via wide area networks (WAN) TM External Use 5 Automotive Internet of Things Connecting Your Car to Your World Driver and CLOUD Passenger Mobile Telematics Devices Instrument Cluster i.MX i.MX, Qorivva ADAS, Body and Cameras Infotainment Powertrain ECUs Qorivva i.MX Qorivva Audio Amplifier i.MX, Vybrid Rear Seat Entertainment i.MX Infrastructure Home Big Data Smart Grid Transportation Network Freescale Connected Vehicle Vision Powered by i.MX TM External Use 6 Freescale IoT Offerings http://iot.freescale.com/ BAN/PAN/ & Layers of Wired/Wireless, Remote Edge Wired/Wireless, Aggregation / Power Line Cloud-based Product Power Line LAN Hubs / Gateways WAN Processing Xtrinsic Sensing Connectivity Intelligent Contextual Sensing. BAN/ PAN/ LAN S P C C The right combination of Fully integrated Short Range intelligent integration, logic radios with best in class P C C P C C P and customizable software on power performance, and the platform to deliver Powerline Communications smarter, more differentiated S P C applications. For IoT it provides Context: Identity, Activity, Location, & Time Software in All Nodes Edge products: •Very small •Low cost •Low power QorIQ Processors Kinetis Vybrid Controller i.MX Applications •Low complexity built on Layerscape •Industrial grade & robust Microcontrollers Solutions Processors Architecture Design Potential. Rich Apps in Real Your Interface to the Accelerating the Realized Time. World. Network’s IQ Sensing S Industry’s most scalable Real-time, highly integrated Industry’s most versatile Industry’s first software- ultra-low-power, mixed-signal solutions with best-in-class 2D solutions for multimedia and aware, core-agnostic Embedded Processing P MCU solutions based on the graphics to enable display applications, with networking system ARM® Cortex™-M and your system to control, interface, multicore scalability and architecture for the smarter, C Communications Cortex™-M0+ architectures. connect, secure and scale. market-leading power, more capable networks of performance & integration. tomorrow – end to end. Scalable Industry Standard Solutions, Software and Development Ecosystem TM External Use 7 Freescale Sensitivity Enabled by Xtrinsic Accelerometers, Gyroscopes, Sensing Platforms, Magnetic Sensors and Touch Sensors • MMA9553L is the intelligent pedometer platform • FXLC95000 as a sensor hub and datalogger • MAG3110 and MMA8491 combined in the FXOS8700, for orientation, motion, vibration, shock, fall, g-force, altitude changes etc. are present • MPL3115A digital pressure sensor for altimetry • MPR121 for touch sensing • FXAS21002 gyroscope provides the stability needed for a drift free readings; when talking accelerometer think gyroscope too… TM External Use 8 Why now? Enablers of IoT • Low-cost sensors – the average cost of a sensor now costs $0.60 vs. $1.30 10 years ago. • Smartphones – Ubiquitous smartphones are now becoming the personal gateway to the IoT, serving as a remote control or hub for the connected home, connected car, or for the health and fitness devices consumers are increasingly starting to wear. • Cheap bandwidth – The cost of bandwidth has also declined precipitously, by a factor of nearly 40X over the past 10 years. • Cheap processing – Similarly, processing costs have declined by nearly 60X over the past 10 years, • Ubiquitous wireless coverage – With Wi-Fi coverage now ubiquitous, wireless connectivity is available for free or at a very low cost, given Wi-Fi utilizes unlicensed spectrum and thus does not require monthly access fees to a carrier. • Big data – As the IoT will by definition generate voluminous amounts of unstructured data, the availability of big data analytics is a key enabler. • IPv6 – IPv4 supports 32-bit addresses, which translates to about 4.3 billion addresses – a number that has become largely exhausted by all the connected devices globally. In contrast, IPv6 can support 128-bit addresses, translating to approximately 3.4 x 1038 addresses –an almost limitless number that can amply handle all conceivable IoT devices. Source: IDC, Goldman Sachs Global Investment Research TM External Use 9 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 Wearables to reach about $20bn by 2017, growing at over 60% CAGR Source: IDC, Goldman Sachs Global Investment Research TM External Use 10 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 Global penetration to reach 60% by 2020 (at 77% CAGR 2013-2020E) Source: Gartner (Mar, 2014), Goldman Sachs Global Investment Research TM External Use 11 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 Connected Home Worldwide smart thermostat revenues North America and Europe home expected to increase 16X by 2020 automation Worldwide smart thermostat market systems revenues expected to increase revenues 6X by 2017 North America and Europe home Source: Navigant Research. automation systems Source: Berg Insight. TM External Use 12 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 IoT Wireless Technologies characteristics Wireless Key Applications Range Max Power Communications Throughput Consump Technology tion Cellular (2G, 3G, Always connected, high data rates, mobility 30km 1Gbps High LTE) NFC Mobile marketing, mobile payments, 10cm 20Kbps Low wearables Wi-Fi Automotive, connected home, consumer 100-300m 300Mbps High electronics, mobile marketing, appliances, wearables Bluetooth Mobile marketing, mobile payments, 2-30m 1Mbps Low connected home, personal productivity ZigBee Connected home, consumer electronics, 50-300m 20Kbps- Low appliances, industrial 250Kbps In reality, many IoT endpoints will employ multiple communications technologies based on cost, improved flexibility, and interoperability. A primary example is Google’s Nest, which incorporates both Wi-Fi and ZigBee. In addition, Silver Spring Networks’ smart meters support cellular, ZigBee, RF mesh, and Wi-Fi capabilities. A key advantage of Wi-Fi and Bluetooth is that they are already embedded in essentially all smartphones. Source: Gartner, Goldman Sachs Global Investment Research. TM External Use 13 * Sources: Ericsson, February 2011; Cisco Internet Business Solutions Group (IBSG), April 2011 IoT Connectivity Landscape Application Layer / Remote Home Smart Light Link Automatio Energy Profiles HomeKit AllJoyn IoTivity IPSO M2M Controls MQTT (ZLL) (ZRC) n (HA1.2) (SE1.x) TCP / UDP Network Layer / Bluetooth Transport Layer RF4CE ZigBee PRO Host Stack IPv4 / IPv6 6LoWPAN Physical / Link Layer Bluetooth IEEE 802.11n 1x1 IEEE 802.15.4e IEEE 802.15.4 (low-power networking) (PHY/MAC) Link Layer Gateways Sub-1 GHz Industrial 2.4 GHz Home Automation & Wearables Border Routers Wireless Control Networks 1 TM External Use 14 IoT Connectivity Landscape Application Layer / Remote Home
Recommended publications
  • Mediatek Linkit™ Development Platform for RTOS Get Started Guide
    MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Version: 3.0 Release date: 30 June 2016 © 2015 - 2016 MediaTek Inc. This document contains information that is proprietary to MediaTek Inc. (“MediaTek”) and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek (“License Agreement”) and been granted explicit permission within the License Agreement (“Permitted User”). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice. MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Document Revision History Revision Date Description 1.0 24 March 2016 Initial version. 2.0 17 May 2016 Move the contents relative to flash, HDK, and build comments to corresponding documents. Add the support of Keil 3.0 30 June 2016 Add the support of IAR. Refine the architecture and provide more information on the SDK usage. © 2015 - 2016 MediaTek Inc. Page i of v This document contains information that is proprietary to MediaTek Inc.
    [Show full text]
  • Hannes Tschofenig
    Securing IoT applications with Mbed TLS Hannes Tschofenig Part#2: Public Key-based authentication March 2018 © 2018 Arm Limited Munich Agenda • For Part #2 of the webinar we are moving from Pre-Shared Secrets (PSKs) to certificated-based authentication. • TLS-PSK ciphersuites have • great performance, • low overhead, • small code size. • Drawback is the shared key concept. • Public key cryptography was invented to deal with this drawback (but itself has drawbacks). 2 © 2018 Arm Limited Public Key Infrastructure and certificate configuration © 2018 Arm Limited Public Key Infrastructure Various PKI deployments in existence Structure of our PKI The client has to store: self-signed • Client certificate plus corresponding private key. CA cert • CA certificate, which serves as the trust anchor. The server has to store: Signed by CA Signed by CA • Server certificate plus corresponding private key. Client cert Server cert (Some information for authenticating the client) 4 © 2018 Arm Limited Generating certificates (using OpenSSL tools) • When generating certificates you will be prompted to enter info. You are about to be asked to enter information that will be • The CA cert will end up in the trust incorporated into your certificate request. What you are about to enter is what is called a Distinguished anchor store of the client. Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, • The Common Name used in the server If you enter '.', the field will be left blank. ----- cert needs to be resolvable via DNS Country Name (2 letter code) [AU]:.
    [Show full text]
  • CR1000X Product Manual
    Revision: 07/20/2021 Copyright © 2000 – 2021 Campbell Scientific, Inc. Table of Contents 1. Introduction 1 2. Precautions 2 3. Initial inspection 3 4. CR1000X data acquisition system components 4 4.1 The CR1000X Datalogger 5 4.1.1 Overview 5 4.1.2 Operations 6 4.1.3 Programs 6 4.2 Sensors 6 5. Wiring panel and terminal functions 8 5.1 Power input 11 5.1.1 Powering a data logger with a vehicle 12 5.1.2 Power LED indicator 12 5.2 Power output 12 5.3 Grounds 13 5.4 Communications ports 15 5.4.1 USB device port 15 5.4.2 Ethernet port 15 5.4.3 C terminals for communications 16 5.4.3.1 SDI-12 ports 16 5.4.3.2 RS-232, RS-422, RS-485, TTL, and LVTTL ports 16 5.4.3.3 SDM ports 16 5.4.4 CS I/O port 17 5.4.5 RS-232/CPI port 18 5.5 Programmable logic control 19 6. Setting up the CR1000X 21 6.1 Setting up communications with the data logger 21 6.1.1 USB or RS-232 communications 21 6.1.2 Virtual Ethernet over USB (RNDIS) 23 6.1.3 Ethernet communications option 24 Table of Contents - i 6.1.3.1 Configuring data logger Ethernet settings 25 6.1.3.2 Ethernet LEDs 26 6.1.3.3 Setting up Ethernet communications between the data logger and computer 26 6.2 Testing communications with EZSetup 27 6.3 Making the software connection 29 6.4 Creating a Short Cut data logger program 29 6.5 Sending a program to the data logger 32 7.
    [Show full text]
  • IP Production IBC Preview Cloud Playout AMC/Sundance Q&A
    IP production www.csimagazine.com IBC preview Cloud playout AMC/Sundance Q&A Welcome to High Dynamic Range television September 2015 cover.indd 1 19/08/2015 12:33:55 Expect More. AMOS Satellites. Meet us at More Coverage. More Throughput. More Services. IBC September 11-15, 2015 Across the Middle East, Europe, Africa and Asia. Amsterdam Hall 1, Booth C.65 Spacecom’s AMOS satellite constellation, consisting of AMOS-2 and AMOS-3 co-located at 4°W, AMOS-4 at 65°E and AMOS-5 at 17°E provides high-quality broadcast and communications services across Europe, Africa, Russia, Asia and the Middle East. With the upcoming launch of AMOS-6, Spacecom is expanding its coverage over Europe and Africa. The result: greater capacity, high-throughput Ka multibeam capabilities and affordable end-to-end satellite services. Spacecom. Expect More. EXPECT MORE www.amos-spacecom.com Untitled-2 1 10/08/2015 12:00:19 Contents IP production www.csimagazine.com IBC preview Cloud playout AMC/Sundance Q&A 30 Online piracy Editor Goran Nastic A new way of thinking about connected revenue security Commercial Welcome to High Dynamic Range television John Woods, Hammad Uddin September 2015 cover.indd 1 19/08/2015 12:33:55 36 Data corner A closer look at SVoD customers Design and production Matt Mills (Manager) 10 Analyst corner Jason Tucker With the first 4k channels launching in Europe, 40 IP production Matleena Lilja-Pelling an assessment of early services and the future It has its pros and cons, which broadcasters would do well to start preparing for Regular contributors 12 COVER STORY - HDR special Adrian Pennington, Philip Hunter, 44 Smart home David Adams, Stephen Cousins, High Dynamic Range really will take TV up a Anna Tobin level but it is not without challenges.
    [Show full text]
  • Iot Development Platform
    .org IoT Development Platform 1 Q&A . How many ARM cores shipped in 2012? 8,700,000,000 2020 . 2011 . Per Day: 23,835,616 . Per Hour: 993,151 150+ 25+ billion . Per Minute: 16,553 billion . Per Second: 276 2002 1+ billion 1998 2010 2020 2 ARM is a Semiconductor IP Company ARM’s Ecosystem Financial Tools/Technology IDM Foundry Fabless Semicon Co. Equipment Manufacturer ARM CPU GPU Software Platforms Networking Video RF Security DSP Other IP Carriers + Developers 3 ARM Cortex Advanced Processors Architectural innovation, compatibility across diverse application spectrum MP Cortex-A15 . ARM Cortex™-A family: ...2.5GHz . Applications processors for feature- Cortex-A9 rd rich OS and 3 party applications Cortex-A8 Cortex-A7 ARM Cortex-R family: Cortex-A5 . Cortex-R7 . Embedded processors for real-time Cortex-R5 signal processing, control applications Cortex-R4 Cortex-M4 . ARM Cortex-M family: Cortex-M3 Cortex-M1 . Microcontroller-oriented processors Cortex-M0 for MCU, ASSP, and SoC applications SC300 TM SC000 Applicability Unparalleled . ARM SecureCore Cortex-M0+ . Tamper-resistant security <12k gates... 4 ARM Cortex-M: Ultra Low Power, Size, + Cost 1.9 billion ARM Cortex-M devices shipped in 2012 by leading semiconductor companies MCUs radios sensors Think Powered by Watch Batteries & Energy Harvesting 5 MBED: Enabling Monetization of Disruption “By 2018, 50% of IoT solutions will be from start-ups less than 3 years old” - Gartner 6 From Sensor to Cloud Edge Clients Gateway Network Cloud Temp thin client Device Prox Provisioning and M2M Apps control Cortex-M Modem Diagnostics M2M Apps Smartphone / M2M Apps Short-Range Headless Radio e.g.
    [Show full text]
  • Cybercrime Prevention Principles for Internet Service Providers
    Shaping the Future of Cybersecurity and Digital Trust Cybercrime Prevention Principles for Internet Service Providers January 2020 World Economic Forum 91-93 route de la Capite CH-1223 Cologny/Geneva Switzerland Tel.: +41 (0)22 869 1212 Fax: +41 (0)22 786 2744 Email: [email protected] www.weforum.org © 2020 World Economic Forum. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, including photocopying and recording, or by any information storage and retrieval system. 1 Cybercrime Prevention: Principles for Internet Service Providers Contents Preface 3 Foreword 4 Executive Summary 5 Incentives for Action and Expected Outcomes 6 Context – Scale of the Threat 7 Principle 1. Protect consumers by default from widespread cyberattacks and act collectively with peers to identify and respond to known threats 8 1.1 What challenge does this principle address? 8 1.2 How can this principle create impact? 8 1.3 Recommendations for implementation 10 Principle 2. Take action to raise awareness and understanding of threats and support consumers in protecting themselves and their networks 11 2.1 What challenge does this principle address? 11 2.2 How can this principle create impact? 12 2.3 Recommendations for implementation 14 Principle 3. Work more closely with manufacturers and vendors of hardware, software and infrastructure to raise minimum levels of security 16 3.1 What challenge does this principle address? 16 3.2 How can this principle create impact? 16 3.3 Recommendations for implementation
    [Show full text]
  • Estudio De Un Slot Digital E Implementación De Nuevas
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA INGENIERÍA INFORMÁTICA – GRADO EN INGENIERÍA DE COMPUTADORES Sistema embebido para recolección de datos ambientales alojado en bicicletas de uso público. Realizado por ABDESSAMAD EL ABBASSI HAMIDI Dirigido por DANIEL CAGIGAS MUÑIZ Departamento ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES Sevilla, 11 Septiembre de 2014 1 2 Contenido ÍNDICE DE FIGURAS ............................................................................ 5 INTRODUCCIÓN .................................................................................. 6 Motivación ..................................................................................... 6 Objetivos........................................................................................ 6 Análisis de requisitos ...................................................................... 7 DESARROLLO DEL SISTEMA ................................................................. 15 Introducción .................................................................................. 15 Desarrollo hardware ....................................................................... 20 Sistema de montaje y Alimentación .............................................. 20 Microcontrolador Cortex-M3 NXP LPC1768 .................................... 21 Introduccion ............................................................................ 21 Características LPC1768 ............................................................ 24 Sensores de gases resistivos ........................................................
    [Show full text]
  • 130 Demystifying Arm Trustzone: a Comprehensive Survey
    Demystifying Arm TrustZone: A Comprehensive Survey SANDRO PINTO, Centro Algoritmi, Universidade do Minho NUNO SANTOS, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa The world is undergoing an unprecedented technological transformation, evolving into a state where ubiq- uitous Internet-enabled “things” will be able to generate and share large amounts of security- and privacy- sensitive data. To cope with the security threats that are thus foreseeable, system designers can find in Arm TrustZone hardware technology a most valuable resource. TrustZone is a System-on-Chip and CPU system- wide security solution, available on today’s Arm application processors and present in the new generation Arm microcontrollers, which are expected to dominate the market of smart “things.” Although this technol- ogy has remained relatively underground since its inception in 2004, over the past years, numerous initiatives have significantly advanced the state of the art involving Arm TrustZone. Motivated by this revival ofinter- est, this paper presents an in-depth study of TrustZone technology. We provide a comprehensive survey of relevant work from academia and industry, presenting existing systems into two main areas, namely, Trusted Execution Environments and hardware-assisted virtualization. Furthermore, we analyze the most relevant weaknesses of existing systems and propose new research directions within the realm of tiniest devices and the Internet of Things, which we believe to have potential to yield high-impact contributions in the future. CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems;•Secu- rity and privacy → Systems security; Security in hardware; Software and application security; Additional Key Words and Phrases: TrustZone, security, virtualization, TEE, survey, Arm ACM Reference format: Sandro Pinto and Nuno Santos.
    [Show full text]
  • Academic Programs for International Undergraduate Students
    2010 Academic Programs for unisaInternational Undergraduate Students By the time you graduate from the University of South Australia (UniSA) you will be ready to take What your place in a global professional workplace. Because of what you’ve learned at UniSA you won’t just be job-ready, you’ll be ready to make an makes immediate contribution to your chosen fi eld and we will have presented to your profession a new UniSA practitioner who: 1. Operates effectively with and upon a body of knowledge of suffi cient depth to begin different? professional practice; 2. Is prepared for lifelong learning in pursuit of personal development and excellence in professional practice; 3. Is an effective problem solver, capable of applying logical, critical and creative thinking to a range of problems; 4. Can work both autonomously and collaboratively as a professional; 5. Is committed to ethical action and social responsibility as a professional and citizen; 6. Communicates effectively in professional practice and as a member of the community; and 7. Demonstrates international perspectives as a professional and as a citizen. The Undergraduate Experience The University of South Australia UniSA has world-leading research UniSA offers the most diverse (UniSA) is the largest university Institutes and centres and groups, educational menu in South in South Australia with over working at the cutting-edge Australia comprising more 34,000 students studying in of new knowledge across our than 140 undergraduate and four key academic divisions: major study areas. That research 200 coursework and research Business, Educations, Arts and becomes part of what you learn postgraduate programs in these Social Sciences, Health Sciences so your knowledge is not just disciplines: and Information Technology, fi rst-rate, you’ll be amongst the Engineering and the Environment.
    [Show full text]
  • Freescale Embedded Solutions Based on ARM Technology Guide
    Embedded Solutions Based on ARM Technology Kinetis MCUs MAC5xxx MCUs i.MX applications processors QorIQ communications processors Vybrid controller solutions freescale.com/ARM ii Freescale Embedded Solutions Based on ARM Technology Table of Contents ARM Solutions Portfolio 2 i.MX Applications Processors 18 i.MX 6 series applications processors 20 Freescale Embedded Solutions Chart 4 i.MX53 applications processors 22 i.MX28 applications processors 23 Kinetis MCUs 6 Kinetis K series MCUs 7 i.MX and QorIQ Kinetis L series MCUs 9 Processor Comparison 24 Kinetis E series MCUs 11 Kinetis V series MCUs 12 Kinetis M series MCUs 13 QorIQ Communications Kinetis W series MCUs 14 Processors 25 Kinetis EA series MCUs 15 QorIQ LS1 family 26 QorIQ LS2 family 29 MAC5xxx MCUs 16 MAC57D5xx MCUs 17 Vybrid Controller Solutions 31 Vybrid VF3xx family 33 Vybrid VF5xx family 34 Vybrid VF6xx family 35 Design Resources 36 Freescale Enablement Solutions 37 Freescale Connect Partner Enablement Solutions 51 freescale.com/ARM 1 Scalable. Innovative. Leading. Your Number One Choice for ARM Solutions Freescale is the leader in embedded control, offering the market’s broadest and best-enabled portfolio of solutions based on ARM® technology. Our end-to-end portfolio of high-performance, power-efficient MCUs and digital networking processors help realize the potential of the Internet of Things, reflecting our unique ability to deliver scalable, systems- focused processing and connectivity. Our large ARM-powered portfolio includes enablement (software and tool) bundles scalable MCU and MPU families from small from Freescale and the extensive ARM ultra-low-power Kinetis MCUs to i.MX ecosystem.
    [Show full text]
  • Arm Drives Deeply Into Iot with Pelion Platform, Partners with Vodafone to Speed Iot Adoption
    IoT Arm Drives Deeply into IoT with Pelion Platform, Partners with Vodafone to Speed IoT Adoption Report Snapshot One of the major challenges facing the adoption of IoT has been the cost, simplicity and security of implementing devices at scale. While the industry has moved forward in offering device and connectivity platforms that simplify the effective monitoring and management of thousands of devices, it is clear that much deeper cross-industry partnerships are still required in order to significantly reduce the complexity and costs faced by organisations when implementing Internet of Things (IoT) solutions. This report assesses Arm’s IoT platform strategy, how the Pelion IoT Platform was built, the acquisitions and partnerships that have been established by Arm and what merits the partnership with Vodafone in particular, will bring in order to help Arm realise its IoT ambitions. May 2019 Andrew Brown Tel: +44 (0) 1908423630 Email: [email protected] www.strategyanalytics.com IoT Contents 1. Analysis 3 1.1 Changing M&A Market Dynamics 3 1.2 Arm: Forging a Path from Smartphones to the IoT 3 1.3 From Managing Devices to Connections: Stream Technologies Acquisition 4 1.4 From Managing Devices and Connections, to Managing Data: Treasure Data Acquisition and the Creation of the Pelion IoT Platform 5 1.5 Driving Down Cost and Complexity through Partnerships: “Any Device, Any Cloud” 6 1.5.1 Intel Partnership 6 1.5.2 myDevices Partnership 7 1.5.3 Arduino Integration 7 1.5.4 Linux Integration 7 1.6 Global CSP Partnerships Critical to Scale 8 1.6.1 Sprint Curiosity IoT Platform 8 1.6.2 China Unicom Deal 9 1.6.3 Deeper into IoT with Vodafone: iSIM, bootstrapping and cross-platform support for faster adoption 9 2.
    [Show full text]
  • Qualcomm Technologies International, Ltd
    Qualcomm Technologies International, Ltd. Confidential and Proprietary – Qualcomm Technologies International, Ltd. (formerly known as Cambridge Silicon Radio Ltd.) NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: [email protected]. Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies International, Ltd.or its affiliated companies without the express approval of Qualcomm Configuration Management. Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies International, Ltd. Any software provided with this notice is governed by the Qualcomm Technologies International, Ltd. Terms of Supply or the applicable license agreement at https://www.csrsupport.com/CSRTermsandConditions. Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners. This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly prohibited. © 2015 Qualcomm Technologies International, Ltd. All rights reserved. Qualcomm Technologies International, Ltd. Churchill House Cambridge Business Park Cambridge, CB4 0WZ United Kingdom CSR GPS Shield Development Kit Quick Start Guide DK-CSRG0530-10212-2B CS-322268-RP © Cambridge Silicon Radio Limited 2014 Page 1 MCU Board Introduction CSR has verified the GPS Shield on three other mbed MCU platforms: LPCXpresso 1549 http://mbed.org/platforms/LPCXpresso1549/ Please use the USB interface highlighted with the red circle ST Nucleo F103RB http://mbed.org/platforms/ST-Nucleo-F103RB/ ST Nucleo 401RE http://developer.mbed.org/platforms/ST-Nucleo-F401RE Please install all required drivers before using these boards.
    [Show full text]