Understanding the Global Energy Crisis Eugene D

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Global Energy Crisis Eugene D Purdue University Purdue e-Pubs Purdue University Press e-books Purdue University Press Spring 3-15-2014 Understanding the Global Energy Crisis Eugene D. Coyle Military Technological College, Sultanate of Oman, [email protected] Richard A. Simmons Purdue University, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/purduepress_ebooks Recommended Citation Coyle, Eugene D. and Simmons, Richard A., Understanding the Global Energy Crisis (2014). Purdue University Press. (Knowledge Unlatched Open Access Edition.) This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Understanding the Global Energy Crisis Purdue Studies in Public Policy Understanding the Global Energy Crisis EDITED BY EUGENE D. COYLE AND RICHARD A. SIMMONS Published on behalf of the Global Policy Research Institute by Purdue University Press West Lafayette, Indiana Th is book is licensed under a Creative Commons CC-BY-NC License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/2.0/. Understanding the global energy crisis / edited by Eugene D. Coyle and Richard A. Simmons. pages cm. -- (Purdue studies in public policy) Includes bibliographical references and index. ISBN 978-1-55753-661-7 (pbk. : alk. paper) -- ISBN 978-1-61249-309-1 (epdf) -- ISBN 978-1- 61249-310-7 (epub) 1. Energy consumption. 2. Energy policy. 3. Energy development. 4. Renewable energy sources. I. Coyle, Eugene D. HD9502.A2U495 2014 333.79--dc23 An electronic version of this book is freely available, thanks to the support of libraries workingKnowledge with Knowledge Unlatched. Unlatched KU is a collaborative initiative designed to make high quality books Open Access for the public good. Th e Open Access ISBN for this book is 978-1-55753-701-0. More information about the initiative and links to the Open Access version can be found at www.knowledgeunlatched.org. To our wives, Lucy Dendy Coyle and Michelle Simmons, for their abiding encouragement and inspiration Table of Contents Foreword xi Preface xiii Introduction 1 PART 1: THE GLOBAL ENerGY CRISIS IN CONTEXT Chapter 1: Reflections on Energy, Greenhouse Gases, and Carbonaceous Fuels 11 1.1. Introduction: Man’s Quest for Energy 12 1.2. Earth’s Atmosphere and Greenhouse Gases 13 Chapter 2: Global Energy Policy Perspectives 27 2.1. Introduction: Energy Demand and Expected Growth 28 2.2. United States Energy and Climate Policy 34 2.3. Energy and Climate Policy in the European Union 42 2.4. China Energy and Climate Change Policy 50 2.5. Russia Energy and Climate Change Policy 52 2.6. Brazil Energy and Climate Change Policy 54 2.7. India Energy and Climate Change Policy 58 Chapter 3: Social Engagement by the Engineer 73 3.1. Introduction 74 3.2. Social Systems 75 3.3. Common Authentic Values and Principles 78 PART 2: ENerGY CONVersION TecHNOLOGY Chapter 4: Harnessing Nature: Wind, Hydro, Wave, Tidal, and Geothermal Energy 91 4.1. Introduction 91 4.2. Wind Energy 92 4.3. Hydroelectric Energy 99 4.4. Wave and Tidal Energy 102 4.5. Geothermal Energy 114 4.6. Impact of Renewable Technologies on Electricity Grid Developments 117 vii viii TABLE OF CONTENTS Chapter 5: Solar Power and the Enabling Role of Nanotechnology 125 5.1. Introduction 125 5.2. Solar Power Overview 126 5.3. Nanotechnology 128 5.4. Solar Photovoltaics 132 5.5. Thermoelectrics 135 5.6. Nanotechnology in Other Energy Applications 140 Chapter 6: Biofuel Prospects in an Uncertain World 151 6.1. Biofuels History 152 6.2. First Generation Biofuels 153 6.3. Second Generation Biofuels 155 6.4. Conclusions: Major Challenges and Opportunities 162 Chapter 7: A Future Role for Nuclear Energy? 167 7.1. Introduction: Essentials of Nuclear Energy 168 7.2. History of Nuclear Engineering 171 7.3. Current Status of Nuclear Energy 171 7.4. Nuclear Energy Safety 175 7.5. Nuclear Accidents and Impacts 177 7.6. Challenges in Nuclear Waste Management 180 7.7. Future Role for Nuclear Power 182 7.8. Social Engagement 185 7.9. Future for Nuclear Fusion 188 PART 3: ENerGY DISTRIBUTION AND Use Chapter 8: Taking Emerging Renewable Technologies to Market 193 8.1 Introduction 194 8.2 Economic Factors 194 8.3 Political Factors 196 8.4 Social Factors 199 8.5 Maintainability Factors 202 8.6 Economics of Energy 202 8.7 Some Challenges for Emerging Wave Energy Technologies 204 8.8 Conclusion 209 Chapter 9: Transportation and Energy 215 9.1 Transportation Energy Overview 216 9.2 Electric and Hybrid Vehicles 225 9.3 Aviation Fuels and Regulation 239 Chapter 10: Policy Challenges for the Built Environment: The Dilemma of the Existing Building Stock 255 10.1 Introduction 255 10.2 Energy Conserving Building Retrofit Technologies 257 TABLE OF CONTENTS ix 10.3 Complexity of Energy Efficiency Retrofit Strategies 261 10.4 Policy Challenges to Energy Efficiency Retrofit Success 266 10.5 Building Energy Reduction Programs Recently Employed in the US and EU 272 10.6 Recommendations and Opportunities for Future Solutions 276 Epilogue: Reflections on Our Path Forward 283 Index 291 Foreword I believe that this book will be regarded as a classic in describing the emerging global energy crises and alternate approaches for addressing them. It will not only serve sev- eral purposes in the technology and policy worlds but will also appeal to a broader audience. As the authors intended, it is an excellent technical source book for engineers and technologists. It provides a comprehensive review of the history of energy conver- sion and use; current and emerging technologies to achieve energy sustainability in a highly stressed planet; and contemporary international efforts to find solutions to the complex issues involved. Accordingly, it is also a must read for all young individuals of social consciousness, who see themselves as inheritors of grand challenge world issues and have a keen desire to contribute to their solution. The book is organized such that each chapter begins with an abstract of the sub- ject matter and ends with a summary of key points. The language is aimed at a Pop- ular Science level of technical exposition and is relatively jargon-free considering the wide spectrum of technologies presented. Each chapter includes an extensive list of references to assist the reader in finding sources and additional details of the refer- enced content. However, the most important aspect of the book, which is relatively unique, is the way the subject matter is organized. Energy sustainability is presented as a complex issue (or a wicked problem) that is interrelated with other complex issues, such as envi- ronmental sustainability, economic sustainability, and in the case of biomass-derived fuels, water and soil sustainability. For such problems there exists not a single solution but a multiplicity of solutions, which must then be judged by equally complex interrela- tionships among technical, social, and economic factors. These in turn vary regionally throughout the world based on different histories, cultures, social norms, etc. The book carefully addresses these complexities for each energy policy topic presented. The editors have carefully selected expert authors to explain the technical, social, and economic factors for each topic and present alternative approaches to a solution. The book intentionally avoids advocacy and attempts to be an honest broker to the readers so that they can draw their own conclusions based on the relative advantages and disadvantages presented. xi xii FOREWORD I am exceedingly proud that this book originated in Professor Coyle’s Fulbright Fellowship at Purdue University’s Global Policy Research Institute. I also applaud the members of the faculty at Purdue and at the Dublin Institute of Technology who con- tributed to it, exemplifying a successful trans-Atlantic partnership. This product is a glowing example of the vision of the GPRI to engage more faculty and students at Pur- due and elsewhere to conduct research and careful analysis of grand challenge global issues to inform the nation’s policy and decision makers. Arden L. Bement, Jr. Biographical Sketch Arden Bement, Jr. retired from his position as the founding Director of the Global Policy Research Institute at Purdue University in 2013. Prior to that position, he was the Di- rector of the National Science Foundation from 2004 to 2010. He served as a member of the U.S. National Commission for UNESCO and as the vice-chair of the Commission’s Natural Sciences and Engineering Committee. He is a member of the U.S. National Academy of Engineering, a fellow of the American Academy of Arts and Sciences, and a fellow of the American Association for the Advancement of Science. [preface] Preface This book brings together experts in energy policy, social science, power systems, so- lar energy, agronomy, renewable energy technologies, nuclear engineering, transpor- tation, and the built environment from both sides of the Atlantic to explore the future of energy production and consumption from technological, political, and sociological perspectives. The volume is not intended to serve as complete in-depth coverage of all energy sector technologies, nor to cover energy policy comprehensively for all world re- gions. It is, however, hoped that the topics selected and questions addressed will encour- age further engagement and debate among not only students, but anyone with interest in energy sustainability, climate change, and related challenges. These issues are multi-dimensional and complex in nature; “wicked problems” with no easy answers. The book explores issues such as financial outlay and tariff support, the readiness of emerging technologies such as wave and tidal energy converters, the degree of wind energy that may be accommodated on national networks, the extent to which solar energy may be deployed, challenges and uncertainties in the production of advanced biofuels, concerns about natural gas extraction via hydraulic fracture (hy- drofracking), and whether nuclear energy should become more widely used or taken out of the generation mix.
Recommended publications
  • A SOPAC Desktop Study of Ocean-Based, Renewable Energy
    A SOPAC Desktop Study of Ocean-Based RENEWABLE ENERGY TECHNOLOGIES SOPAC Miscellaneous Report 701 A technical publication produced by the SOPAC Community Lifelines Programme Acknowledgements Information presented in this publication has been sourced mainly from the internet and from publications produced by the International Energy Agency (IEA). The compiler would like to thank the following for reviewing and contributing to this publication: • Dr. Luis Vega • Anthony Derrick of IT Power, UK • Guillaume Dréau of Société de Recherche du Pacifique (SRP), New Caledonia • Professor Young-Ho Lee of Korea Maritime University, Korea • Professor Chul H. (Joe) Jo of Inha University, Korea • Luke Gowing and Garry Venus of Argo Environmental Ltd, New Zealand SOPAC Miscellaneous Report 701 Pacific Islands Applied Geoscience Commission (SOPAC), Fiji • Paul Fairbairn – Manager Community Lifelines Programme • Rupeni Mario – Senior Energy Adviser • Arieta Gonelevu – Senior Energy Project Officer • Frank Vukikimoala – Energy Project Officer • Koin Etuati – Energy Project Officer • Reshika Singh – Energy Resource Economist • Atishma Vandana Lal – Energy Support Officer • Mereseini (Lala) Bukarau – Senior Adviser Technical Publications Ivan Krishna • Sailesh Kumar Sen – Graphic Arts Officer Compiler First Edition October 2009 Cover Photo Source: HTTP://WALLPAPERS.FREE-REVIEW.NET/42__BIG_WAVE.HTM Back Cover Photo: Raj Singh A SOPAC Desktop Study of Ocean-Based Renewable Energy Technologies SOPAC Miscellaneous Report 701 Ivan Krishna Compiler First Edition
    [Show full text]
  • Working Paper
    WORKING PAPER The Value of Oil Price Projectiom Nebojsa Nakinnovic Leo SchrattenhoLzer October 1935 IQ-85-68 lnternrtionrl Institute tor -lid System, Anrlyth NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHORS The Value of Oil Price Projections Nebo jsa Nakicenovic Leo SchrattenhoLzer October 1935 TW-85-68 Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria -ABSTRACT AND SUBXAXY The central theme of this paper is the development of the international price of crude oil. A short overview of oil price his6ry is followed by a discussion of the factors that were responsible for previous, sometimes erratic, changes. We con- clude that these factors are likely to maintain their influence in the future, thus giving the forecasts of oil prices a high uncertainty. This uncertainty is reflected in several reports containing oil price proje[ctions. We argue, therefore, that a question soieiy about future oil prices must remain unanswered. Tnis does not render the efforts to examine the future futile; it simpiy means that the question shouid be rephrased. We offer one possible problem formulation that explicitly accounts for the high uncertainty. This formulation requires that specific policy probiems and options for solving them be specified before oil prices are projected - a condition that does not always hold or, at least, that does not seem to be regarded as important enougn to be described in many reports on oil price studies.
    [Show full text]
  • Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗
    Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗ John R. Boycey Department of Economics University of Calgary July 2012 Abstract World oil production has grown at an annual rate of 4.86% since 1900. Yet, the Hubbert-Deffeyes `peak oil' (HDPO) model predicts that world oil production is about to enter a sustained period of decline. This paper investigates the empirical robustness of these claims. I document that the data for the HDPO model shows that the ratio of production-to-cumulative-production is decreasing in cumulative production, and that the rate of decrease is itself decreasing. The HDPO model attempts to fit a linear curve through this data. To do so, Hubbert and Deffeyes are forced to either exclude early data or to discount the validity of discoveries and reserves data. I show that an HDPO model which includes early data systematically under-predicts actual cumulative production and that the data also rejects the hypothesis that the fit is linear. These findings undermine claims that the HDPO model is capable of yielding meaningful measures of ultimately recoverable reserves. Key Words: Peak Oil, Exhaustible Resources, Exploration and Development JEL Codes: L71, Q31, Q41, O33 ∗I thank Chris Auld, Diane Bischak, Chris Bruce, Bob Cairns, Robin Carter, Ujjayant Chakravorty, Eugene Choo, Herb Emery, G´erardGaudet, Dan Gordon, James Hamilton, Mike Horn, Lutz Kilian, Dean Lueck, John Rowse, and Scott Taylor. I also thank the associate editor, James L. Smith, and two anonymous referees for helpful comments. All remaining errors are my own. yProfessor of Economics, Department of Economics, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, T2N 1N4, Canada.
    [Show full text]
  • U.S. Energy in the 21St Century: a Primer
    U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure.
    [Show full text]
  • Total Energy Intensity
    EN17 Total Energy Intensity Key message Economic growth has required less additional energy consumption over the 1990s, although total energy consumption is still increasing. However, since 2000 the rate of decrease in energy intensity has slowed, remaining almost stable to 2004. This was due to a slowdown in the rate of GDP growth, while energy consumption continued to rise strongly. Rationale Historically, economic growth has led to increased energy consumption, thus putting increased pressure on the environment. The indicator identifies to what extent there is a decoupling between energy consumption and economic growth. Fig. 1: Trends in total energy intensity, gross domestic product and total energy consumption, EU-25 Index (1990 = 100) 135 Data source: Eurostat and Ameco database, European Commission. 125 Note: Some estimates have been necessary in order to compute the EU- 25 GDP index in 1990. For some EU- 115 25 member states Eurostat data was not available for a particular year. The European Commission's annual 105 macroeconomic database (Ameco) was used as an additional data source. GDP for the missing year is estimated 95 on the basis of the annual growth rate from Ameco, rate which is applied to the latest available GDP from Eurostat. 85 This method was used for the Czech Republic (1990-94), Cyprus (1990-94), Hungary (1990), Poland (1990-94), 75 Malta (1991-1998) and for Germany (1990). For some other countries and years, however, GDP wasn’t available 65 from Eurostat or from Ameco. With the 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 purpose of estimating the EU-25, few assumptions were made.
    [Show full text]
  • Social and Environmental Effects of Bujagali Dam
    FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT Department of Building, Energy and Environmental Engineering SOCIAL AND ENVIRONMENTAL EFFECTS OF BUJAGALI DAM MUWUMUZA LINDA 2014 MASTER OF SCIENCE THESIS, Credits: H.E 30 DIVISION OF SUSTAINABLE ENERGY Supervisor: DR. JEEVAN JAYASURIYA A/PROF DR. JOHN BAPTIST KIRABIRA Dedication Well yes Mum, I did as we discussed and so this is for you. You spoke, I listened and this is the outcome. I pray you are proud of me. Love you always. Acknowledgements I would love to thank the following people for their contribution towards the finishing of my project. I would not have finished it successfully without you. My Family Daddy Angella Stephen Amanda College of Engineering, Design, Art and Technology My local facilitators Dr. Sabiiti Adam Hillary Kasedde My Supervisors Dr. Jeevan Jayasuriya Dr. John Baptist Kirabira The Ministry of Energy and Mineral Development especially: Eng. Moses Murengezi: Advisor to the Chairman Energy and Mining Sector Working group Eng. Paul Mubiru: Permanent Secretary, Ministry of Energy and Mineral Development The Bujagali Energy Limited Company especially: Mr. John Berry: Chief Executive Officer of BEL Ms. Achanga Jennifer: Environmental Engineer of BEL Francis Mwangi: Technical Manager Allan Ikahu: Infrastructure and Project Engineer My Friends: John, Anthony, Mue, Winnie, Arthur, Vincent, Hajarah, Fildah, Winnie, Richard and all the rest List of Acronyms ADB African Development Bank AES Applied Energy Services BEL Bujagali Energy Limited MEMD Ministry of Energy and Mineral Development NGO Non Government Organization O&M Energy Operations and Maintenance Energy Limited PAP Project Affected Persons USAID United States Agency for International Development Abstract There has been a steady increment in economic growth in Uganda and as the economy is on the rise, the demand for energy also increases.
    [Show full text]
  • The Oil Depletion Protocol
    1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference, and to be the central theme of the next Pio Manzu Conference, Rimini, Italy on October 28-30, 2005 2 INTRODUCTION Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil, which is the World’s premier fuel, having a central place in the modern economy. Knowledge of petroleum geology has made great advances in recent years, such that the conditions under which this resource was formed in Nature are now well understood. In fact, it transpires that the bulk of the World’s current production comes from deposits formed in two brief and exceptional epochs, 90 and 150 million years ago. This fact alone tells us that oil is a finite resource, which in turn means that it is subject to depletion. People ask: Are we running out of oil ? The simple answer is: Yes, we started doing that when we produced the first barrel. But Running Out is not the main issue as the resource will not be finally exhausted for very many years. The much more relevant question is: When will production reach a peak and begin to decline? Depletion: Growth, Peak and Decline Much debate and study has focused on the calculation of the date of peak, but this too misses the main point. It is not an isolated or pronounced peak but merely the highest point on a long and gentle production curve.
    [Show full text]
  • The Trends of the Energy Intensity and CO2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies
    sustainability Article The Trends of the Energy Intensity and CO2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies Flavio R. Arroyo M. 1,2,* and Luis J. Miguel 1,* 1 Systems Engineering and Automatic Control, School of Industrial Engineering, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain 2 Faculty of Engineering, Physical Sciences and Mathematics, Av. Universitaria, Central University of Ecuador, Quito 170129, Ecuador * Correspondence: fl[email protected] (F.R.A.M.); [email protected] (L.J.M.) Received: 29 November 2019; Accepted: 8 December 2019; Published: 18 December 2019 Abstract: Climate change and global warming are related to the demand for energy, energy efficiency, and CO2 emissions. In this research, in order to project the trends in final energy demand, energy intensity, and CO2 emission production in Ecuador during a period between 2000 and 2030, a model has been developed based on the dynamics of the systems supported by Vensim simulation models. The energy matrix of Ecuador has changed in recent years, giving more importance to hydropower. It is conclusive that, if industrialized country policies or trends on the use of renewable energy and energy efficiency were applied, the production of CO2 emissions by 2030 in Ecuador would reach 42,191.4 KTCO2, a value well below the 75,182.6 KTCO2 that would be seen if the current conditions are maintained. In the same way, by 2030, energy intensity would be reduced to 54% compared to the beginning of the simulation period. Keywords: Business as usual (BAU); global warming; energy intensity; energy efficiency; CO2 emissions; energy policies 1.
    [Show full text]
  • Analiza Kretanja Cijene Nafte Obzirom Na Pandemiju COVID-A 19 I Usporedba S Povijesnim Kretanjem Na Svjetskom Tržištu
    Analiza kretanja cijene nafte obzirom na pandemiju COVID-a 19 i usporedba s povijesnim kretanjem na svjetskom tržištu Njirić, Marin Undergraduate thesis / Završni rad 2020 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:342279 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Preddiplomski studij naftnog rudarstva ANALIZA KRETANJA CIJENE NAFTE OBZIROM NA PANDEMIJU COVID-a 19 I USPOREDBA S POVIJESNIM KRETANJEM NA SVJETSKOM TRŽIŠTU Završni rad Marin Njirić N4350 Zagreb, 2020 Sveučilište u Zagrebu Završni rad Rudarsko-geološko-naftni fakultet ANALIZA KRETANJA CIJENE NAFTE OBZIROM NA PANDEMIJU COVID-a 19 I USPOREDBA S POVIJESNIM KRETANJEM NA SVJETSKOM TRŽIŠTU Marin Njirić Završni rad je izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za naftno-plinsko inženjerstvo i energetiku Pierottijeva 6, 10 000 Zagreb Sažetak U svjetskoj ekonomiji nafta zauzima jednu od najvažnijih uloga za gospodarski razvoj svake zemlje. S obzirom da je izuzetno bitna sirovina, njena cijena utječe na sve grane gospodarstva, kretanja svjetskih političkih i gospodarskih trendova, kretanje indeksa na burzama te stanje svjetskog gospodarstva općenito. Tijekom povijesti, događali su se razni preokreti cijena nafte, čime bi mnoge zemlje ili tvrtke profitirale ili upale u krizu. U razdoblju COVID-a, cijena je drastično potonula te se u ovom radu prati taj pad cijene u usporedbi s cijenama tijekom prijašnjih kriza u povijesti.
    [Show full text]
  • From 'Greenest Government Ever' to 'Get Rid of All the Green Crap': David Cameron, the Conservatives and the Environment
    This is a repository copy of From ‘greenest government ever’ to ‘get rid of all the green crap’: David Cameron, the Conservatives and the environment. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85469/ Version: Submitted Version Article: Carter, Neil Thomas orcid.org/0000-0003-3378-8773 and Clements, Ben (2015) From ‘greenest government ever’ to ‘get rid of all the green crap’: David Cameron, the Conservatives and the environment. British Politics. 204–225. ISSN 1746-918X https://doi.org/10.1057/bp.2015.16 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ From ‘Greenest government ever’ to ‘get rid of all the green crap’: David Cameron, the Conservatives and the Environment by Neil Carter (University of York) and Ben Clements (University of Leicester) Published in British Politics, early online April 2015. This is a post-peer-review, pre-copy-edit version of the paper.
    [Show full text]
  • The Economics of the Green Investment Bank: Costs and Benefits, Rationale and Value for Money
    The economics of the Green Investment Bank: costs and benefits, rationale and value for money Report prepared for The Department for Business, Innovation & Skills Final report October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 2 Acknowledgements This report was commissioned by the Department of Business, Innovation and Skills (BIS). Vivid Economics would like to thank BIS staff for their practical support in the review of outputs throughout this project. We would like to thank McKinsey and Deloitte for their valuable assistance in delivering this project from start to finish. In addition, we would like to thank the Department of Energy and Climate Change (DECC), the Department for Environment, Food and Rural Affairs (Defra), the Committee on Climate Change (CCC), the Carbon Trust and Sustainable Development Capital LLP (SDCL), for their valuable support and advice at various stages of the research. We are grateful to the many individuals in the financial sector and the energy, waste, water, transport and environmental industries for sharing their insights with us. The contents of this report reflect the views of the authors and not those of BIS or any other party, and the authors take responsibility for any errors or omissions. An appropriate citation for this report is: Vivid Economics in association with McKinsey & Co, The economics of the Green Investment Bank: costs and benefits, rationale and value for money, report prepared for The Department for Business, Innovation & Skills, October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 3 Executive Summary The UK Government is committed to achieving the transition to a green economy and delivering long-term sustainable growth.
    [Show full text]
  • The State of Venezuela's Forests
    ArtePortada 25/06/2002 09:20 pm Page 1 GLOBAL FOREST WATCH (GFW) WORLD RESOURCES INSTITUTE (WRI) The State of Venezuela’s Forests ACOANA UNEG A Case Study of the Guayana Region PROVITA FUDENA FUNDACIÓN POLAR GLOBAL FOREST WATCH GLOBAL FOREST WATCH • A Case Study of the Guayana Region The State of Venezuela’s Forests. Forests. The State of Venezuela’s Págs i-xvi 25/06/2002 02:09 pm Page i The State of Venezuela’s Forests A Case Study of the Guayana Region A Global Forest Watch Report prepared by: Mariapía Bevilacqua, Lya Cárdenas, Ana Liz Flores, Lionel Hernández, Erick Lares B., Alexander Mansutti R., Marta Miranda, José Ochoa G., Militza Rodríguez, and Elizabeth Selig Págs i-xvi 25/06/2002 02:09 pm Page ii AUTHORS: Presentation Forest Cover and Protected Areas: Each World Resources Institute Mariapía Bevilacqua (ACOANA) report represents a timely, scholarly and Marta Miranda (WRI) treatment of a subject of public con- Wildlife: cern. WRI takes responsibility for José Ochoa G. (ACOANA/WCS) choosing the study topics and guar- anteeing its authors and researchers Man has become increasingly aware of the absolute need to preserve nature, and to respect biodiver- Non-Timber Forest Products: freedom of inquiry. It also solicits Lya Cárdenas and responds to the guidance of sity as the only way to assure permanence of life on Earth. Thus, it is urgent not only to study animal Logging: advisory panels and expert review- and plant species, and ecosystems, but also the inner harmony by which they are linked. Lionel Hernández (UNEG) ers.
    [Show full text]