Mexico) Governed by Regional Tectonics and Volcanic Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Mexico) Governed by Regional Tectonics and Volcanic Evolution Quaternary sector collapses of Nevado de Toluca volcano (Mexico) governed by regional tectonics and volcanic evolution G. Norini L. Capra Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla-UNAM, Querétaro, Qro. 76230, Mexico G. Groppelli Istituto per la Dinamica dei Processi Ambientali, Sezione di Milano, Consiglio Nazionale delle Ricerche, Via Mangiagalli 34, 20133 Milano, Italy A.M.F. Lagmay National Institute of Geological Science, Velasquez St. corner Garcia St., University of the Philippines, 1101 Quezon City, Philippines ABSTRACT on the basis of better knowledge of growth 1986; Tibaldi, 1995; Lagmay et al., 2000; Vidal and collapse mechanism of the volcano. The and Merle, 2000; Norini and Lagmay, 2005). Nevado de Toluca volcano is an andesitic- numerous examples of composite volcanoes in Stress-fi eld orientation has been recognized as dacitic composite volcano of Late Pliocene– continental and island volcanic arcs with sim- an important factor governing the directions of Holocene age located in the central-eastern ilar structural-volcanological characteristics collapse in composite volcanoes since 1977, sector of the Trans-Mexican Volcanic Belt, of Nevado de Toluca volcano imply that the when Nakamura showed that cone elongation, an active continental arc. The latest stage model results can also act as a guide to study fractures, strike of dikes, and alignments of of Nevado de Toluca evolution, in the past the growth and collapse of other composite fl ank vents occur parallel to the regional maxi- 50 k.y., has shown an interplay between vol- volcanoes affected by basement structures. mum horizontal stress. Moriya (1980) applied canic activity and kinematics of the basement Nakamura’s (1977) model to 30 volcano amphi- structures. Geological mapping, stratigraphic INTRODUCTION theater craters in Japan, and concluded that dike analysis, morphological and structural inter- intrusions promote lateral collapses perpendicu- pretation, and analogue modeling were used Composite volcanoes are highly dynamic lar to the maximum horizontal stress direction. to investigate these complex volcano-tectonics structures characterized by alternating periods of Siebert (1984) noted from the global database of relationships. In the past 50 k.y., Nevado de growth and quiescence, both marked by episodes volcano sector collapses that dike swarms par- Toluca volcano underwent at least three sec- of instability that can lead to slope failures rang- allel to the maximum horizontal stress induce tor collapses on the east, east-southeast, and ing from moderate and localized to voluminous, instability, often promoting collapses normal west fl anks because of faulting and destabili- involving a signifi cant portion of the edifi ce. The to the dominant direction of dike emplacement. zation of young dacitic domes at its summit. instability can develop over thousands of years, or Not all volcanoes, however, share the same rela- Field and remotely sensed data supported by over only a few days. A slowly developing insta- tionship between regional stress and instability. analogue models of transtensive basement bility may be accelerated by a discrete event and In a study of 52 Japanese Quaternary volca- tectonics revealed that these catastrophic culminate in catastrophic failure. In many cases, noes with associated debris avalanche depos- events were strongly correlated to the pres- destabilization is produced by a combination of its, Ui et al. (1986) found no relation between ence of the east-west–striking active Tenango circumstances and events, rather than a single the direction of amphitheater craters and the fault system. The geometry, kinematics, and cause (Voight and Elsworth, 1997). A volcano maximum horizontal stress. Bahar and Girod dynamics of the basement structure con- can be rendered unstable by fl ank overloading (1983) showed that in Indonesian volcanoes the trolled the growth of a dome complex in the from deposition of volcanic products (Murray, direction of dikes and the alignments of vents volcano summit and its destabilization. As a 1988), dike intrusion (Siebert, 1984; Elsworth and volcanic cones tend to form at an angle consequence of the active basement tectonics, and Voight, 1996), cryptodome growth beneath relative to the direction of maximum horizon- the most probable sector collapse directions and inside the volcano (Lipman and Mullineaux, tal stress, and are related to regional structures. in the case of future gravitational failures of 1981; Donnadieu and Merle, 1998), hydrother- These observations suggest that the relationship the volcano summit will be east-southeast, mal alteration (Day, 1996; Voight and Elsworth, between regional stress and volcano instability is west-northwest, east, and west. Nevado de 1997; Finn et al., 2004), steepening of slopes more complex than previously thought, and that Toluca poses potential hazards to more than (Siebert, 1984), gravitational spreading (Borgia other factors may govern the direction of sector 25 million inhabitants; the analysis presented et al., 2000) and tectonic activity of the base- collapses. One such factor may be the role of in this paper can improve hazard mitigation ment (Moriya, 1980; Siebert, 1984; Ui et al., tectonic structures in the basements underlying Geosphere; October 2008; v. 4; no. 5; p. 854–871; doi: 10.1130/GES00165.1; 16 fi gures; 1 table; 1 animation; 1 supplemental fi le. 854 For permission to copy, contact [email protected] © 2007 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/4/5/854/3337216/i1553-040X-4-5-854.pdf by guest on 30 September 2021 Quaternary sector collapses of Nevado de Toluca volcano volcanoes. Francis and Wells (1988) examined record of Nevado de Toluca volcano (Bellotti deposits were estimated by means of interpola- the infl uence of structural setting and tectonic et al., 2004, 2006; Norini et al., 2004, 2006). tion in a GIS using deposit thickness measure- activity in generating volcano instability in 28 Numerous composite volcanoes like Pico de ments. Linear interpolation of the deposit thick- examples of breached cones in the Andes. In Orizaba, Popocatépetl, Nevado de Toluca, and ness among outcrops resulted in a raster fi le most cases, breaching occurred perpendicular to the Colima Volcanic Complex are built along representing the spatial variation of thickness, the main lineaments and fractures. In contrast, the Trans-Mexican Volcanic Belt, an active con- from which the total volume was obtained. cone breaching and lateral collapse parallel to tinental volcanic arc (Ferrari, 2000) (Fig. 1A). Structural analyses of Nevado de Toluca vol- the fault strike are more common in regions of Each of these volcanoes has undergone sector cano and surrounding areas were performed by transcurrent and transtensive faulting (Tibaldi, failures in the past, and it may undergo debris García-Palomo et al. (2000), Bellotti et al. (2006), 1995). Van Wyk de Vries and Merle (1998) and avalanches and lahars again (Capra et al., 2002). and Norini et al. (2006). Previously published Lagmay et al. (2000) studied the effects of trans- Thus, better understanding of these catastrophic descriptive analysis and kinematic interpreta- current faulting on the stability of volcanoes by events with respect to time of recurrence dur- tion of morphostructural lineaments and struc- performing analogue model experiments that ing the lifespan of a volcano and their relation to tural stations revealed the age and kinematics of demonstrated that edifi ce instability can be gen- underlying basement structures is necessary. the complex set of faults that cross the volcanic erated by an underlying active strike-slip fault. Previously, the relationships between volcano edifi ce and its basement (García-Palomo et al., The instability and consequent landslides were edifi ce collapse and tectonics were mainly based 2000; Bellotti et al., 2006; Norini et al., 2006). oriented ~10°–30° from the trend of the main on statistical studies of several natural cases and We performed supplementary morphostructural strike-slip fault (Lagmay et al., 2000; Wooller, on analogue modeling (Moriya, 1980; Siebert, and geological analyses at the volcano and cra- 2004; Norini and Lagmay, 2005; Lagmay and 1984; Ui et al., 1986; Francis and Wells, 1988; ter scales to account for the effect of the active Valdivia, 2006). Tibaldi, 1995). Here we propose a model based Tenango fault system on Nevado de Toluca vol- on the spatial and temporal interaction of volca- cano. At the volcano scale, analysis of a digital NEVADO DE TOLUCA VOLCANO nic processes and fault mechanics within a sin- elevation model obtained by interpolation of gle well-known natural example, the Nevado de the 1:50,000 Instituto Nacional de Estadística The Late Pliocene–Holocene age Nevado de Toluca volcano. Our approach is to complement Geografía y Informática (INEGI) contour lines Toluca volcano, one of the most prominent vol- geometric relationships between fault lines and with an interval of 20 m was used to delin- canic features within the Trans-Mexican Volca- direction of collapse and detailed stratigraphic eate the major structures affecting the volcano nic Belt, is the fourth highest peak in Mexico; it and structural data collected in the fi eld with edifi ce. At the same scale, a GIS was used as has an altitude of 4680 m above sea level, and analogue modeling in order to develop a model the basis for spatial analysis of the lithostrati- is located 80 km west-southwest of Mexico for the growth and collapse of the volcano that graphic units. The GIS database incorporated City and 23 km southwest of the city of Toluca matches the present volcano structure as well as all the geological data representing the growth (Fig. 1). Its past activity has affected an area mechanism of collapse during the past 50 k.y. of the volcano and led to visualize the feeding now inhabited by more than 25 million people; system geometry. At the crater scale, morpho- thus, the hazards it poses are of serious concern. FIELD METHODS structural analysis of the summit dacitic domes The latest phase of volcanism started ca.
Recommended publications
  • Expeditions & Treks 2008/2009
    V4362_JG_Exped Cover_AW 1/5/08 15:44 Page 1 Jagged Globe NEW! Expeditions & Treks www.jagged-globe.co.uk Our new website contains detailed trip itineraries 2008 for the expeditions and treks contained in this brochure, photo galleries and recent trip reports. / 2009 You can also book securely online and find out about new trips and offers by subscribing to our email newsletter. Jagged Globe The Foundry Studios, 45 Mowbray Street, Sheffield S3 8EN United Kingdom Expeditions Tel: 0845 345 8848 Email: [email protected] Web: www.jagged-globe.co.uk & Treks Cover printed on Take 2 Front Cover: Offset 100% recycled fibre Mingma Temba Sherpa. sourced only from post Photo: Simon Lowe. 2008/2009 consumer waste. Inner Design by: pages printed on Take 2 www.vividcreative.com Silk 75% recycled fibre. © 2007 V4362 V4362_JG_Exped_Bro_Price_Alt 1/5/08 15:10 Page 2 Ama Dablam Welcome to ‘The Matterhorn of the Himalayas.’ Jagged Globe Ama Dablam dominates the Khumbu Valley. Whether you are trekking to Everest Base Camp, or approaching the mountain to attempt its summit, you cannot help but be astounded by its striking profile. Here members of our 2006 expedition climb the airy south Expeditions & Treks west ridge towards Camp 2. See page 28. Photo: Tom Briggs. The trips The Mountains of Asia 22 Ama Dablam: A Brief History 28 Photo: Simon Lowe Porter Aid Post Update 23 Annapurna Circuit Trek 30 Teahouses of Nepal 23 Annapurna Sanctuary Trek 30 The Seven Summits 12 Everest Base Camp Trek 24 Lhakpa Ri & The North Col 31 The Seven Summits Challenge 13
    [Show full text]
  • Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses.
    [Show full text]
  • Consequences of Volcano Sector Collapse on Magmatic Storage Zones: Insights from Numerical Modeling Virginie Pinel, Fabien Albino
    Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling Virginie Pinel, Fabien Albino To cite this version: Virginie Pinel, Fabien Albino. Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling. Journal of Volcanology and Geothermal Research, Elsevier, 2013, 252, pp.29-37. 10.1016/j.jvolgeores.2012.11.009. ird-00782222 HAL Id: ird-00782222 https://hal.ird.fr/ird-00782222 Submitted on 29 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling V. Pinela, F. Albinob aISTerre, Universit´ede Savoie, IRD, CNRS, F73376 Le Bourget du Lac, France bNordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland Abstract Major volcano flank collapses strongly affect the underlying magmatic plumb- ing system. Here, we consider the magma storage zone as a liquid pocket embedded in an elastic medium, and we perform numerical simulations in two-dimensional axisymmetric geometry as well as in three dimensions in order to evaluate the consequences of a major collapse event.
    [Show full text]
  • Discriminación De Unidades Volcánicas a Partir De Ímagenes Ópticas Y Radar: Estudio De Caso Volcán De Colima, Periodo 2004-2014.”
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE GEOGRAFÍA “DISCRIMINACIÓN DE UNIDADES VOLCÁNICAS A PARTIR DE ÍMAGENES ÓPTICAS Y RADAR: ESTUDIO DE CASO VOLCÁN DE COLIMA, PERIODO 2004-2014.” TESIS QUE PARA OBTENER EL GRADO DE: LICENCIADO EN GEOINFORMÁTICA PRESENTA CIRINO GARCÍA MALVAÉZ DIRECTORA DRA. NORMA DÁVILA HERNÁNDEZ REVISORES MTRO. RAÚL EDUARDO MURILLO OLVERA DR. HÉCTOR CABADAS BÁEZ TOLUCA, ESTADO DE MÉXICO. DICIEMBRE DEL 2014 Agradecimientos A mi asesora Dr. Norma Dávila Hernández por el apoyo brindado durante la elaboración de este trabajo, el creer en mí y por la dedicación brindada para lograr esta gran meta en mi vida. A mis revisores Mtro. Raúl Eduardo Murillo Olvera y Dr. Héctor Cabadas Báez, en verdad no pude haber tenido mejores revisores. Mtro. Murillo a usted un agradecimiento especial ya que siempre estuvo a mi lado en el transcurso de toda la licenciatura no solo como profesor, si no como amigo. Gracias. A mis papas con la mayor gratitud por los esfuerzos realizados para que yo lograra terminar mi tesis profesional siendo para mí la mejor herencia y a ellos les dedico este trabajo ya que son mi más grande estimulo e inspiración. Gracias por guiar mi vida, esto ha hecho que sea quien soy en la vida. LOS AMO A mis hermanas porque siempre me apoyaron, me alentaron, estimularon y me alegraron en momentos difíciles. A Mary que fue mi acompañante en toda la licenciatura, que siempre me apoyo, me ayudo a dar el máximo y me oriento. 1 INDICE 1.0 INTRODUCCIÓN .............................................................................................. 3 2.0 ANTECEDENTES ............................................................................................. 5 3.0 PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN .............................
    [Show full text]
  • The Effect of Giant Lateral Collapses on Magma Pathways and the Location of Volcanism
    Originally published as: Maccaferri, F., Richter, N., Walter, T. R. (2017): The effect of giant lateral collapses on magma pathways and the location of volcanism. ‐ Nature Communications, 8. DOI: http://doi.org/10.1038/s41467‐017‐01256‐2 ARTICLE DOI: 10.1038/s41467-017-01256-2 OPEN The effect of giant lateral collapses on magma pathways and the location of volcanism Francesco Maccaferri1, Nicole Richter1 & Thomas R. Walter1 Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo vol- cano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. 1 German Research Centre for Geosciences (GFZ), Potsdam, 14473, Germany. Correspondence and requests for materials should be addressed to F.M. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1097 | DOI: 10.1038/s41467-017-01256-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01256-2 specially tall and active volcanoes are prone to flank observed at numerous volcanic ocean islands15,29,34,35, including – Einstability which may lead to failure and sector collapse1 3.
    [Show full text]
  • Geology of Nevado De Toluca Volcano and Surrounding Areas, Central Mexico
    mch089 1 of 26 Geological Society of America Map and Chart Series MCH089 2002 Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico *Armando García-Palomo, José Luis Macías, José Luis Arce Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México Lucia Capra Instituto de Geografía, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México Victor Hugo Garduño Departamento de Geología y Mineralogía, Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México Juan Manuel Espíndola Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México ABSTRACT Nevado de Toluca is an andesitic-dacitic stratovolcano of Pliocene-Holocene age located in central Mexico. The volcano is built on a complex sequence of metamorphic and sedimentary formations of Jurassic-Cretaceous age, rhyolitic ignimbrites of late Eocene age, and massive andesitic lava flows of late Miocene. In the northwest corner of the map area, on top of this basement sequence, a complex andesitic-dacitic strato- volcano, San Antonio, and a series of andesitic-dacitic domes and cones of Pliocene– early Pleistocene age were also built. The first andesitic-dacitic emissions of Nevado de Toluca occurred 2.6 Ma and continued during late Pleistocene–Holocene time contem- porarily with basaltic to dacitic emissions of the Chichinautzin Volcanic Field in the eastern parts of the map area. Volcanism in the area has been controlled by the interplay of three fault systems active since late Miocene. These systems, from older to younger, are the Taxco-Querétaro Fault System (NNW–SSE), the San Antonio Fault System (NE–SW), and the Tenango Fault System (E–W).
    [Show full text]
  • Climbers As Humanitarians: Helping Injured Migrants in Mexico
    Appalachia Volume 69 Number 2 Summer/Fall 2018: Role Reversal in Article 4 the Mountains 2018 Climbers as Humanitarians: Helping Injured Migrants in Mexico Lisa Densmore Ballard Follow this and additional works at: https://digitalcommons.dartmouth.edu/appalachia Part of the Nonfiction Commons Recommended Citation Ballard, Lisa Densmore (2018) "Climbers as Humanitarians: Helping Injured Migrants in Mexico," Appalachia: Vol. 69 : No. 2 , Article 4. Available at: https://digitalcommons.dartmouth.edu/appalachia/vol69/iss2/4 This In This Issue is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Appalachia by an authorized editor of Dartmouth Digital Commons. For more information, please contact [email protected]. Climbers as Humanitarians Helping injured migrants in Mexico Lisa Densmore Ballard 24 Appalachia Appalachia_SF2018_FINAL REV3.indd 24 5/9/18 1:36 PM ico de Orizaba called to me when I first saw it in November P 2017, while driving into Tlachichuca, Mexico. I looked up its northwestern flank and wanted to stand on top of its white cone. It beckoned, cool and refreshing, framed by an azure sky, miles from where I stood. Around me, heat waves rose from the pavement and dust devils swirled among the cornstalk pyramids by the village gate. I realized I must not underestimate this alpine goliath. Pico de Orizaba (18,491 feet) is the third highest mountain in North America, after Denali in Alaska and Mount Logan in the Canadian Yukon. Located in Mexico’s volcanic belt, on the border of the states of Veracruz and Puebla, Orizaba rises prominently from a pancake-flat patchwork of corn and cactus in central Mexico.
    [Show full text]
  • Triggering of Major Eruptions Recorded by Actively Forming Cumulates SUBJECT AREAS: Michael J
    Triggering of major eruptions recorded by actively forming cumulates SUBJECT AREAS: Michael J. Stock*, Rex N. Taylor & Thomas M. Gernon GEOCHEMISTRY PETROLOGY National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, U.K. SOLID EARTH SCIENCES VOLCANOLOGY Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been Received limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially 15 August 2012 developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent ‘‘frozen’’ clumps of diverse crystalline deposits from all levels in the Accepted developing reservoir, which are permeated with the final magma immediately before eruptions. Such events 17 September 2012 therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations Published reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic 12 October 2012 magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. Correspondence and he Las Can˜adas volcano on Tenerife, Canary Islands, generated at least seven major explosive eruptions requests for materials during the Quaternary1–3. These events resulted in widespread deposition of pyroclastic material, with an should be addressed to estimated volume of .130 km3 (ref. 1,4). Despite considerable scientific interest in the volcano and assoc- T 5 6 R.N.T.
    [Show full text]
  • Nevado De Toluca: Habitat for Romerolagus Diazi? O. Monroy
    Animal Biodiversity and Conservation 43.1 (2020) 115 Nevado de Toluca: habitat for Romerolagus diazi? O. Monroy–Vilchis, A. A. Luna–Gil, A. R. Endara–Agramont, M. M. Zarco–González, G. A. González–Desales Monroy–Vilchis, O., Luna–Gil, A. A., Endara–Agramont, A. R., Zarco–González, M. M., González–Desales, G. A., 2020. Nevado de Toluca: habitat for Romerolagus diazi? Animal Biodiversity and Conservation, 43.1: 115–121, Doi: https://doi.org/10.32800/abc.2020.43.0115 Abstract Nevado de Toluca: habitat for Romerolagus diazi? The volcano rabbit (Romerolagus diazi), also known as teporingo or zacatuche, is a small rabbit that is endemic to Mexico. In this study we characterized its poten- tial habitat in the Area of Protection of Flora, and Fauna Nevado de Toluca, Mexico. Between April 2016 and November 2017, we sampled 1,807 units to determine the presence of this species using indirect evidence. We found dung pellets that could be attributed to R. diazi in 41 (2.27 %) of the sampled units. In 10 % of these units, we set up camera traps to confirm the presence of the species. Sites with presumed R. diazi pellets were characterised by rocky terrain, with Pinus hartwegii as the dominant tree species, and Festuca tolucensis as the dominant grass. Overall herbaceous cover was over 70 %. Sites observed to have a negative effect on the presence of the pellets were areas with livestock grazing and induced burning. The results of camera trapping did not reveal the presence of R. diazi in Nevado de Toluca. Key words: Teporingo, Conservation, High mountain forest Resumen El Nevado de Toluca: ¿un hábitat para Romerolagus diazi? El conejo de los volcanes (Romerolagus diazi), también conocido como teporingo o zacatuche, es un pequeño conejo endémico de México.
    [Show full text]
  • Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
    Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v.
    [Show full text]
  • Síntesis De Información Geográfica Del Estado De México
    2001 México. de estado del geográfica Información de Síntesis INEGI. 3. Fisiografía El estado de México incluye en su territorio fragmentos de tres subprovincias: Lagos y Huixquilucan, Huehuetoca, Isidro Fabela, áreas pertenecientes a dos provincias Volcanes de Anáhuac, Mil Cumbres y Llanuras Ixtapaluca, Ixtlahuaca, Jaltenco, Xalatlaco, fisiográficas: Eje Neovolcánico y Sierra Madre y Sierras de Querétaro e Hidalgo. Jilotzingo, Joquicingo, Jiquipilco, Juchitepec, del Sur. La primera región comprende Lerma, Melchor Ocampo, Metepec, alrededor de tres cuartas partes de la entidad, Subprovincia Lagos y Volcanes de Anáhuac Mexicaltzingo, Morelos, Naucalpan de Juárez, cubriendo el oriente, centro, norte y oeste; en Nezahualcóyotl, Nextlalpan, Nicolás Romero, tanto que la segunda, se restringe al sur y Esta subprovincia, en cuyo territorio se ubican Nopaltepec, Ocoyoacac, Otumba, Otzolotepec, suroeste. la capital de la república y cinco capitales Ozumba, Papalotla, La Paz, Rayón, San estatales (Toluca de Lerdo, Tlaxcala de PROVINCIA EJE NEOVOLCÁNICO Antonio la Isla, San Martín de las Pirámides, Xicoténcatl, Pachuca de Soto, Heroica Puebla San Mateo Ateneo, Tecámac, Temamatla, Atraviesa al país casi en línea recta, más o de Zaragoza y Cuernavaca), está integrada por Temascalapa, Temoaya, Tenango del menos sobre el paralelo 19o y se extiende de grandes sierras volcánicas o aparatos Aire, Tenango del Valle, Teoloyucan, Teotihuacan, oeste a este desde la costa del Océano individuales que se alternan con amplios vasos Tepetlaoxtoc, Tepetlixpa, Tepotzotlán,
    [Show full text]
  • 2. Debris Avalanches
    lltt.:' : l. Introduction than severalhundred metersacross as a maximum and ll. GeomorphicCharacteristics lessthan a meter acrossas a minimum. lll. InternalFramework debris-avalanchematrix A debris-avalanchematrix is a mix- lV. Frequencyand Magnitude ture of small volcanicclasts derived from variousparts V. Eruption Processes of the source volcano. This faciesis massive,poorly Vl. Flow and EmplacementProcesses sorted,and made of fragmentsof volcaniclasticforma- Vll. Examples tions and occasionallyof fragments of paleosolsand Vlll. Conclusions plants. hummocksCharacteristic topographic fearures for debris avalanchedeposits. The shapeof hummocksis variable and irregular. No overall trend in the alignment of hum- mocksis found. GLoSSARY jigsawcracks Jigsaw cracks are characteristicjoint patterns within a debris-avalancheblock. Jigsaw cracksare typi- cally more irregular than the cooling joints of massive amphitheaterAn arm-chair-shapedlandscape formed at igneousrocks. The joint planesusually remain closed, the sourceof a sectorcollapse. The depth, width, and but many of them open wide due to deformation during height of an amphithearer are variable. Amphitheaters the transport of the debrisavalanche. associatedwith a major debris avalancheat composite sector collapseA destructivevolcanic process volcanoesmay enclosethe summit vent. during the growth history of a volcano.Debris avalanchedeposits debrisavalanche The product of a large-scalecollapse of are the productsof sectorcollapses. a sectorof a volcanicedifice under water-undersaturated conditions.The depositis characterizedby two deposi- tional facies,"block" and "matrix." An amphitheaterat the sourceand hummoclg, topography on the surfaceof the deposit are characteristicropographic features of a SECTOR COLLAPSEof a volcanicedifice pro- debris avalanche. ducesa debrisavalanche. A debrisavalanche is debris-avalancheblock A fracturedand deformedpiece of triggered typically by intrusion of new magma, a phre- the source volcano included within a debris avalanche atic explosion, or an earthquake.
    [Show full text]