The Development of Hyperbaric and Diving Medicine in Singapore Chng J, Low C T E, Kang W L

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Hyperbaric and Diving Medicine in Singapore Chng J, Low C T E, Kang W L Review Article Singapore Med J 2011; 52(12) : 901 The development of hyperbaric and diving medicine in Singapore Chng J, Low C T E, Kang W L ABSTRACT HBOT has had a long history that began when the Hyperbaric oxygen therapy is a noninvasive first hyperbaric treatment chamber or ‘domicilium’ therapy used in the treatment of diving-related was constructed in 1662 by a British clergyman named medical illnesses. It is an important adjunct in the Henshaw, who utilised it to treat a multitude of medical management of a variety of medical conditions. conditions.(3) Since then, there have been many reports of The Republic of Singapore Navy Medical Service the beneficial effects of increased pressure, and by 1877, (NMS) is the main driver of the development of chambers were used widely for many conditions.(4) In 1879, hyperbaric and diving medicine in Singapore. the use of hyperbaric therapy to prolong safe anaesthesia The practice of hyperbaric medicine has during surgery was realised.(5) In the early 1900s, the use of inherent risks, and unregulated application of HBOT to treat medical problems became more prevalent. this therapy may do more harm than good. NMS The late 1950s and early 1960s are believed by many to be and Singapore General Hospital (SGH) signed the birth of modern-day hyperbaric medicine. One large a Memorandum of Understanding to combine contribution was made by Dr I Boerema. He conceived NMS’s experience with the clinical expertise the idea of ‘drenching’ tissues with oxygen by increasing of SGH to provide holistic care for diving and the ambient pressure surrounding the patient. The ensuing clinical hyperbaric treatment patients. This experiments, where fatally anaemic pigs were successfully collaboration would increase the profile of treated with volume expansion and pressurised this clinical specialty in Singapore, and help to hyperoxygenation, were so promising that he had a large establish safe clinical practice guidelines, training operating-room chamber built at the Wilhelmina Gasthuis, and accreditation requirements for diving and the academic hospital of the University of Amsterdam. hyperbaric medicine practitioners in Singapore, There, he conducted surgical operations under pressure Navy Medical thus ensuring that the practice of bona fide Service, for a variety of conditions, including surgical correction Republic of hyperbaric medicine is safeguarded and patient of transposition of the great vessels, tetralogy of Fallot and Singapore Navy, 126 Tanah Merah care is not compromised. pulmonary stenosis.(6) Coast Road, Singapore 498822 In the 1970s, with the use of HBOT producing Keywords: compressed air works, diving and seemingly dramatic results in potentiating the effects of Chng J, MBBS, DFD Head, Hyperbaric hyperbaric medicine, hyperbaric oxygen therapy, radiotherapy,(7) prolonging circulatory arrest time during Medicine Section Republic of Singapore Navy Medical Service, cardiac surgery and treating anaerobic infections(8) and Kang WL, MBBS, Singapore General Hospital Hyperbaric and (9) MRCSE, FAMS carbon monoxide poisoning, researchers were eagerly Chief of Medical Corp Diving Medicine Centre seeking other uses for HBOT. Patients with a variety of Strategic Human Singapore Med J 2011; 52(12): 901-905 other chronic conditions were treated in chambers, often Resource/ Office of Academic without much scientific rationale. Patients suffering from Medicine, INTRODUCTION emphysema, stroke, senility, arthritis and other debilitating Singapore Health Services, Hyperbaric oxygen therapy (HBOT) is a noninvasive conditions that had not responded to conventional therapy 31 Third Hospital Ave, #03-03, therapy used in the treatment of diving-related medical were treated in the hope that some change might be noted. Bowyer Blk C, Singapore 168751 illnesses, and is an important adjunct in the management Unfortunately, many of these experiments were poorly of a variety of medical conditions such as poorly healing controlled and ‘good results’ were usually reported Low CTE, MBBS, FRCA, MPH wounds and carbon monoxide poisoning. HBOT is defined anecdotally. Meanwhile, the development of improved Group Director and Visiting Consultant, as a treatment in which a patient intermittently breathes cardiopulmonary bypass equipment had progressed, and HDMC, SGH 100% oxygen while the hyperbaric chamber is pressurised with the advent of better heart-lung machines and deep Correspondence to: to a pressure greater than that at sea level.(1) This increases hypothermia, the need for performing surgery under Dr Chng Jeremiah Tel: (65) 9172 8590 the absorption of oxygen by the tissues, enhances hyperbaric conditions decreased dramatically. By the Fax: (65) 6796 4198 Email: chngjeremiah antimicrobial activity, reduces tissue hypoxia and promotes early 1970s, early enthusiasm and good quality research @hotmail.com angiogenesis, thus accelerating the healing process.(2) had declined. Singapore Med J 2011; 52(12) : 902 Just as important as the lack of scientific progress in fishermen divers (some of whom were foreigners) who the research fields were the problems in the regulatory developed severe decompression illnesses as a result area. There was no general textbook available for of diving with only rudimentary diving knowledge and hyperbaric treatments and no distinction was made techniques. Knowledge and experience in the practice of between conditions for which good evidence of the diving and hyperbaric medicine was thus slowly built up efficacy of hyperbaric oxygen existed and those for within the Navy in the 1970s. which such evidence was sparse. To help establish such guidelines, a panel of Undersea Medical Society members THE COMPRESSED AIRWORKS ERA in the clinical hyperbaric field was formed. However, In 1982, the Singapore Government announced its that panel met informally only once, for a few hours, decision to build the Mass Rapid Transit (MRT) System, and issued some broad recommendations that were only and the RSN was approached in August that year to slowly implemented over the ensuing years. By 1976, a provide the overall medical support for the project.(11) number of hyperbaric clinicians in the Undersea Medical RSN’s Diving and Hyperbaric Medical Centre (DHMC) Society had become appalled by the indiscriminate use of was the only centre with the necessary experience and hyperbaric oxygen. These concerns led the society to form facilities to perform pre-employment selection and a Committee on HBOT in the mid 1970s. This committee is treatment of injured compressed air workers. In the now the international authority on HBOT, and continuously initial phase, DHMC helped the then-Ministry of Labour reviews research and clinical data on the use of hyperbaric to draft the regulations that would govern the conduct oxygen treatment so as to provide evidence-based of Compressed Air Works (CAW). DHMC was heavily recommendations on the indications, clinical efficacy and involved with the screening of all the potential compressed cost effectiveness of HBOT. In 1986, the members at the air workers, many of whom were from other nationalities. Undersea Medical Society annual scientific meeting voted CAW was used by six contractors from September to change the name of the Undersea Medical Society to 1984 to April 1987 for the construction of 11 km the Undersea and Hyperbaric Medical Society (UHMS), of the total 20 km underground tunnels. to embrace both the diving and clinical hyperbaric fields. Over the three-year period, a total of 2,932 workers Since then, the UHMS has become widely recognised as were screened for fitness to work in compressed air the international body regulating the practice of hyperbaric environment, of which 1,737 or 72.6% were found to be and diving medicine. fit to work in the project. 188,538 decompressions were carried out during the entire project, and from these, only HYPERBARIC MEDICINE IN SINGAPORE 164 cases of decompression illness were seen. 160 of these The history of diving medicine in Singapore can be were classified as Type 1 or mild decompression sickness, traced back to the 1960s when the Royal Malaysian while the remaining four were considered to be the more Navy (RMN) Headquarters was based in Woodlands, severe Type 2. This gave an overall incidence of 0.087%, Singapore. A multiplace recompression chamber, which which was quite favourable when compared to other CAW was initially used by the British Royal Navy before they data available at that time. The presence of onsite chambers left Singapore, was used as part of the dive training of allowed for early and often immediate treatment, which RMN divers. This carried on until the 1970s.(10) Clinical resulted in 100% recovery for all injured workers and no hyperbaric medicine in Singapore started when the disability. Throughout this period, RSN provided continual Orthopaedic Department in Singapore General Hospital onsite consultancy and medical services for Singapore’s (SGH) obtained a monoplace chamber, the ‘Normalair MRT project, thus making significant contributions to the Garette’, for HBOT. However, the usage was low and few most important public transport project of that time, while physicians understood the basis for HBOT at that time. cementing her position as the subject matter expert in This monoplace chamber was subsequently handed over hyperbaric and diving medicine. to the Republic of Singapore Navy (RSN) to support the fledging development of hyperbaric, diving and CLINICAL HYPERBARIC MEDICINE ERA submarine medicine in the Navy
Recommended publications
  • Hypothermia and Respiratory Heat Loss While Scuba Diving
    HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat.
    [Show full text]
  • THE PHYSICIAN's GUIDE to DIVING MEDICINE the PHYSICIAN's GUIDE to DIVING MEDICINE Tt",,.,,,,., , ••••••••••• ,
    THE PHYSICIAN'S GUIDE TO DIVING MEDICINE THE PHYSICIAN'S GUIDE TO DIVING MEDICINE tt",,.,,,,., , ••••••••••• , ......... ,.", •••••••••••••••••••••••• ,. ••. ' ••••••••••• " .............. .. Edited by Charles W. Shilling Catherine B. Carlston and Rosemary A. Mathias Undersea Medical Society Bethesda, Maryland PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: The Physician's guide to diving medicine. Includes bibliographies and index. 1. Submarine medicine. 2. Diving, Submarine-Physiological aspects. I. Shilling, Charles W. (Charles Wesley) II. Carlston, Catherine B. III. Mathias, Rosemary A. IV. Undersea Medical Society. [DNLM: 1. Diving. 2. Submarine Medicine. WD 650 P577] RC1005.P49 1984 616.9'8022 84-14817 ISBN-13: 978-1-4612-9663-8 e-ISBN-13: 978-1-4613-2671-7 DOl: 10.1007/978-1-4613-2671-7 This limited facsimile edition has been issued for the purpose of keeping this title available to the scientific community. 10987654 ©1984 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Contributors The contributors who authored this book are listed alphabetically below. Their names also appear in the text following contributed chapters or sections. N. R. Anthonisen. M.D .. Ph.D. Professor of Medicine University of Manitoba Winnipeg. Manitoba. Canada Arthur J. Bachrach. Ph.D. Director. Environmental Stress Program Naval Medical Research Institute Bethesda. Maryland C. Gresham Bayne.
    [Show full text]
  • Diving and Hyperbaric Medicine
    Diving and Hyperbaric Medicine 7KH-RXUQDORIWKH6RXWK3DFL¿F8QGHUZDWHU0HGLFLQH6RFLHW\ ,QFRUSRUDWHGLQ9LFWRULD $% ISSN 1833 - 3516 Volume 37 No. 4 ABN 29 299 823 713 December 2007 Diving expeditions: from Antarctica to the Tropics Diving deaths in New Zealand Epilepsy and diving – time for a change? Mechanical ventilation of patients at pressure Print Post Approved PP 331758/0015 9^k^c\VcY=neZgWVg^XBZY^X^cZKdajbZ(,Cd#)9ZXZbWZg'%%, PURPOSES OF THE SOCIETY IdegdbdiZVcY[VX^a^iViZi]ZhijYnd[VaaVheZXihd[jcYZglViZgVcY]neZgWVg^XbZY^X^cZ Idegdk^YZ^c[dgbVi^dcdcjcYZglViZgVcY]neZgWVg^XbZY^X^cZ IdejWa^h]V_djgcVa IdXdckZcZbZbWZghd[i]ZHdX^ZinVccjVaanViVhX^Zci^ÄXXdc[ZgZcXZ OFFICE HOLDERS EgZh^YZci 9g8]g^h6Xdii (%EVg`6kZcjZ!GdhhancEVg` :çbV^a1XVXdii5deijhcZi#Xdb#Vj3 Hdji]6jhigVa^V*%,' EVhiçEgZh^YZci 9gGdWncLVa`Zg &'7VggVaa^ZgHigZZi!<g^[Äi] :çbV^a1GdWnc#LVa`Zg5YZ[ZcXZ#\dk#Vj3 68I'+%( HZXgZiVgn 9gHVgV]H]Vg`Zn E#D#7DM&%*!CVggVWZZc :çbV^a1hejbhhZXgZiVgn5\bV^a#Xdb3 CZlHdji]LVaZh'&%& IgZVhjgZg 9g<jnL^aa^Vbh E#D#7dm&.%!GZY=^aaHdji] :çbV^a1hejbh5[VhibV^a#cZi3 K^Xidg^V(.(, :Y^idg 6hhdX#Egd[#B^`Z9Vk^h 8$d=neZgWVg^XBZY^X^cZJc^i :çbV^a1hejbh_5XY]W#\dki#co3 8]g^hiX]jgX]=dhe^iVa!Eg^kViZ7V\),&%!8]g^hiX]jgX]!CO :YjXVi^dcD[ÄXZg 9g;^dcVH]Vge ').XC^X]dahdcGdVY!H]ZcidcEVg` :çbV^a1h]Vge^Z[5YdXidgh#dg\#j`3 LZhiZgc6jhigVa^V+%%- EjWa^XD[ÄXZg 9gKVcZhhV=VaaZg E#D#7dm-%'(!8Vggjb9dlch :çbV^a1kVcZhhV#]VaaZg5XYbX#Xdb#Vj3 K^Xidg^V('%& 8]V^gbVc6CO=B< 9g9Vk^YHbVgi 9ZeVgibZcid[9^k^c\VcY=neZgWVg^XBZY^X^cZ :çbV^a1YVk^Y#hbVgi5Y]]h#iVh#\dk#Vj3 GdnVa=dWVgi=dhe^iVa!=dWVgi!IVhbVc^V,%%% LZWbVhiZg
    [Show full text]
  • Training Objectives for a Diving Medical Physician
    The Diving Medical Advisory Committee Training Objectives for a Diving Medicine Physician This guidance includes all the training objectives agreed by the Diving Medical Advisory Committee, the European Diving Technology Committee and the European Committee for Hyperbaric Medicine in 2011. Rev 1 - 2013 INTRODUCTION The purpose of this document is to define more closely the training objectives in diving physiology and medicine that need to be met by doctors already fully accredited or board-certified in a clinical speciality to national standards. It is based on topic headings that were originally prepared for a working group of European Diving Technology Committee (EDTC) and the European Committee of Hyperbaric Medicine (ECHM) as a guide for diving medicine some 20 years ago by J.Desola (Spain), T.Nome (Norway) & D.H.Elliott (U.K.). The training now required for medical examiners of working divers and for specialist diving medicine physicians was based on a EDTC/ECHM standard 1999 and subsequently has been enhanced by the Diving Medical Advisory Committee (DMAC), revised and agreed in principle by DMAC, EDTC and ECHM in 2010 and then ratified by EDTC and ECHM in 2011. The requirements now relate to an assessment of competence, the need for some training in occupational medicine, the need for maintenance of those skills by individual ‘refresher training’. Formal recognition of all this includes the need to involve a national authority for medical education. These objectives have been applied internationally to doctors who provide medical support to working divers. (Most recreational instructors and dive guides are, by their employment, working divers and so the guidance includes the relevant aspects of recreational diving.
    [Show full text]
  • K Robinson, M Byers. Diving Medicine
    J R Army Med Corps 2005; 151: 256-263 J R Army Med Corps: first published as 10.1136/jramc-151-04-07 on 1 December 2005. Downloaded from Diving Medicine K Robinson, M Byers with diving. This article aims to review the physics and physiology of diving, discuss the common medical conditions that occur whilst diving, and consider the current thinking in relation to aetiol- ogy and treatment. A Brief History of Diving Breath-hold diving has probably been around from before written history. Divers were reportedly used in the Trojan Wars (1194-1184 BC) to disrupt the enemy navies. Aristotle described ruptured tympan- ic membranes and ear infections in sponge divers, and Marco Polo wrote of pearl divers reaching depths of 27 metres. Alexander the Great is supposed to have made a dive in a primitive diving bell, Roger Bacon described men walking on the seabed in 1240, and in 1535 Guglielmo de Lorena developed the first true diving bell (3). In 1774 Freminet used a bellows to deliv- er air from the surface to a diver and Siebe Introduction developed the diving suit in 1819 (3). This It could be argued that diving is the most consisted of a copper helmet and jacket, extreme sport of all. Survival in such a which was modified in 1839 to resemble the hostile underwater environment is waterproof suit recognised and in regular use http://militaryhealth.bmj.com/ dependent on sophisticated breathing to the present day. apparatus and an understanding of the Self-contained underwater breathing inherent risks. Diving incidents are well apparatus (SCUBA) was also developed in publicised, not least because of the the 19th century and in 1943 Jacques severe injuries that ensue, but remain an Cousteau and Emile Gagnan demonstrated uncommon occurrence.
    [Show full text]
  • Underwater Medicine
    TEMPLE UNIVERSITY COURSE REGISTRATION FORM UNDERWATER MEDICINE 2016 UNDERWATER MEDICINE 2016 A training program in diving medicine designed with special emphasis on diagnosis and treatment of diving disorders, REGISTRATION FEE: $650.00** fitness for diving and hyperbaric oxygen therapy. This $750 after Dec 30, 2015 program is certified for 25 AMA PRA category 1 credits $850 for registrants not in the UMA package through Temple University School of Medicine. The program Fee includes: Lectures and Course Materials. is offered in collaboration with the Undersea and Hyperbaric Medical Society. Enclosed is my check in the amount of $650.00 for registration. Make checks payable to Underwater Medicine Associates. presents the COURSE DESCRIPTION Return to: Medical evaluation of a diver or diving candidate demands that the physician have a knowledge of the unique physical Underwater Medicine Associates 42 nd Annual qualifications needed for this sport. In this year’s program, P.O. BOX 481 we will pay special attention to diagnosing diving disorders, Bryn Mawr, PA 19010 and will provide a combination of didactic lectures and case examples with interactive discussions to enhance learning **Course Registration Fee and Hotel Registration Deposit can related to diagnosis of diving disorders, assessment for fitness be combined on one check, or paid by credit card UNDERWATER to dive, marine injuries and toxicity and hyperbaric oxygen therapy. Upon completion of the course, participants should have a general knowledge of diving medicine and medical NAME_______________________________DEGREE______
    [Show full text]
  • Decompression Sickness (DCS) “Bends”
    SLMA Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy 2013 These guidelines are the result of a long-term collaboration between divers with experience in caring for DCS victims, doctors and diving officers of the Sri Lanka Navy with experience in administering Hyperbaric Oxygen (HBO) treatment to such victims, a doctor who is a trained SCUBA diver with knowledge of the subject and a neurophysician with experience in treating victims who have not undergone recompression therapy. Edited by Malik Fernando for the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy November 2013 Updated May 2018 Published by Sri Lanka Medical Association ‘Wijerama House’ 6, Wijerama Mawatha Colombo 7 Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services of the Sri Lanka Navy Decompression sickness (DCS), commonly called ‘bends’, is a condition seen in those who have breathed compressed air, such as SCUBA divers, for too long at too high a pressure and who have returned to atmospheric pressure too quickly. This happens when they do not follow recommended diving protocols and come up to atmospheric pressure after a prolonged period at a great depth so rapidly that there is no time for inert gases dissolved in the blood and tissues to be eliminated. The result is that bubbles of nitrogen form in the blood and tissues due to the rapid reduction of ambient pressure.
    [Show full text]
  • Diving Physics and "Fizzyology"
    Phys Diving Physics and "Fizzyology" Introduction Like all animals, human beings need oxygen in order to survive. When we breathe, we extract oxygen from the air, and use that oxygen for metabolism, which is how we convert the food we eat into useable energy to do the things that we do. One of the by-products of metabolism is carbon dioxide; whenever we exhale, we are getting rid of the carbon dioxide that our bodies produce. The main purpose of breathing, therefore, is to provide our bodies with oxygen, and rid our bodies of carbon dioxide. We humans are terrestrial (land-dwelling) mammals, and as such, our lungs are designed to breathe gas. Unlike fishes, we have no gills, so we cannot breathe water. Therefore, the first problem we must overcome to explore the underwater realm is a means to provide breathing gas. However, if this were the only barrier humans must overcome to enter the sea, we would have long-ago discovered most of the mysteries of the ocean. All we would need to remain underwater indefinitely would be a long tube going to the surface -- a huge snorkel -- through which we could breathe. Unfortunately, there is another problem we must over come when descending to the depths -- a problem with far more complex and difficult consequences. That problem is pressure. Pressure Have you ever wondered why nobody makes snorkels that are ten, or twenty, or a hundred feet long? The answer becomes obvious as soon as you try to breathe through a snorkel when your body is more than two or three feet (~1 meter) beneath the surface of the water.
    [Show full text]
  • Cognitive Effects of Hypercapnia on Immersed Working Divers Alaleh Selkirk
    Susquehanna University Scholarly Commons Psychology Faculty Publications 10-2010 Cognitive effects of hypercapnia on immersed working divers Alaleh Selkirk James F. Briggs Susquehanna University Barbara Shykoff Follow this and additional works at: http://scholarlycommons.susqu.edu/psyc_fac_pubs Part of the Psychology Commons Recommended Citation Selkirk, A., Briggs, J. F., & Shykoff, B. (2010). Cognitive effects of hypercapnia on immersed working divers (NEDU TR 10-15). Panama City, FL: Navy Experimental Diving Unit. This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Psychology Faculty Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Navy Experimental Diving Unit TA 09-01 321 Bullfinch Rd. NEDU TR 10-15 Panama City, FL 32407-7015 October 2010 COGNITIVE EFFECTS OF HYPERCAPNIA ON IMMERSED WORKING DIVERS Navy Experimental Diving Unit Authors: LT Alaleh Selkirk, PhD Distribution Statement A: Barbara Shykoff, PhD Approved for public release; James Briggs, PhD distribution is unlimited. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS Unclassified 3. DISTRIBUTION/AVAILABILITY OF REPORT 2a. SECURITY CLASSIFICATION AUTHORITY DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 2b. DECLASSIFICATION/DOWNGRADING AUTHORITY 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) NEDU Technical Report No. 10-15 6a. NAME OF PERFORMING 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION ORGANIZATION (If Applicable) Navy Experimental Diving Unit 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code) 321 Bullfinch Road, Panama City, FL 32407-7015 8a.
    [Show full text]
  • Diving and Hyperbaric Medicine
    Diving and Hyperbaric Medicine The Journal of the South Pacific Underwater Medicine Society (Incorporated in Victoria) A0020660B and the European Underwater and Baromedical Society Volume 42 No. 3 September 2012 HBOT does not improve paediatric autism Diver Emergency Service calls: 17-year Australian experience Methods of monitoring CO2 in ventilated patients compared Australasian Workshop on deep treatment tables for DCI ‘Bubble-free’ diving – do bent divers listen to advice? Diving-related fatalities in Australian waters in 2007 ISSN 1833 3516 Print Post Approved ABN 29 299 823 713 PP 331758/0015 Diving and Hyperbaric Medicine Volume 42 No. 3 September 2012 PURPOSES OF THE SOCIETIES To promote and facilitate the study of all aspects of underwater and hyperbaric medicine To provide information on underwater and hyperbaric medicine To publish a journal and to convene members of each Society annually at a scientific conference SOUTH PACIFIC UNDERWATER EUROPEAN UNDERWATER AND MEDICINE SOCIETY BAROMEDICAL SOCIETY OFFICE HOLDERS OFFICE HOLDERS President President Mike Bennett <[email protected]> Peter Germonpré <[email protected]> Past President Vice President Chris Acott <[email protected]> Costantino Balestra <[email protected]> Secretary Immediate Past President Karen Richardson <[email protected]> Alf Brubakk <[email protected]> Treasurer Past President Shirley Bowen <[email protected]> Noemi Bitterman <[email protected]> Education Officer Honorary Secretary David Smart <[email protected]>
    [Show full text]
  • EJUHM Vol.3.No.2
    Volume 3 No. 2, June 2002 ISSN: 1605–9204 European Journal of Underwater and Hyperbaric Medicine Official NEWSLETTER CONTENTS EUBS Newsletter, Volume 9 No 2, Summer 2002 Impressum & EUBS Executive Committee Overleaf Editorial 45 President’s Column 45 Annual Meeting 2002 46 Other Meetings 46 Technical Communications Ear trauma in divers SE Mawle & CA Jackson 47 World Congress of Drowning DH Elliott 51 Medical Assessment of Fitness to Dive DH Elliott 52 Book Reviews Diving and Subaquatic Medicine PHJ Mueller 50 Reprints from other Journals Sharpening the Sharpened Romberg Test C-T Lee 54 Instructions to Authors Inside Back Cover DISCLAIMER: All opinions expressed are given in good faith and in all cases represent the views of the writer and are not necessarily representative of the policy of the EUBS. EJUHM Volume 3 No. 2, June 2002 PUBLISHED quarterly by the European Underwater and BaromedicaBaromedicall Society EUBS http://www.eubs.org EDITOR Peter HJ Mueller [email protected] Speyerer Strasse 91-93, D-68163 Mannheim/Germany ASSISTANT EDITOR Hyperbaric Medicine and Clinical Applications: Till S. Mutzbauer ASSISTANT EDITOR Occupational Medicine, Compressed Air Work: Birger Neubauer ASSISTANT EDITOR Physiology and Medicine of Diving, Fitness to Dive: Kay Tetzlaff Printed in Germany by Druckerei Johannes May, D-68163 Mannheim EUBS EXECUTIVE COMMITTEE PRESIDENT TREASURER & MEMBERSHIP SECRETARY Dr. Ramiro Cali-Corleo Mrs. Angela Randell Hyperbaric Unit, St. Luke’s Hospital Benview, Prospect Terrace G’Mangia, Malta Port Elphinstone Tel.: +356-234765 Inverurie, AB51 3UN, United Kingdom Fax: +356-372484 Tel. & Fax: +44-1467-620408 e-mail: [email protected] e-mail: [email protected] VICE PRESIDENT MEMBER AT LARGE 2001 Dr.
    [Show full text]
  • Diving Physiology Sources
    Diving Physiology Sources • Joiner, J.T. (ed.). 2001. NOAA Diving Manual - Diving for Science and Technology, Fourth Edition. Best Publishing Company, Flagstaff, AZ. Objectives • After completing this training module you will be able to: – Describe the basic systems of the human body – Describe the process, mechanics, and control of respiration – Describe circulation, blood transport of oxygen and carbon dioxide, tissue gas exchange, and tissue use of oxygen Objectives • After completing this training module you will be able to: – List signs & symptoms and prevention / treatment strategies of respiratory problems associated with hypoxia, carbon dioxide toxicity, hyperventilation, shallow water blackout, carbon monoxide poisoning, excessive resistance to breathing, and lipoid pneumonia – Describe direct effects of pressure on descent associated with the ears, sinuses, lungs, and eyes Objectives • After completing this training module you will be able to: – Describe direct effects of pressure during ascent including reverse block, pneumothorax, mediastinal and subcutaneous emphysema, and arterial gas embolism – List four ways to help prevent lung overexpansion injuries Objectives • After completing this training module you will be able to: – Explain indirect effects of pressure during descent including inert gas narcosis, high pressure nervous syndrome, CNS oxygen toxicity, and whole-body oxygen toxicity – Differentiate between hypothermia and hyperthermia; listing signs & symptoms and prevention/management strategies Objectives • After
    [Show full text]