Consensus Guideline
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Urinary Problems in Decompression Sickness*
Paraplegia 23 (1985) 20-25 © 1985 International Medical Society of Paraplegia Urinary Problems in Decompression Sickness* Athanasios Dounis, M.D. and Dionisios Mitropoulos, M.D. The Naval Medical Hyperbaric Center) Piraeus Naval Hospital and Department of Urology) Athens Naval Hospital) Greece Summary The records of 25 patients with type II decompression sickness and urinary problems have been reviewed. Seventeen patients were professionals and 8 were above the age of 40. The disease appeared within the 1st hour of emergence from the water in 70% of the cases and within the first 4 hours in the remaining 30%. Nine patients were diagnosed as paraplegic and two as tetraplegic. All patients had urinary disturbances and 14 were on Foley-catheter drainage during the decompression while 11 were on intermittent catheterisation. Fifteen patients had improved urinary function after recompression) 8 had some difficulty) 2 underwent a sphincterotomy and one a transurethral prostatectomy. The low percentage of complete recovery was due to the delayed arrival at the decompression chamber. Key words: Diving; Decompression sickness; Urinary disturbances. Introduction Diving for sponge fishery is the main professional occupation of the young men in the South-East Aegean islands. Although the use of recompression has decreased the number of decompression sickness victims, patients with remaining neurological problems still present. During the last 20 years, although there is a decrease of the professional divers' accidents there is an increase of the number of patients with decompression sickness. This is due to the continuously increasing numbers of sport divers in Greece. In Greece, the field of underwater medicine is covered mainly by the Naval Medical Service. -
Motion Sickness: Definition
Clinical and physiological characteristics of cybersickness Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Human Physiology) School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle, Australia This research was supported by an Australian Government Research Training Program (RTP) Scholarship. 1 STATEMENT OF ORIGINALITY I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo. Alireza Mazloumi Gavgani 2 ACKNOWLEDGMENT OF AUTHORSHIP I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written declaration endorsed in writing by my supervisor, attesting to my contribution to the joint publication/s/scholarly work. Alireza Mazloumi Gavgani 3 STATEMENT OF COLLABORATION I hereby certify that some parts of the work embodied in this thesis have been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices. -
22575VIC Course in Basic Oxygen Administration for First Aid
22575VIC Course in Basic Oxygen Administration for First Aid This course has been accredited under Part 4.4 of the Education and Training Reform Act 2006 Version 1 Accredited for the period: 1 January 2021 to 31 December 2025 © State of Victoria (Department of Education and Training) 2021. Copyright of this material is reserved to the Crown in the right of the State of Victoria. This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Australia licence (see Creative Commons for more information). You are free use, copy and distribute to anyone in its original form as long as you attribute Department of Education and Training as the author, and you license any derivative work you make available under the same licence. Disclaimer In compiling the information contained in and accessed through this resource, the Department of Education and Training (DET) has used its best endeavours to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission or defect therein. To the extent permitted by law, DET, its employees, agents and consultants exclude all liability for any loss or damage (including indirect, special or consequential loss or damage) arising from the use of, or reliance on the information contained herein, whether caused or not by any negligent act or omission. If any law prohibits the exclusion of such liability, DET limits its liability to the extent permitted by law, for the resupply of the information. Third party sites This resource may contain links to third party websites and resources. -
Hypothermia and Respiratory Heat Loss While Scuba Diving
HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat. -
A History of Closed Circuit O2 Underwater Breathing Apparatus
Rubicon Research Repository (http://archive.rubicon-foundation.org) A HISTORY OF CLOSED CIRCUIT OXYGEN UNDEnWATER BRDA'1'HIllG AJ'PARATU'S, by , Dan Quiok Project 1/70 School of Underwater Medicine, H MAS PENGUIN, Naval P.O. Balmoral, IT S W .... 2091. May, 1970 Rubicon Research Repository (http://archive.rubicon-foundation.org) TABLE OF CONTENTS. Foreword. Page No. 1 Introduction. " 2 General History. " 3 History Il: Types of CCOUBA Used In 11 United Kingdom. " History & Types of CCOUBA Used In 46 Italy. " History & Types o:f CCOUBJl. Used In 54 Germany. " History & Types of CCOUEA Used In 67 Frr>.!1ce. " History·& Types of CeOUM Used In 76 United States of America. " Summary. " 83 References. " 89 Acknowledgements. " 91 Contributor. " 91 Alphabetical Index. " 92 Rubicon Research Repository (http://archive.rubicon-foundation.org) - 1 - FOREWORD I am very pleased to have the opportunity of introducing this history, having been responsible for the British development of the CCOt~ for special operations during World War II and afterwards. This is a unique and comprehensive summary of world wide development in this field. It is probably not realised what a vital part closed circuit breathing apparatus played in World War II. Apart from escapes from damaged and sunken submarines by means of the DSEA, and the special attacks on ships by human torpedoes and X-craft, including the mortal damage to the "Tirpitz", an important part of the invasion forces were the landing craft obstruction clearance units. These were special teams of frogmen in oxygen breathing sets who placed demolition charges on the formidable underwater obstructions along the north coast of France. -
The Use of Heliox in Treating Decompression Illness
The Diving Medical Advisory Committee DMAC, Eighth Floor, 52 Grosvenor Gardens, London SW1W 0AU, UK www.dmac-diving.org Tel: +44 (0) 20 7824 5520 [email protected] The Use of Heliox in Treating Decompression Illness DMAC 23 Rev. 1 – June 2014 Supersedes DMAC 23, which is now withdrawn There are many ways of treating decompression illness (DCI) at increased pressure. In the past 20 years, much has been published on the use of oxygen and helium/oxygen mixtures at different depths. There is, however, a paucity of carefully designed scientific studies. Most information is available from mathematical models, animal experiments and case reports. During a therapeutic compression, the use of a different inert gas from that breathed during the dive may facilitate bubble resolution. Gas diffusivity and solubility in blood and tissue is expected to play a complex role in bubble growth and shrinkage. Mathematical models, supported by some animal studies, suggest that breathing a heliox gas mixture during recompression could be beneficial for nitrogen elimination after air dives. In humans, diving to 50 msw, with air or nitrox, almost all cases of DCI can be adequately treated at 2.8 bar (18 msw), where 100% oxygen is both safe and effective. Serious neurological and vestibular DCI with only partial improvements during initial compression at 18 msw on oxygen may benefit from further recompression to 30 msw with heliox 50:50 (Comex therapeutic table 30 – CX30). There have been cases successfully treated on 50:50 heliox (CX30), on the US Navy recompression tables with 80:20 and 60:40 heliox (USN treatment table 6A) instead of air and in heliox saturation. -
Dysbarism - Barotrauma
DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA. -
Original Articles
2 Diving and Hyperbaric Medicine Volume 49 No. 1 March 2019 Original articles The impact of diving on hearing: a 10–25 year audit of New Zealand professional divers Chris Sames1, Desmond F Gorman1,2, Simon J Mitchell1,3, Lifeng Zhou4 1 Slark Hyperbaric Unit, Waitemata District Health Board, Auckland, New Zealand 2 Department of Medicine, University of Auckland, Auckland 3 Department of Anaesthesiology, University of Auckland 4 Health Funding and Outcomes, Waitemata and Auckland District Health Boards, Auckland Corresponding author: Chris Sames, Slark Hyperbaric Unit, Waitemata District Health Board, PO Box 32051, Devonport, Auckland 0744, New Zealand [email protected] Key words Audiology; Fitness to dive; Hearing loss; Medicals – diving; Occupational diving; Surveillance Abstract (Sames C, Gorman DF, Mitchell SJ, Zhou L. The impact of diving on hearing: a 10–25 year audit of New Zealand professional divers. Diving and Hyperbaric Medicine. 2019 March 31;49(1):2–8. doi: 10.28920/dhm49.1.2-8. PMID: 30856661.) Introduction: Surveillance of professional divers’ hearing is routinely undertaken on an annual basis despite lack of evidence of benefit to the diver. The aim of this study was to determine the magnitude and significance of changes in auditory function over a 10−25 year period of occupational diving with the intention of informing future health surveillance policy for professional divers. Methods: All divers with adequate audiological records spanning at least 10 years were identified from the New Zealand occupational diver database. Changes in auditory function over time were compared with internationally accepted normative values. Any significant changes were tested for correlation with diving exposure, smoking history and body mass index. -
8. Decompression Procedures Diver
TDI Standards and Procedures Part 2: TDI Diver Standards 8. Decompression Procedures Diver 8.1 Introduction This course examines the theory, methods and procedures of planned stage decompression diving. This program is designed as a stand-alone course or it may be taught in conjunction with TDI Advanced Nitrox, Advanced Wreck, or Full Cave Course. The objective of this course is to train divers how to plan and conduct a standard staged decompression dive not exceeding a maximum depth of 45 metres / 150 feet. The most common equipment requirements, equipment set-up and decompression techniques are presented. Students are permitted to utilize enriched air nitrox (EAN) mixes or oxygen for decompression provided the gas mix is within their current certification level. 8.2 Qualifications of Graduates Upon successful completion of this course, graduates may engage in decompression diving activities without direct supervision provided: 1. The diving activities approximate those of training 2. The areas of activities approximate those of training 3. Environmental conditions approximate those of training Upon successful completion of this course, graduates are qualified to enroll in: 1. TDI Advanced Nitrox Course 2. TDI Extended Range Course 3. TDI Advanced Wreck Course 4. TDI Trimix Course 8.3 Who May Teach Any active TDI Decompression Procedures Instructor may teach this course Version 0221 67 TDI Standards and Procedures Part 2: TDI Diver Standards 8.4 Student to Instructor Ratio Academic 1. Unlimited, so long as adequate facility, supplies and time are provided to ensure comprehensive and complete training of subject matter Confined Water (swimming pool-like conditions) 1. -
THE PHYSICIAN's GUIDE to DIVING MEDICINE the PHYSICIAN's GUIDE to DIVING MEDICINE Tt",,.,,,,., , ••••••••••• ,
THE PHYSICIAN'S GUIDE TO DIVING MEDICINE THE PHYSICIAN'S GUIDE TO DIVING MEDICINE tt",,.,,,,., , ••••••••••• , ......... ,.", •••••••••••••••••••••••• ,. ••. ' ••••••••••• " .............. .. Edited by Charles W. Shilling Catherine B. Carlston and Rosemary A. Mathias Undersea Medical Society Bethesda, Maryland PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: The Physician's guide to diving medicine. Includes bibliographies and index. 1. Submarine medicine. 2. Diving, Submarine-Physiological aspects. I. Shilling, Charles W. (Charles Wesley) II. Carlston, Catherine B. III. Mathias, Rosemary A. IV. Undersea Medical Society. [DNLM: 1. Diving. 2. Submarine Medicine. WD 650 P577] RC1005.P49 1984 616.9'8022 84-14817 ISBN-13: 978-1-4612-9663-8 e-ISBN-13: 978-1-4613-2671-7 DOl: 10.1007/978-1-4613-2671-7 This limited facsimile edition has been issued for the purpose of keeping this title available to the scientific community. 10987654 ©1984 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Contributors The contributors who authored this book are listed alphabetically below. Their names also appear in the text following contributed chapters or sections. N. R. Anthonisen. M.D .. Ph.D. Professor of Medicine University of Manitoba Winnipeg. Manitoba. Canada Arthur J. Bachrach. Ph.D. Director. Environmental Stress Program Naval Medical Research Institute Bethesda. Maryland C. Gresham Bayne. -
First Aid Management of Accidental Hypothermia and Cold Injuries - an Update of the Australian Resuscitation Council Guidelines
First Aid Management of Accidental Hypothermia and Cold Injuries - an update of the Australian Resuscitation Council Guidelines Dr Rowena Christiansen ARC Representative Member Chair, Australian Ski Patrol Medical Advisory Committee All images are used solely for the purposes of education and information. Image credits may be found at the end of the presentation. 1 Affiliations • Medical Educator, University of Melbourne Medical • Chair, Associate Fellows Group, School Aerospace Medical Association • Director, Mars Society Australia • Board Member and SiG member, WADEM • Chair, Australian Ski Patrol Association Medical Advisory Committee • Inaugural Treasurer, Australasian Wilderness • Honorary Medical Officer, Mt Baw Baw Ski Patrol and Expedition Medicine Society (Victoria, Australia) • Member, Space Life Sciences Sub-Committee of • Representative Member, Australian Resuscitation Council the Australasian Society for Aerospace Medicine 2 Background • Australian Resuscitation Council (“ARC”) Guideline 9.3.3 “Hypothermia: First Aid Management” was published in February 2009; • Guideline 9.3.6 “Cold Injury” was published in March 2000; • A review of these Guidelines has been undertaken by the ARC First Aid task- force based on combination of a focused literature review and expert opinion (including from Australian surf life-saving and ski patrol organisations and the International Commission for Mountain Emergency Medicine (the Medical Commission of the International Commission on Alpine Rescue - “ICAR MEDCOM”); and • It is intended to publish the revised Guidelines as a jointly-badged product of the Australian and New Zealand Committee on Resuscitation (“ANZCOR”). 3 Defining the scope of the Guidelines • The scope of practice: • The ‘pre-hospital’ or ‘out-of-hospital’ setting. • Who does this guideline apply to? • This guideline applies to adult and child victims. -
Hyperbaric Oxygen Therapy for Decompression Illness/Gas Embolism (All Ages)
Clinical commissioning policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) For implementation from 1 April 2019 NHS England Reference: 170047P NHS England INFORMATION READER BOX Directorate Medical Operations and Information Specialised Commissioning Nursing Trans. & Corp. Ops. Commissioning Strategy Finance Publications Gateway Reference: 07603 Document Purpose Policy Clinical commissioning policy: Hyperbaric oxygen therapy for Document Name decompression illness/gas embolism (all ages) Author Specialised Commissioning Team Publication Date 20 July 2018 Target Audience CCG Clinical Leaders, Care Trust CEs, Foundation Trust CEs , Medical Directors, Directors of PH, Directors of Nursing, NHS England Regional Directors, NHS England Directors of Commissioning Operations, Directors of Finance, NHS Trust CEs Additional Circulation #VALUE! List Description Routinely Commissioned - NHS England will routinely commission this specialised treatment in accordance with the criteria described in this policy. Cross Reference 0 Superseded Docs 0 (if applicable) Action Required 0 Timing / Deadlines By 00 January 1900 (if applicable) Contact Details for [email protected] further information 0 0 0 0 0 0 Document Status This is a controlled document. Whilst this document may be printed, the electronic version posted on the intranet is the controlled copy. Any printed copies of this document are not controlled. As a controlled document, this document should not be saved onto local or network drives but should always be accessed from the intranet. 2 For implementation from 1 April 2019 Standard Operating Procedure: Clinical Commissioning Policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) First published: July 2018 Prepared by NHS England Specialised Services Clinical Reference Group for Hyperbaric oxygen therapy Published by NHS England, in electronic format only.