2017 June;47(2):75-81.) Introduction: Important Developments in the Diagnosis of Scuba Diving Fatalities Have Been Made Thanks to Forensic Imaging Tool Improvements

Total Page:16

File Type:pdf, Size:1020Kb

2017 June;47(2):75-81.) Introduction: Important Developments in the Diagnosis of Scuba Diving Fatalities Have Been Made Thanks to Forensic Imaging Tool Improvements Diving and Hyperbaric Medicine The Journal of the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society Volume 47 No. 2 June 2017 Oxygen explosion at a remote dive site Post-mortem cardiac gas analysis: can it help diagnosis? Otology 101: diving problems and their management Decompression illness: no clear consensus in Singapore HBO and ischaemia-reperfusion injury: a paradox Transcutaneous oximetry: normal values in healthy adults Hospital coding of HBOT: not fit for purpose Print Post Approved PP 100007612 ISSN 1833-3516, ABN 29 299 823 713 Diving and Hyperbaric Medicine Volume 47 No. 2 June 2017 PURPOSES OF THE SOCIETIES To promote and facilitate the study of all aspects of underwater and hyperbaric medicine To provide information on underwater and hyperbaric medicine To publish a journal and to convene members of each Society annually at a scientific conference SOUTH PACIFIC UNDERWATER EUROPEAN UNDERWATER AND MEDICINE SOCIETY BAROMEDICAL SOCIETY OFFICE HOLDERS OFFICE HOLDERS President President David Smart <[email protected]> Jacek Kot <[email protected]> Past President Vice President Michael Bennett <[email protected]> Ole Hyldegaard <[email protected]> Secretary Immediate Past President Douglas Falconer <[email protected]> Costantino Balestra <[email protected]> Treasurer Past President Sarah Lockley <[email protected]> Peter Germonpré <[email protected]> Education Officer Honorary Secretary David Wilkinson <[email protected]> Peter Germonpré <[email protected]> Chairman ANZHMG Member-at-Large 2016 John Orton <[email protected]> Bengusu Oroglu <[email protected]> Committee Members Member-at-Large 2015 Jen Coleman <[email protected]> Karin Hasmiller <[email protected]> Tamara Ford <[email protected]> Member-at-Large 2014 Ian Gawthrope <[email protected]> Robert van Hulst <[email protected]> Cathy Meehan <[email protected]> Liaison Officer Peter Smith <[email protected]> Phil Bryson <[email protected]> Webmaster Joel Hissink <[email protected]> ADMINISTRATION ADMINISTRATION Honorary Treasurer and Membership Secretary Membership Kathleen Pye <[email protected]> Steve Goble <[email protected]> MEMBERSHIP MEMBERSHIP For further information on EUBS and to complete a membership For further information on SPUMS and to complete a membership application, go to the Society’s website: <www.eubs.org> application, go to the Society’s website: <www.spums.org.au> The official address for EUBS is: The official address for SPUMS is: Kathleen Pye c/o Australian and New Zealand College of Anaesthetists, Chantrey, Hillside Road 630 St Kilda Road, Melbourne, Victoria 3004, Australia Stromness, Orkney KW16 3HR SPUMS is incorporated in Victoria A0020660B EUBS is a UK Registered Charity No. 264970 DIVING AND HYPERBARIC MEDICINE <www.dhmjournal.com> Editor: Editorial Board: Michael Davis <[email protected]> Michael Bennett, Australia PO Box 35 David Doolette, USA Tai Tapu 7645 Christopher Edge, United Kingdom New Zealand Ingrid Eftedal, Norway Phone: +64-(0)3-329-6857 Peter Germonpré, Belgium European (Deputy) Editor: Jane Heyworth, Australia Lesley Blogg <[email protected]> Jacek Kot, Poland Simon Mitchell, New Zealand Editorial Assistant: Claus-Martin Muth, Germany Nicky Telles <[email protected]> Neal Pollock, Canada Journal distribution: Monica Rocco, Italy Steve Goble <[email protected]> Martin Sayer, United Kingdom Erika Schagatay, Sweden Journal submissions: David Smart, Australia Submissions should be made at http://www.manuscriptmanager.com/dhm Robert van Hulst, The Netherlands Diving and Hyperbaric Medicine is published jointly by the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society (ISSN 1833-3516, ABN 29 299 823 713) Diving and Hyperbaric Medicine Volume 47 No. 2 June 2017 73 ExCom has been assisted by Steve Goble, SPUMS The Presidents’ pages Administrator who has weathered the many changes resulting from the new website. Steve has again assisted David Smart, President SPUMS with and contributed a paper to the 2017 ASM. SPUMS website development has been managed by Nicky Telles, The Annual General Meeting (AGM) this year completes a who has been our operational expert and linkage with the three-year term in my role as SPUMS President. I have been IT groups, working with Joel Hissink, Webmaster. Peter privileged to lead our society supported by a very motivated Smith, Treasurer, has been intensively involved with most Executive committee (ExCom). 2017 will be our first processes. Peter has played a key strategic financial role, general election since adopting our new purposes and rules producing reports that provide an accurate picture of both in 2014. ExCom positions up for election are: President, the SPUMS and Journal finances. Secretary, Treasurer, and five General Committee Members. There are five non-elected executive members: Immediate SPUMS finances are healthy, but we should not be Past President, Editor of Diving and Hyperbaric Medicine complacent. Costs have risen faster than our income base. (DHM), Education Officer, ANZHMG Subcommittee Last year produced a significant trading deficit, requiring Chair and Webmaster. The Journal Editor is appointed as a drawing upon our reserves. More than half of the loss was separate joint process by SPUMS and EUBS. The Education from Website investment, but moving to a new electronic Officer, ANZHMG Chair and Webmaster will be appointed, format also has increased recurrent costs (servers, hosts, following expressions of interest, after the AGM. financial linkages and security). Journal costs are up significantly, as are our administrative expenses. SPUMS Recruitment of a future Editor commenced December ExCom has a number of strategies in place to reduce costs. 2016. SPUMS and EUBS are currently working to achieve We also expect that the investment in the website will reduce a smooth transition process. Mike Davis has indicated his costs as manual processes are automated. intention to retire at the end of 2018. We hope to move to e-journal publication commencing 2018. I offer my We also need to increase our income. There will be a modest personal thanks to Mike for his outstanding contribution to increase in subscriptions, and a membership recruitment our Society, academically via the Journal, and to diving and drive. SPUMS membership numbers have plateaued at hyperbaric medicine in general. around 440. Everyone is called on to assist with recruitment of more members. All members would know a colleague Over the last three years the ExCom has delivered: who dives or has some medical involvement with divers. • New Purposes and Rules 2014; One idea for increasing membership is to “recruit a friend”. • A Journal Governance Committee for DHM; Our initial target is 500 members. A downloadable, one-page • Three successful Annual Scientific Meetings; flyer about SPUMS is available on the SPUMS website to • Movement of SPUMS banking from St George to ANZ; pass on to potential members. • Identifying the cost structure of DHM for accurate budgeting; Following the SPUMS ExCom elections, ExCom General • Investigation and reporting of a future e-Journal; Members will each have specific roles to assist corporate • Complete rebuild of the SPUMS website; continuity: assistant treasurer, recruitment and marketing, • Subscriptions and banking linkages to website; ASM planning, national committee representation, the • Revision of membership processes; Tricontinental scientific meeting, and special projects. • Rationalisation of SPUMS membership database; • Updated Diving Doctors List; I wish to thank SPUMS members for your continued support • Linkages to the SPUMS ASM; of SPUMS. Please tell your medical colleagues about the • SPUMS history and archives section (in development); benefits of membership and encourage them to join! • Processes for SPUMS position statements; • SPUMS terms and conditions of membership; Key words • SPUMS governance and other essential policies; Medical society; General interest • SPUMS ExCom members (Bennett, Mitchell, Smart and Wilkinson) have helped to complete the rebuilding of the ANZCA DHM training for launch in July 2017 as a Front page photo by Dr Martin Sayer shows Dr Neal Diploma of Advanced Diving and Hyperbaric Medicine. Pollock holding a rebreather in the type of small dive boat used in Chuuk, Micronesia and on which the rebreather The SPUMS DHM Diploma is integrated with the ANZCA explosion reported in this issue occurred. DipAdvDHM. The new post-fellowship training in DHM will produce world standard graduates. 74 Diving and Hyperbaric Medicine Volume 47 No. 2 June 2017 Jacek Kot, President, EUBS sets standards of medical care in professional diving as well as education in diving medicine, mostly related to Europe is one, but Europeans are many … in most cases, professional diving. An additional role is in the accreditation the two Presidents address our messages to our respective and certification of courses in this field. Society. This time, I would like to reach SPUMS members, who share the same enthusiasm and dedication in jointly The Diving Medical Advisory Committee (DMAC) is an publishing this Journal but have different organisational independent body, comprising of diving medical specialists systems. The paper on clinical indications for hyperbaric from across Northern Europe, that seeks to provide advice oxygen treatment (HBOT),
Recommended publications
  • Mansfield, NG18 2AD to the Editor: Dear Sir, VERTIGO in DIVERS Thank You for Asking for My Comments on Noel Roydhouse's Letter Which I Have Read with Interest
    Br J Sports Med: first published as 10.1136/bjsm.17.3.210 on 1 September 1983. Downloaded from 210 CORRESPONDENCE 14 Woodhouse Road, Mansfield, NG18 2AD To the Editor: Dear Sir, VERTIGO IN DIVERS Thank you for asking for my comments on Noel Roydhouse's letter which I have read with interest. He is technically correct in stating that vertigo is not inevitable when the tympanic membrane ruptures. Vertigo is not dependent on the size of perforation that is sustained, but is dependent on the rate of ingress of cold water into the tympanic cavity. The caloric effect produced by rapid ingress of water is entirely dependent on the temperature difference between the water that has entered the tympanic cavity and body temperature. Once the water temperature reaches approximate body temperature then the caloric effect ceases as does the vertigo. As ENT surgeons we use this caloric phenomenon for testing labyrinthine function (vestibular function); and under test conditions we use water at 300C and 440C, in ears with intact tympanic membranes, in order to induce a vertigo. If an article were to be directed at "diving doctors" I think that it would be fair comment for it to be stated that a vertigo sustained on descent should be assumed to be due to a tympanic membrane rupture with rapid ingress of water, until proven otherwise, by inspection of the ear; if the tympanic membrane is found to be intact, then a diagnosis of perilymph fistula must be made, which will only be proved or disproved by performing an exploratory tympanotomy.
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Hypothermia and Respiratory Heat Loss While Scuba Diving
    HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat.
    [Show full text]
  • Chemical Composition and Product Quality Control of Turmeric
    Stephen F. Austin State University SFA ScholarWorks Faculty Publications Agriculture 2011 Chemical composition and product quality control of turmeric (Curcuma longa L.) Shiyou Li Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Wei Yuan Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Guangrui Deng Ping Wang Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Peiying Yang See next page for additional authors Follow this and additional works at: http://scholarworks.sfasu.edu/agriculture_facultypubs Part of the Natural Products Chemistry and Pharmacognosy Commons, and the Pharmaceutical Preparations Commons Tell us how this article helped you. Recommended Citation Li, Shiyou; Yuan, Wei; Deng, Guangrui; Wang, Ping; Yang, Peiying; and Aggarwal, Bharat, "Chemical composition and product quality control of turmeric (Curcuma longa L.)" (2011). Faculty Publications. Paper 1. http://scholarworks.sfasu.edu/agriculture_facultypubs/1 This Article is brought to you for free and open access by the Agriculture at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors Shiyou Li, Wei Yuan, Guangrui Deng, Ping Wang, Peiying Yang, and Bharat Aggarwal This article is available at SFA ScholarWorks: http://scholarworks.sfasu.edu/agriculture_facultypubs/1 28 Pharmaceutical Crops, 2011, 2, 28-54 Open Access Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.) ,1 1 1 1 2 3 Shiyou Li* , Wei Yuan , Guangrui Deng , Ping Wang , Peiying Yang and Bharat B. Aggarwal 1National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F.
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • THE PHYSICIAN's GUIDE to DIVING MEDICINE the PHYSICIAN's GUIDE to DIVING MEDICINE Tt",,.,,,,., , ••••••••••• ,
    THE PHYSICIAN'S GUIDE TO DIVING MEDICINE THE PHYSICIAN'S GUIDE TO DIVING MEDICINE tt",,.,,,,., , ••••••••••• , ......... ,.", •••••••••••••••••••••••• ,. ••. ' ••••••••••• " .............. .. Edited by Charles W. Shilling Catherine B. Carlston and Rosemary A. Mathias Undersea Medical Society Bethesda, Maryland PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: The Physician's guide to diving medicine. Includes bibliographies and index. 1. Submarine medicine. 2. Diving, Submarine-Physiological aspects. I. Shilling, Charles W. (Charles Wesley) II. Carlston, Catherine B. III. Mathias, Rosemary A. IV. Undersea Medical Society. [DNLM: 1. Diving. 2. Submarine Medicine. WD 650 P577] RC1005.P49 1984 616.9'8022 84-14817 ISBN-13: 978-1-4612-9663-8 e-ISBN-13: 978-1-4613-2671-7 DOl: 10.1007/978-1-4613-2671-7 This limited facsimile edition has been issued for the purpose of keeping this title available to the scientific community. 10987654 ©1984 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Contributors The contributors who authored this book are listed alphabetically below. Their names also appear in the text following contributed chapters or sections. N. R. Anthonisen. M.D .. Ph.D. Professor of Medicine University of Manitoba Winnipeg. Manitoba. Canada Arthur J. Bachrach. Ph.D. Director. Environmental Stress Program Naval Medical Research Institute Bethesda. Maryland C. Gresham Bayne.
    [Show full text]
  • Diving and Hyperbaric Medicine
    Diving and Hyperbaric Medicine 7KH-RXUQDORIWKH6RXWK3DFL¿F8QGHUZDWHU0HGLFLQH6RFLHW\ ,QFRUSRUDWHGLQ9LFWRULD $% ISSN 1833 - 3516 Volume 37 No. 4 ABN 29 299 823 713 December 2007 Diving expeditions: from Antarctica to the Tropics Diving deaths in New Zealand Epilepsy and diving – time for a change? Mechanical ventilation of patients at pressure Print Post Approved PP 331758/0015 9^k^c\VcY=neZgWVg^XBZY^X^cZKdajbZ(,Cd#)9ZXZbWZg'%%, PURPOSES OF THE SOCIETY IdegdbdiZVcY[VX^a^iViZi]ZhijYnd[VaaVheZXihd[jcYZglViZgVcY]neZgWVg^XbZY^X^cZ Idegdk^YZ^c[dgbVi^dcdcjcYZglViZgVcY]neZgWVg^XbZY^X^cZ IdejWa^h]V_djgcVa IdXdckZcZbZbWZghd[i]ZHdX^ZinVccjVaanViVhX^Zci^ÄXXdc[ZgZcXZ OFFICE HOLDERS EgZh^YZci 9g8]g^h6Xdii (%EVg`6kZcjZ!GdhhancEVg` :çbV^a1XVXdii5deijhcZi#Xdb#Vj3 Hdji]6jhigVa^V*%,' EVhiçEgZh^YZci 9gGdWncLVa`Zg &'7VggVaa^ZgHigZZi!<g^[Äi] :çbV^a1GdWnc#LVa`Zg5YZ[ZcXZ#\dk#Vj3 68I'+%( HZXgZiVgn 9gHVgV]H]Vg`Zn E#D#7DM&%*!CVggVWZZc :çbV^a1hejbhhZXgZiVgn5\bV^a#Xdb3 CZlHdji]LVaZh'&%& IgZVhjgZg 9g<jnL^aa^Vbh E#D#7dm&.%!GZY=^aaHdji] :çbV^a1hejbh5[VhibV^a#cZi3 K^Xidg^V(.(, :Y^idg 6hhdX#Egd[#B^`Z9Vk^h 8$d=neZgWVg^XBZY^X^cZJc^i :çbV^a1hejbh_5XY]W#\dki#co3 8]g^hiX]jgX]=dhe^iVa!Eg^kViZ7V\),&%!8]g^hiX]jgX]!CO :YjXVi^dcD[ÄXZg 9g;^dcVH]Vge ').XC^X]dahdcGdVY!H]ZcidcEVg` :çbV^a1h]Vge^Z[5YdXidgh#dg\#j`3 LZhiZgc6jhigVa^V+%%- EjWa^XD[ÄXZg 9gKVcZhhV=VaaZg E#D#7dm-%'(!8Vggjb9dlch :çbV^a1kVcZhhV#]VaaZg5XYbX#Xdb#Vj3 K^Xidg^V('%& 8]V^gbVc6CO=B< 9g9Vk^YHbVgi 9ZeVgibZcid[9^k^c\VcY=neZgWVg^XBZY^X^cZ :çbV^a1YVk^Y#hbVgi5Y]]h#iVh#\dk#Vj3 GdnVa=dWVgi=dhe^iVa!=dWVgi!IVhbVc^V,%%% LZWbVhiZg
    [Show full text]
  • Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by Lcol a Grodecki Diving Physics Physics
    Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by LCol A Grodecki Diving Physics Physics • Air ~78% N2, ~21% O2, ~0.03% CO2 Atmospheric pressure Atmospheric Pressure Absolute Pressure Hydrostatic/ gauge Pressure Hydrostatic/ Gauge Pressure Conversions • Hydrostatic/ gauge pressure (P) = • 1 bar = 101 KPa = 0.987 atm = ~1 atm for every 10 msw/33fsw ~14.5 psi • Modification needed if diving at • 10 msw = 1 bar = 0.987 atm altitude • 33.07 fsw = 1 atm = 1.013 bar • Atmospheric P (1 atm at 0msw) • Absolute P (ata)= gauge P +1 atm • Absolute P = gauge P + • °F = (9/5 x °C) +32 atmospheric P • °C= 5/9 (°F – 32) • Water virtually incompressible – density remains ~same regardless • °R (rankine) = °F + 460 **absolute depth/pressure • K (Kelvin) = °C + 273 **absolute • Density salt water 1027 kg/m3 • Density fresh water 1000kg/m3 • Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water) Laws & Principles • All calculations require absolute units • Henry’s Law: (K, °R, ATA) • The amount of gas that will dissolve in a liquid is almost directly proportional to • Charles’ Law V1/T1 = V2/T2 the partial press of that gas, & inversely proportional to absolute temp • Guy-Lussac’s Law P1/T1 = P2/T2 • Partial Pressure (pp) – pressure • Boyle’s Law P1V1= P2V2 contributed by a single gas in a mix • General Gas Law (P1V1)/ T1 = (P2V2)/ T2 • To determine the partial pressure of a gas at any depth, we multiply the press (ata) • Archimedes' Principle x %of that gas Henry’s Law • Any object immersed in liquid is buoyed
    [Show full text]
  • Training Objectives for a Diving Medical Physician
    The Diving Medical Advisory Committee Training Objectives for a Diving Medicine Physician This guidance includes all the training objectives agreed by the Diving Medical Advisory Committee, the European Diving Technology Committee and the European Committee for Hyperbaric Medicine in 2011. Rev 1 - 2013 INTRODUCTION The purpose of this document is to define more closely the training objectives in diving physiology and medicine that need to be met by doctors already fully accredited or board-certified in a clinical speciality to national standards. It is based on topic headings that were originally prepared for a working group of European Diving Technology Committee (EDTC) and the European Committee of Hyperbaric Medicine (ECHM) as a guide for diving medicine some 20 years ago by J.Desola (Spain), T.Nome (Norway) & D.H.Elliott (U.K.). The training now required for medical examiners of working divers and for specialist diving medicine physicians was based on a EDTC/ECHM standard 1999 and subsequently has been enhanced by the Diving Medical Advisory Committee (DMAC), revised and agreed in principle by DMAC, EDTC and ECHM in 2010 and then ratified by EDTC and ECHM in 2011. The requirements now relate to an assessment of competence, the need for some training in occupational medicine, the need for maintenance of those skills by individual ‘refresher training’. Formal recognition of all this includes the need to involve a national authority for medical education. These objectives have been applied internationally to doctors who provide medical support to working divers. (Most recreational instructors and dive guides are, by their employment, working divers and so the guidance includes the relevant aspects of recreational diving.
    [Show full text]
  • Eustachian Tube Catheterization. J Otolaryngol ENT Res
    Journal of Otolaryngology-ENT Research Editorial Open Access Eustachian tube catheterization Volume 3 Issue 2 - 2015 Hee-Young Kim Introduction Otorhinolaryngology, Kim ENT clinic, Republic of Korea Although Eustachian tube obstruction (ETO) as one of the principal Correspondence: Hee-Young Kim, Otorhinolaryngology, Kim causes of ‘hearing loss’, and/or ‘ear fullness’, and/or ‘tinnitus’, and/ ENT Clinic, 2nd fl. 119, Jangseungbaegi-ro, Dongjak-gu, Seoul, 06935, Republic of Korea, Tel +82-02-855-7541, or ‘headache (including otalgia)’, and/or ‘vertigo’, has already been Email recognized by many well-respected senior doctors for a long time, it has still received only scant attention both in the literature and in Received: September 02, 2015 | Published: September 14, practice.1,2 2015 Pressure differences between the middle ear and the atmosphere cause temporary conductive hearing loss by decreased motion of the tympanic membrane and ossicles of the ear.3 This point includes clue for explaining the mechanism of tinnitus due to Eustachian tube obstruction.1 Improvement of tinnitus after Eustachian tube catheterization, can mean that the tinnitus is from the hypersensitivity of cochlear nucleus following decrease of afferent nerve stimuli owing to air-bone gap.1,4 The middle ear is very much like a specialized paranasal sinus, with normal balance as maintained by the labyrinthine mechanism.7 called the tympanic cavity; it, like the paranasal sinuses, is a hollow There are many other conditions which may cause vertigo, but since mucosa-lined cavity in the skull that is ventilated through the nose.5 Eustachian tube obstruction is one of the most obvious, and also the Tympanic cavity and mastoid cavity are named on the basis of most easily corrected, every patient with symptoms of vertigo, and/or anatomy.
    [Show full text]
  • RCN DIVING BRANCH HISTORY – Part 7C by Robert Larsen 2014
    RCN DIVING BRANCH HISTORY – Part 7C By Robert Larsen 2014 Robert “Red” Larsen wrote that this is a continuation from Part 7B, identifying some main topics and my knowledge of how we used, developed , or used the particular subject. Diving Equipment – SCUBA or CABA(Compressed Air Breathing Apparatus) On the West Coast in 1954, we were introduced to CABA during our initial course. When I look back on it, there did not seem to be a great deal of knowledge from out Instructor’s regarding this breathing apparatus. We referred to the system as an “Aqua Lung”. The breathing regulators had a “Canada Liquid Air” nameplate on them, plus a Serial Number. I just learned via the internet why these were labelled as such – in 1947 Emile Gagnan, co‐inventor with Jacques Cousteau of the Aqua Lung, emigrated to Montreal, Quebec, and worked at Canada Liquid Air Company, developing more regulators, which were the old double hose type. They apparently were a single stage regulator, reducing the tank supply pressure from 1800/2000 PSI to the Diver’s over‐bottom pressure, in one single control stage. You probably wonder why I would remember about the serial numbers? Well, these regulators took a mighty strong set of lungs to be able to draw in your air supply – compared to our more modern equipment, and some of these were much harder than others. Also, on the surface you could identify what Serial Number the Diver was using, by the sound of the exhaust bubbles! Number “1101” was always able to be identified in this manner(Jim Balmforth and I were discussing this feature recently when I travelled out to the West Coast).
    [Show full text]
  • K Robinson, M Byers. Diving Medicine
    J R Army Med Corps 2005; 151: 256-263 J R Army Med Corps: first published as 10.1136/jramc-151-04-07 on 1 December 2005. Downloaded from Diving Medicine K Robinson, M Byers with diving. This article aims to review the physics and physiology of diving, discuss the common medical conditions that occur whilst diving, and consider the current thinking in relation to aetiol- ogy and treatment. A Brief History of Diving Breath-hold diving has probably been around from before written history. Divers were reportedly used in the Trojan Wars (1194-1184 BC) to disrupt the enemy navies. Aristotle described ruptured tympan- ic membranes and ear infections in sponge divers, and Marco Polo wrote of pearl divers reaching depths of 27 metres. Alexander the Great is supposed to have made a dive in a primitive diving bell, Roger Bacon described men walking on the seabed in 1240, and in 1535 Guglielmo de Lorena developed the first true diving bell (3). In 1774 Freminet used a bellows to deliv- er air from the surface to a diver and Siebe Introduction developed the diving suit in 1819 (3). This It could be argued that diving is the most consisted of a copper helmet and jacket, extreme sport of all. Survival in such a which was modified in 1839 to resemble the hostile underwater environment is waterproof suit recognised and in regular use http://militaryhealth.bmj.com/ dependent on sophisticated breathing to the present day. apparatus and an understanding of the Self-contained underwater breathing inherent risks. Diving incidents are well apparatus (SCUBA) was also developed in publicised, not least because of the the 19th century and in 1943 Jacques severe injuries that ensue, but remain an Cousteau and Emile Gagnan demonstrated uncommon occurrence.
    [Show full text]