Oxygen - Wikipedia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A History of Closed Circuit O2 Underwater Breathing Apparatus
Rubicon Research Repository (http://archive.rubicon-foundation.org) A HISTORY OF CLOSED CIRCUIT OXYGEN UNDEnWATER BRDA'1'HIllG AJ'PARATU'S, by , Dan Quiok Project 1/70 School of Underwater Medicine, H MAS PENGUIN, Naval P.O. Balmoral, IT S W .... 2091. May, 1970 Rubicon Research Repository (http://archive.rubicon-foundation.org) TABLE OF CONTENTS. Foreword. Page No. 1 Introduction. " 2 General History. " 3 History Il: Types of CCOUBA Used In 11 United Kingdom. " History & Types of CCOUBA Used In 46 Italy. " History & Types o:f CCOUBJl. Used In 54 Germany. " History & Types of CCOUEA Used In 67 Frr>.!1ce. " History·& Types of CeOUM Used In 76 United States of America. " Summary. " 83 References. " 89 Acknowledgements. " 91 Contributor. " 91 Alphabetical Index. " 92 Rubicon Research Repository (http://archive.rubicon-foundation.org) - 1 - FOREWORD I am very pleased to have the opportunity of introducing this history, having been responsible for the British development of the CCOt~ for special operations during World War II and afterwards. This is a unique and comprehensive summary of world wide development in this field. It is probably not realised what a vital part closed circuit breathing apparatus played in World War II. Apart from escapes from damaged and sunken submarines by means of the DSEA, and the special attacks on ships by human torpedoes and X-craft, including the mortal damage to the "Tirpitz", an important part of the invasion forces were the landing craft obstruction clearance units. These were special teams of frogmen in oxygen breathing sets who placed demolition charges on the formidable underwater obstructions along the north coast of France. -
Original Articles
2 Diving and Hyperbaric Medicine Volume 49 No. 1 March 2019 Original articles The impact of diving on hearing: a 10–25 year audit of New Zealand professional divers Chris Sames1, Desmond F Gorman1,2, Simon J Mitchell1,3, Lifeng Zhou4 1 Slark Hyperbaric Unit, Waitemata District Health Board, Auckland, New Zealand 2 Department of Medicine, University of Auckland, Auckland 3 Department of Anaesthesiology, University of Auckland 4 Health Funding and Outcomes, Waitemata and Auckland District Health Boards, Auckland Corresponding author: Chris Sames, Slark Hyperbaric Unit, Waitemata District Health Board, PO Box 32051, Devonport, Auckland 0744, New Zealand [email protected] Key words Audiology; Fitness to dive; Hearing loss; Medicals – diving; Occupational diving; Surveillance Abstract (Sames C, Gorman DF, Mitchell SJ, Zhou L. The impact of diving on hearing: a 10–25 year audit of New Zealand professional divers. Diving and Hyperbaric Medicine. 2019 March 31;49(1):2–8. doi: 10.28920/dhm49.1.2-8. PMID: 30856661.) Introduction: Surveillance of professional divers’ hearing is routinely undertaken on an annual basis despite lack of evidence of benefit to the diver. The aim of this study was to determine the magnitude and significance of changes in auditory function over a 10−25 year period of occupational diving with the intention of informing future health surveillance policy for professional divers. Methods: All divers with adequate audiological records spanning at least 10 years were identified from the New Zealand occupational diver database. Changes in auditory function over time were compared with internationally accepted normative values. Any significant changes were tested for correlation with diving exposure, smoking history and body mass index. -
Samuel D. Miller IV, D.O
American Osteopathic College of Occupational and Preventive Medicine OMED 2012, San Diego, Wednesday, October 10, 2012 Diving Emergencies The First 24 Hours Samuel D. Miller IV, D.O. Emergency Medicine - Marian Medical Center Undersea and Hyperbaric Medicine NAUI #13227L PADI #161841 SSI Pro 5000 Dive Emergencies – the First 24 Divers Alert Network (DAN) 2008 Annual Report Background . .Largely based on 2006 events Descent / Ascent Injuries The first 10-15 Minutes .Project Dive Exploration (PDE) The First 24 Hours .Dive injuries The ER experience .Dive fatalities Hyperbaric Medicine .Breath-hold incidents. Table 1: Occurrence of Sports Injuries for 1996 Source: Accident Facts, 1998Incidence Edition (detailing 1996 data), National ofSafety Council. Nonfatal Diving Injuries Number of Sport Reported Injuries Incident Index Participants Bicycling 71,900,000 566,676 .788 Swimming 60,200,000 93,206 .154 Fishing 45,600,000 76,828 .168 http://archive.rubicon-foundation.org Roller skating 40,600,000 162,307 .399 Golf 23,100,000 36,480 .158 Tennis 11,500,000 23,550 .204 Water skiing 7,400,000 9,854 .133 Scuba 1,000,000 935 .094 Table 1: Occurrence of Sports Injuries for 1996 Source: Accident Facts, 1998 Edition (detailing 1996 data), National Safety Council. P-1 American Osteopathic College of Occupational and Preventive Medicine OMED 2012, San Diego, Wednesday, October 10, 2012 DIVING FATALITIES Diver Physiology Pressure SCUBA Diving .003-.005% Effects of pressure Rock climbing .034% Gas absorption Around 100 SCUBA diving deaths per year What -
Metabolic Production of Carbon Dioxide in Simulated Sea States: Relevance for Hyperbaric Escape Systems
Rubicon Research Repository (http://archive.rubicon-foundation.org) UHM 2006, Vol. 33, No. 4 – CO2 production in HES Metabolic production of carbon dioxide in simulated sea states: relevance for hyperbaric escape systems. M. TIPTON, P. NEWTON, T. REILLY Department of Sport & Exercise Science, Institute of Biomedical & Biomolecular Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT Submitted 12/15/2005; final copy accepted 3/6/2006 Tipton M, Newton P, Reilly T. Metabolic production of carbon dioxide in simulated sea states: relevance for hyperbaric escape systems. Undersea Hyperb Med 2006; 33(4):291-297. Hyperbaric Escape Systems (HES) are used when saturation diving bells have to be evacuated and divers transported to safety. The aim of the present investigation was to determine the levels of metabolic CO2 production expected from the occupants of an HES in different wave states, and from this, to recommend a reasonable and safe requirement for scrubbing CO2 within an HES. The CO2 production and heart rate of 20 male subjects representing saturation divers were collected while they were seated in an HES seat, fixed to an inflatable rescue vessel. The vessel was tethered in a wave pool and longitudinal (L), perpendicular (P), and calm (C) sea conditions were reproduced. Heart rate did not differ between conditions (P= 0.33) the mean (SD) heart rates (b.min-1) were: C: 71 (8.5); L: 74 (9); P: 75 (9).Carbon dioxide production was significantly higher (P=0.005) with the boat orientated perpendicular to the waves compared to the calm condition. -
Inorganic Chemistry/Chemical Bonding/MO Diagram 1
Inorganic Chemistry/Chemical Bonding/MO Diagram 1 Inorganic Chemistry/Chemical Bonding/MO Diagram A molecular orbital diagram or MO diagram for short is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the Linear combination of atomic orbitals molecular orbital method (LCAO method) in particular [1] [2] [3] . This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen and carbon monoxide but becomes more complex when discussing polynuclear molecules such as methane. It explains why some molecules exist and not others, how strong bonds are, and what electronic transitions take place. Dihydrogen MO diagram The smallest molecule, hydrogen gas exists as dihydrogen (H-H) with a single covalent bond between two hydrogen atoms. As each hydrogen atom has a single 1s atomic orbital for its electron, the bond forms by overlap of these two atomic orbitals. In figure 1 the two atomic orbitals are depicted on the left and on the right. The vertical axis always represents the orbital energies. The atomic orbital energy correlates with electronegativity as a more electronegative atom holds an electron more tightly thus lowering its energy. MO treatment is only valid when the atomic orbitals have comparable energy; when they differ greatly the mode of bonding becomes ionic. Each orbital is singly occupied with the up and down arrows representing an electron. The two AO's can overlap in two ways depending on their phase relationship. The phase of an orbital is a direct consequence of the oscillating, wave-like properties of electrons. -
Comprehensive Performance Limits for Divers' Underwater Breathing Gear: Consequences of Adopting Diver-Focused Limits
Rubicon Research Repository (http://archive.rubicon-foundation.org) Navy experimental Diving Unit TA05-12 321 Bullfinch Rd. NEDU TR 07-02 Panama City, FL 32407·7015 January 2007 COMPREHENSIVE PERFORMANCE LIMITS FOR DIVERS' UNDERWATER BREATHING GEAR: CONSEQUENCES OF ADOPTING DIVER-FOCUSED LIMITS Author: Distribution Statement A: D. E. Warkander, Ph.D. Approved tor public release; distribution I. unlimited. Rubicon Research Repository (http://archive.rubicon-foundation.org) UNCLASSifiED SECURITY CLASSifiCATION Of THIS PAGE REPORT DOCUMENTATlON PAGE 1a. REPORT SECURITY CLASSifICATION 1b. RESTRICTIVE MARKINGS Unclassified 28. SECURITY CLASSifiCATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY Of REPORT Approved for public release; distribution is unlimited. 2b. DECLASSlflCATIONlOOWNGRADING AUTHORITY 4. PERfORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) NEDU Technical Report No. 0J.{l2 6a. NAME Of PERfORMING 6b. OffICE SYMBOL 7a. NAME Of MONITORING ORGANIZATION ORGANIZATION (If Applicable) Navy Experimental Diving Unit 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code) 321 Bullfinch Road, Panama City, El32407-7015 sa. NAME Of fUNDING SPONSORING ab. OffICE SYMBOl 9. PROCUREMENT INSTRUMENT IDENTifiCATION NUMBER ORGANIZATION (If Applicable) NAVSEA N773 8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE Of fUNDING NUMBERS 1333lseac Hull Ave SE Washington Navy Yard, DC 20376-0001 PROGRAM PROJECT TASK NO. WORK UNIT ELEMENT NO. NO. ACCESSION TA05-12 NO. 11. TITlE (Include Security Classification) (U) Com . Performance limits for Divers' Underwater Breathina Gear: Conseouences of Adootina Diver-Eocused Umits 12. PERSONAL AUTHOR(S) D. E. Warkander, Ph.D. 138. TYPE Of REPORT 13b. TIME COVERED 14. DATE Of REPORT (Year, Month, Day) 15. PAGE Technical Report fROM June 2005 TO Sept 2006 COUNT January 2007 32 16. -
Diving and DCS in Miskito Indigenous Peoples 1MB (2002) Harvest Management
http://rubicon-foundation.org UHM 2002, Vol. 29, No. 2 – Miskito Diving Methods Diving methods and decompression sickness incidence of Miskito Indian underwater harvesters RG DUNFORD1, EB MEJIA2, GW SALBADOR2, WA GERTH3, NB HAMPSON1 1Virginia Mason Medical Center, Seattle, Washington; 2St. Luke Episcopal Medical Mission, Roatan, Honduras;3U.S. Navy Experimental Diving Unit, Panama City Florida Dunford RG, Mejia EB, Salbador GW, Gerth WA, Hampson NB, Diving methods and decompression sickness incidence of Miskito Indian underwater harvesters. Undersea Hyper Med 2002, 29(2): 74-85. Diving conditions, dive profiles, and symptoms of decompression sickness (DCS) in a group of Miskito Indian underwater seafood harvesters are described. Dive profiles for 5 divers were recorded with dive computers, and DCS symptoms were assessed by neurological examination and interview. Divers averaged 10 dives a day over a 7-day period with a mean depth of 67 + 7 FSW (306 + 123 kPa) and average in-water time of 20.6 + 6.3 minutes. Limb pain was reported on 10 occasions during 35 man-days of diving. Symptoms were typically managed with analgesic medication rather than recompression. Indices of the decompression stress were estimated from the recorded profiles using a probabilistic model. We conclude that the dives were outside the limits of standard air decompression tables and that DCS symptoms were common. The high frequency of limb pain suggests the potential for dysbaric bone necrosis for these divers. dive profile, dive computer, harvester, decompression sickness, Miskito, dysbaric bone necrosis INTRODUCTION The Miskito Indians inhabit the remote La Mosquitia region of the eastern shore of Honduras and the northeastern shore of Nicaragua. -
Supramolecular Control of Singlet Oxygen Generation
molecules Review Supramolecular Control of Singlet Oxygen Generation Akshay Kashyap 1, Elamparuthi Ramasamy 2, Vijayakumar Ramalingam 3 and Mahesh Pattabiraman 1,* 1 Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, USA; [email protected] 2 Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] 3 Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA; [email protected] * Correspondence: [email protected] 1 Abstract: Singlet oxygen ( O2) is the excited state electronic isomer and a reactive form of molecu- lar oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and syn- thetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective 1 PSs as efficient O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a refer- ence for future research in this direction. The aim of this review is to highlight the value in the Citation: Kashyap, A.; Ramasamy, E.; supramolecular photochemistry approach to tapping the unexploited technological potential within Ramalingam, V.; Pattabiraman, M. -
Dive Computer Use in Recreational Diving: Insights from the DAN-DSL Database
http://archive.rubicon-foundation.org Dive Computer Use in Recreational Diving: Insights from the DAN-DSL Database Costantino Balestra Haute Ecole Paul Henri Spaak Environmental and Occupational Physiology Laboratory 91 Avenue C. Schaller 1160 Auderghem, BELGIUM Data from the DAN Europe Diving Safety Laboratory (DSL) suggest that approximately 95% of recreational diving is carried out today using a dive computer. The most widely dived computers/algorithms, irrespective of brand, use the Bühlmann ZHL-16 or the Wienke RGBM algorithm, with roughly a 50/50 distribution across the DSL population. The vast majority of the 167 recorded decompression sickness (DCS) cases occurred without any significant violation of the respective algorithm’s limits, i.e., most occurred while using gradient factors that were well below the maximum allowed by the algorithm. The DSL database and field research also show that many other physiological variables may be involved in the pathogenesis of DCS, even within computed “safe” limits, causing a variable individual response despite similar inert gas supersaturation levels. We conclude that the current computer validation modalities, although important and useful as a basic benchmark, still allow a probability of DCS beyond ideal levels in a recreational setting. In order to limit unexpected DCS a more aggressive “biological” approach is recommended that is able to identify and then control the most significant physiological variables involved in the pathogenesis of DCS, in addition to the inert gas supersaturation levels. INTRODUCTION Recreational diving is mostly done with the use of dive computers (DCs) that divers tend to trust with absolute “faith.” Not many individuals realize that the validation protocols underlying the marketing of such computers and the algorithms that they use are far from perfect. -
An Historic Maritime Salvage Company ® 40TH ANNIVERSARY EXPOSITION
The Journal of Diving History, Volume 23, Issue 4 (Number 85), 2015 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 03/10/2021 15:56:02 Link to Item http://hdl.handle.net/1834/35934 Fourth Quarter 2015 • Volume 23 • Number 85 SORIMA An Historic Maritime Salvage Company ® 40TH ANNIVERSARY EXPOSITION EXPO 40 COURTESYPHOTO OF SCOTT PORTELLI THE SEA ATTEND The Greatest International Oceans MEADOWLANDS EXPOSITION CENTER | SECAUCUS | NEW JERSEY | MECEXPO.COM BENEATHExposition In The USA , , , REGISTER TODAY APRIL 1 2 3 2016 REGISTER TODAY ONLY 10 MINUTES FROM NYC • FREE PARKING EVERYWHERE! REGISTER ONLINE NOW AT WWW.BENEATHTHESEA.ORG BENEATH THE SEA™ 2016 DIVE & TRAVEL EXPOSITION 495 NEW ROCHELLE RD., STE. 2A, BRONXVILLE, NEW YORK 10708 914 - 664 - 4310 E-MAIL: [email protected] WWW.BENEATHTHESEA.ORG WWW.MECEXPO.COM HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION PO BOX 2837, SANTA MARIA, CA 93457 USA TEL. 805-934-1660 FAX 805-934-3855 e-mail: [email protected] or on the web at www.hds.org PATRONS OF THE SOCIETY HDS USA BOARD OF DIRECTORS Ernie Brooks II Carl Roessler Dan Orr, Chairman James Forte, Director Leslie Leaney Lee Selisky Sid Macken, President Janice Raber, Director Bev Morgan Greg Platt, Treasurer Ryan Spence, Director Steve Struble, Secretary Ed Uditis, Director ADVISORY BOARD Dan Vasey, Director Bob Barth Jack Lavanchy Dr. George Bass Clement Lee WE ACKNOWLEDGE THE CONTINUED Tim Beaver Dick Long SUPPORT OF THE FOLLOWING: Dr. Peter B. Bennett Krov Menuhin Dick Bonin Daniel Mercier FOUNDING CORPORATIONS Ernest H. Brooks II Joseph MacInnis, M.D. -
Cubic C8: an Observable Allotrope of Carbon?
1 This is the peer reviewed version of the following article: Sharapa, D., Hirsch, A., Meyer, B. and Clark, T. (2015), Cubic C8: An Observable Allotrope of Carbon?. ChemPhysChem. doi: 10.1002/cphc.201500230, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cphc.201500230/abstract?userIsAuthentica ted=false&deniedAccessCustomisedMessage=. This article may be used for non- commercial purposes in accordance With Wiley-VCH Terms and Conditions for self- archiving Cubic C8: An observable allotrope of carbon? Dmitry Sharapa[a], Andreas Hirsch[b], Bernd Meyer[a],[c] and Timothy Clark*[a],[d] Abstract: Ab initio and density-functional theory calculations have been used to investigate the structure, electronic properties, spectra and reactivity of cubic C8, which is predicted to be aromatic by Hirsch’s rule. Although highly strained and with a small amount of diradical character, the carbon cube represents a surprisingly deep minimum and should therefore be observable as an isolated molecule. It is, however, very reactive, both with itself and triplet oxygen. Calculated infrared, Raman and UV/vis spectra are provided to aid identification of cubic C8 should it be synthesised. [a] Prof. T. Clark, Prof. B. Meyer, D. Sharapa Computer-Chemie-Centrum, Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25, 91052 Erlangen, Germany. E-mail: [email protected] [b] Prof. A. Hirsch Lehrstuhl für Organische Chemie II, Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen, Germany. [c] Prof. B. Meyer Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25, 91052 Erlangen, Germany. -
Spinal Cord Injury in Decompression Sickness: a Case Report Henry Prakash M1, Ramaswamy Hariharan2, Bobeena Chandy3
18 Case Report Spinal Cord Injury in Decompression Sickness: A Case Report Henry Prakash M1, Ramaswamy Hariharan2, Bobeena Chandy3 Abstract Study Design: Case report. Objective: To describe an unusual case of deep diving followed by spinal cord injury due to decompression sickness (DCS). Setting: Princess Royal Spinal Injuries Centre, Sheffield Teaching Hospitals NHS Foundation Trust, England. Method: Description and observation of management and outcomes, of spinal decompression sickness (DCS). Results: The patient's symptoms and signs developed after she surfaced after a deep sea diving event. She was managed and treated in a tertiary level care hospital. MRI performed within 24 hours, showed signs of increased signal intensity in the cervical and thoracolumbar regions. She was treated with hyperbaric oxygen which improved her pain symptoms but there was no immediate resolution in motor sensory deficits. Repeat MRI done after a week showed resolution if hyperintensity in the cervical region but not in the thoracolumbar region. Patient progressed to have significant neurological recovery in the next 6 months. She became ambulant with unilateral ankle foot orthotic and a pair of crutches, she continued to have bladder incontinence at 1 year follow-up interval. Conclusion: Central nervous involvement is not uncommon in decompression sickness in divers. Early diagnosis and proper management can reduce acute symptoms and prevent further complications of permanent neurological disability. Primary prevention by education and adhering to standard diving guidelines is needed to reduce mortality and morbidity in decompression sickness. Keywords: Decompression sickness (DCS), arterial gas embolism (AGE), patent foramen ovale (PFO), divers alert network (DAN). 28 years old trained female certified diver with no continued for about 20 minutes.