Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by Lcol a Grodecki Diving Physics Physics

Total Page:16

File Type:pdf, Size:1020Kb

Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by Lcol a Grodecki Diving Physics Physics Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by LCol A Grodecki Diving Physics Physics • Air ~78% N2, ~21% O2, ~0.03% CO2 Atmospheric pressure Atmospheric Pressure Absolute Pressure Hydrostatic/ gauge Pressure Hydrostatic/ Gauge Pressure Conversions • Hydrostatic/ gauge pressure (P) = • 1 bar = 101 KPa = 0.987 atm = ~1 atm for every 10 msw/33fsw ~14.5 psi • Modification needed if diving at • 10 msw = 1 bar = 0.987 atm altitude • 33.07 fsw = 1 atm = 1.013 bar • Atmospheric P (1 atm at 0msw) • Absolute P (ata)= gauge P +1 atm • Absolute P = gauge P + • °F = (9/5 x °C) +32 atmospheric P • °C= 5/9 (°F – 32) • Water virtually incompressible – density remains ~same regardless • °R (rankine) = °F + 460 **absolute depth/pressure • K (Kelvin) = °C + 273 **absolute • Density salt water 1027 kg/m3 • Density fresh water 1000kg/m3 • Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water) Laws & Principles • All calculations require absolute units • Henry’s Law: (K, °R, ATA) • The amount of gas that will dissolve in a liquid is almost directly proportional to • Charles’ Law V1/T1 = V2/T2 the partial press of that gas, & inversely proportional to absolute temp • Guy-Lussac’s Law P1/T1 = P2/T2 • Partial Pressure (pp) – pressure • Boyle’s Law P1V1= P2V2 contributed by a single gas in a mix • General Gas Law (P1V1)/ T1 = (P2V2)/ T2 • To determine the partial pressure of a gas at any depth, we multiply the press (ata) • Archimedes' Principle x %of that gas Henry’s Law • Any object immersed in liquid is buoyed up by a force equal to weight of the fluid • Gas molecules enter liquid – add to gas displaced by the object tension (=partial press gas in liquid) • Pressure gradient = Δ between gas • Daltons’ Law P(total) = P1+P2+…+Pn tension in the liquid and gas partial • The total pressure exerted by a mixture of gases is the sum of the pressures that press outside liquid would be exerted by each gas if it alone • High gradient (low tension high PP) = high were present and occupied the total rate absorption of gas into liquid volume Physiologic Implications Underwater Breathing Apparatus Physiologic Implications Underwater Breathing • Increased CO2 levels • Immersion Effects • CO2 retention if breathing inadequate • P Δ feet to chest ~120cm H2O, to eliminate CO2 produced. negative static lung load dev when • Common in all diving due to ↑WOB lungs deeper than reg/counterlung • Immersion effects • Fluid shift to central circulation • Gas density • ↑cardiac afterload, ↑blood to lungs = • Equipment effects ↓lung compliance, ↓ VC, ↑ airway resistance, diuresis • Exacerbated by exercise/work, panic, hyperventilation, dynamic airway • Equipment Effects compression • All underwater breathing equipment • Gas Density increases breathing resistance • i.e. Demand valve, dead space in • increased depth = increased density helmet/face masks/hoses (Gas law) = decreased flow • Movement of CO2 from blood to (Poiseuille’s law) = increased WOB lungs based on gradient/press Δ • Rebreathers – if inhaling Co2 = smaller Δ = less CO2 ventilated Dynamic Airway Compression (DAC) • Normal Expiration – gas flows out along airway because P1 >P2 • P1 -> P2 declines more quickly with Palv P1 P2 dense gas • At some point along the tube, airway P = intrapleural P (Ppl ) = equal pressure point (EPP) Equal • Beyond this point, P along airway is Pressure less than Ppl = airway compression Point • Catch 22 P Pl • Harder you try to exhale, • higher the PPl = shift EPP to the left • ↑ WOB which ↑ CO Palv P1 P2 2 • Distal movement of EPP • Increased a/w resistance (asthma, gas density), reduced lung elastic recoil, negative static lung load Gas Issues in Diving Gas Issues • TOO MUCH • O2, CO2, inert gas narcosis, High Pressure Neurological Syndrome • TOO LITTLE • Hypoxia, hyperventilation • WRONG GAS • CO poisoning, contaminants Oxygen Toxicity Ocular OxTox • Toxic effects due to PPO2 (not %) • Decreased peripheral vision • CNS main concern but pulm may ~2.5-3.0 hrs at 3.0 ATA become an issue with extended • Central vision unaffected, usually dive ops (serial bounce, sat) resolved within 30-45mins after treatment stops • PPO2 limits CF diving • Progressive myopia • 1.6 ATA routine • Generally 2-4 weeks of treatment • 1.8 ATA exceptional (requires CO and usually completely reversed sign-off) after ~3-4 weeks (sometimes up to 1 year) • DM, elderly more susceptible • Unclear whether hood/monoplace increase risk vs. facemask CNS Ox Tox • Vision changes (↓acuity, dazzle, lat • Risk Factors movement, constricted fields) • Exercise • Ears (tinnitus, auditory hallucinations, • Hyper/hypothermia music, bells, knocking) • Hypoventilation, hypercapnia • Immersion • Nausea/vomiting • Metabolic activity, blood flow to brain • Twitch (lips, cheek, eyelid, tremors…) • Hypoglycemia (DM) • Irritability, behaviour, mood changes • Seizure D?O, +/- meds that lower sx (incl apprehension, apathy, euphoria) threshold • VitE deficiency • Dizzy • Pseudoephedrine, amphetamines, ASA, • Convulsions acetazolamide • Spherocytosis, hypercortisolism • Also pallor, sweaty, palpitations, brady, tachy, panting, grunting, unpleasant gustatory/ olfactory sensations, hiccups CNS OxTox • No consistent pre-convulsion • Tx warning sx • Remove O2 Often not preceded by other sx • Protect from injuries if seizing • • Check DDx (don’t forget hypoglycemia) • O2 convulsions not inherently • Keep patient off O2 for 15 mins after all sx harmful are gone • Ignore treatment time lost and resume • No pathologic changes in human table where last interrupted brain, no evidence of clinical sequelae • Don’t forget to compensate for extra • No apparent predisposition to future time for chamber attendants sz disorder • Preventive Measures • Harm based on context (seizure • Air breaks underwater = drowning) • Clinical HBOT setting (rarely used) • Glutathione • Very high intra & inter-individual • Lithium variation in susceptibility • GABA agonists • ?increased risk with drugs that lower sz threshold (not much evidence) Pulmonary Oxygen Toxicity • Cumulative dose = fx of exposure time, ATA, and • Acute Exudative (reversible) FiO2 • Interstitial and alveolar edema, hemorrhage, • Acute Δ with FiO2 > 0.8 ATA destruction of pulm capillary endothelium, • Chronic Δ with FiO2 > 0.5 ATA loss of type I alveolar cells (surfactant), inflam. cell infiltrates • Typically insidious mild substernal irritation, chest tightness -> ↑cough -> constant burning • Acute Proliferative (non-reversible) exacerbated by inspiration -> dyspnea (exertion or • Type II alveolar cells replace damaged type I rest) (blood-air barrier thickens), fibroblast • ~12-16 hrs @ 1 ATA, ~3-6 hrs @ 2.0 ATA infiltration, increased alveolar-capillary • CXR usually N, +/- patchy infiltrates distance, ↓alveolar air vol, ↑collagen content • Mechanical fx impaired earlier than gas exchange • Chronic (CO diffusing capabilities) • Progressive pulmonary fibrosis, similar to • No change FEV1 ARDS • ↓FVC • Preventions: • 2%, asx, completely reversible over hrs • Air breaks • 10% = mild sx, reversible over several days • Unit Pulmonary Toxicity Dose (UPTD) • 20% = mod sx, probably reversible over • 1 UPT = pulm poisoning produced by 100% O2 weeks, acceptable for a TT x 1 min at 1 ATA • ↓Diffusion capacity, FEF 25-75, V/Q defect • HBOT Max 1440 UPTD/24hrs (TT6 = 750 UPTDs) CO2 Toxicity • Inadequate ventilation • S/Sx • Helmet diving, hyperbaric chamber • H/A, flushing, sweating • Alveolar hypoventilation • Dizzy • Dyspnea • Higher inspired CO2 = failure of CO2 scrubbers in rebreather systems • Decreased cognition, disorientation • LOC/convulsions • CO2 retention (increased WOB • Makes everything else worse (NN, underwater) OxTox) • Increased CO2 levels unpredictable, even in normal healthy divers • Tx • End dive • Inadequate pulmonary ventilation • Fresh air, +/- O • Increased density of gas 2 • Deliberate hypoventilation or ‘skip- breathing’ – NEVER skip breath, esp. at high PP Nitrogen Narcosis “Rapture of the deep” • Reversible depression of neuronal • S/Sx excitability due to inert gas • ↓performance mental/manual work • Potency Xe > Kr > Ar > N > H > Ne > (higher fx affected most) He • Dizzy, euphoria, uncontrolled laughter • Interfere with transmission of EP • Overconfidence, overly talkative across synaptic gap • Memory loss/post-dive amnesia • Immediate onset at depth, stable after • Perceptual narrowing (fixation) few mins at depth, rapid resolution • Impaired sensory functioning upon ascent • LOC >100msw • Potentiated by ↑CO2 levels • Prevention • No true acclimatization, divers may • Depth <30msw, plan dive ahead & dev short term tolerance practice tasks • RFs • If affected – decrease depth • Depth, gas mix, anxiety, task loading, • Heliox cold, fatigue, exercise, EtOH, sedatives, ↑CO2 High Pressure Neurological Syndrome (HPNS) • General excitation of brain • Prevention • Opposite to narcosis • Diver selection • Occurs in very deep diving >16 ATA • ↓compression rate, long • Usually Heliox mixtures at this depth stages/holds (allow adaptation) • Affected by rate of compression • Use of N2 (or other narcotic) in • Rapid rate = increased severity at trimix shallower depth • S/Sx • Marked tremor hands/arms/whole body, dizzy, anorexia, nausea, vomiting • Fatigue, somnolence • Can progress to myoclonic jerks -> clonic seizures Hypoxia • Same sx as on the surface • Shallow-Water Blackout • Important to know onset for • Breath-hold diving rebreathers • Remember – CO2 produces drive to breathe • Open circuit • Hypoxia at depth
Recommended publications
  • 2015 Korean Guidelines for Cardiopulmonary Resuscitation
    Clin Exp Emerg Med 2016;3(S):S1-S9 http://dx.doi.org/10.15441/ceem.16.133 Supplementary Part 1. The update process and eISSN: 2383-4625 highlights: 2015 Korean Guidelines for Cardiopulmonary Resuscitation Sung Oh Hwang1, Sung Phil Chung2, Keun Jeong Song3, Hyun Kim1, Tae Ho Rho4, Kyu Nam Park5, Young-Min Kim5, June Dong Park6, Ai-Rhan Ellen Kim7, Hyuk Jun Yang8 Received: 16 February 2016 Revised: 19 March 2016 1 Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea Accepted: 19 March 2016 2Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea 3Department of Emergency Medicine, Sungkyunkwan University College of Medicine, Seoul, Korea Correspondence to: Sung Oh Hwang 4Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea Department of Emergency Medicine, 5Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea 6Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea Yonsei University Wonju College of 7Department of Pediatrics, University of Ulsan College of Medicine, Seoul, Korea Medicine, 20 Ilsan-ro, Wonju 26426, 8Department of Emergency Medicine, Gachon University College of Medicine, Incheon, Korea Korea E-mail: [email protected] THE BACKGROUND AND UPDATE PROCESS OF THE GUIDELINES FOR CARDIOPULMONARY RESUSCITATION 1. The background of the guidelines for cardiopulmonary resuscitation Cardiac arrest can occur inside medical institutions (in-hospital)
    [Show full text]
  • Prevention and Management of Heat-Related Illness
    PREVENTION AND MANAGEMENT OF HEAT-RELATED ILLNESS Federal Bureau of Prisons Clinical Guidance DECEMBER 2017 Federal Bureau of Prisons (BOP) Clinical Guidance is made available to the public for informational purposes only. The BOP does not warrant this guidance for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient- specific. Consult the BOP Health Management Resources Web page to determine the date of the most recent update to this document: http://www.bop.gov/resources/health_care_mngmt.jsp Federal Bureau of Prisons Prevention and Management of Heat-Related Illness Clinical Guidance December 2017 TABLE OF CONTENTS 1. PURPOSE AND OVERVIEW ......................................................................................................................1 2. PATHOPHYSIOLOGY...............................................................................................................................1 3. RISK FACTORS FOR HRI ........................................................................................................................2 4. SYMPTOMS AND SIGNS ..........................................................................................................................3 5. EVALUATION.........................................................................................................................................5 6. TREATMENT..........................................................................................................................................6
    [Show full text]
  • Mansfield, NG18 2AD to the Editor: Dear Sir, VERTIGO in DIVERS Thank You for Asking for My Comments on Noel Roydhouse's Letter Which I Have Read with Interest
    Br J Sports Med: first published as 10.1136/bjsm.17.3.210 on 1 September 1983. Downloaded from 210 CORRESPONDENCE 14 Woodhouse Road, Mansfield, NG18 2AD To the Editor: Dear Sir, VERTIGO IN DIVERS Thank you for asking for my comments on Noel Roydhouse's letter which I have read with interest. He is technically correct in stating that vertigo is not inevitable when the tympanic membrane ruptures. Vertigo is not dependent on the size of perforation that is sustained, but is dependent on the rate of ingress of cold water into the tympanic cavity. The caloric effect produced by rapid ingress of water is entirely dependent on the temperature difference between the water that has entered the tympanic cavity and body temperature. Once the water temperature reaches approximate body temperature then the caloric effect ceases as does the vertigo. As ENT surgeons we use this caloric phenomenon for testing labyrinthine function (vestibular function); and under test conditions we use water at 300C and 440C, in ears with intact tympanic membranes, in order to induce a vertigo. If an article were to be directed at "diving doctors" I think that it would be fair comment for it to be stated that a vertigo sustained on descent should be assumed to be due to a tympanic membrane rupture with rapid ingress of water, until proven otherwise, by inspection of the ear; if the tympanic membrane is found to be intact, then a diagnosis of perilymph fistula must be made, which will only be proved or disproved by performing an exploratory tympanotomy.
    [Show full text]
  • Environmental Issues in Sports Medicine Jeremiah Penn, MD Sanford Orthopedics and Sports Medicine Bismarck, ND Lecture Objectives
    Environmental Issues in Sports Medicine Jeremiah Penn, MD Sanford Orthopedics and Sports Medicine Bismarck, ND Lecture Objectives Identify common environmental illnesses Describe prevention of environmental illness Describe treatment for life-threatening and non-emergent environmental illness Mt Everest 29,029 ft above sea level First climbed by Edmund Hillary and Tenzing Norgay on May 29, 1953 Number of summits in 1975: 15 Number of summits in 1995: 83 Number of summits in 2004: 330 Number of summits in 2010: 513 Introduction Outdoor sports are increasing in popularity Participants are becoming more “extreme” Family physicians need to be able to recognize and treat these problems in their patient population Environmental Illness Heat related Illness Cold injury Altitude UV Light Lightning Heat related Illness Heat edema Heat rash Heat syncope Heat cramps Heat exhaustion Heat stroke Human Heat Loss Convection Conduction Evaporation Radiation Chicago Marathon 2007 Wet Bulb Globe Temperature Developed by USMC in 1956 at Parris Island, SC Takes into account temperature, humidity, wind speed, and solar radiation WBGT = 0.7Tw + 0.2Tg + 0.1Td Wet Bulb Globe Temperature Category Temperature (°F) Flag 1 <79.9 None 2 80 – 84.9 Green 3 85 – 87.9 Yellow 4 88 – 89.9 Red 5 ≥90 Black Heat Index Chart Developed by RG Steadman in 1979 Takes into account temperature and relative humidity Much easier to calculate, don’t need special equipment Heat Edema Transient venodilation to facilitate core heat loss Normal body temperature
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Respiratory Monitoring System Using Thermistor
    International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 11567-11575 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu RESPIRATORY MONITORING SYSTEM USING THERMISTOR 1Gagandeep kour , 2Mohammad Rouman ,Geetha.M3 1,2UG Students, 3Assistant Professor Department of Biomedical Engineering BIHER, BIST, Bharath University Chennai- 6000073. gagandeeplkour. [email protected] Abstract:- respiration is defined as the process of movement of oxygen from the outside air to the cells within tissues and the transport of carbon dioxide in the opposite direction. Respiration can be cellular as well as physiological. In cellular respiration an organism obtains energy in the form of ATP by oxidising nutrients and releasing waste products while as the physiological respiration is necessary to sustain cellular respiration and thus life. Physiological respiration involves ventilation of lungs alveoli with atmospheric air moved into and out of the lungs through inhalation and exhalation, otherwise known as breathing. This project helps to checks the breathing rate of a patient who is suffering from coma, trauma, strokes, seizures at easily accessible levels. The respiratory monitoring system helps to check the breathing rate of a patient with the help of an arduino based system. the main components of this machine are Arduino, thermistor, heart pulse rate sensor, LED, LCD, buzzer alarm, battery. The patient breathes through a mask in which thermistor is placed and then the machine measures the breathing rate. the arduino used here is Arduino UNO(ATmega328 P). Keywords: respiratory device, breathing, Arduino, heart pulse rate sensor, thermistor, alarm. contains 2.5-3.0 litres of air.
    [Show full text]
  • Laryngospasm Caused by Removal of Nasogastric Tube After Tracheal Extubation: Case Report
    Yanaka A, et al. J Anesth Clin Care 2021, 8: 061 DOI: 10.24966/ACC-8879/100061 HSOA Journal of Anesthesia & Clinical Care Case Report pCO2: Partial pressure of carbon dioxide pO : Partial pressure of oxygen Laryngospasm Caused by 2 mmHg: Millimeter of mercury Removal of Nasogastric Tube mg/dl: Milligram per deciliter mmol/L: Millimole per litter after Tracheal Extubation: Case Introduction Report Background Laryngospasm (spasmodic closure of the larynx) is an airway Ayumi Yanaka1 and Takuo Hoshi2* complication that may occur when a patient emerges from general 1Department of Anesthesiology and Critical Care Medicine, Ibaraki Prefectur- anesthesia. It is a protective reflex, but may sometimes result in al Central Hospital, Japan pulmonary aspiration, pulmonary edema, arrhythmia and cardiac 2Department of Anesthesiology and Critical Care Medicine, Clinical and Edu- arrest [1]. It does not often cause severe hypoxemia in the patient, and cational Training Center, Tsukuba University Hospital, Japan our review of the literature revealed no previous reports of such cases that cause of the laryngospasm was the removal of nasogastric tube. Here, we describe this significant adverse event in a case and suggest Abstract ways to lessen the possibility of its occurrence. We obtained written informed consent for publication of this case report from the patient. Background: We report a case of laryngospasm during nasogastric tube removal. Laryngospasm is a severe airway complication after Case report surgery and there have been no reports associated with the removal of nasogastric tubes. A 54-year-old woman height, 157 cm; weight, 61 kg underwent abdominal surgery (partial hepatectomy with right partial Case Report: After abdominal surgery, the patient was extubated the tracheal tube, and was removed the nasogastric tube.
    [Show full text]
  • Contents Contents by Condition
    Contents Contents by Condition ..................ix Thomas' test .....................54 Foreword ...............................xv Tinel's sign ..........................55 Preface ............................xvi... Trendelenburg's sign ................... 56 Acknowledgements................... XVIII ... True leg length discrepancy (anatomic Authors ...........................xv111 leg length discrepancy) ............... 57 Expert Reviewers ..................... xix Ulnar deviation ...................... 58 Reviewers ..........................xix V-sign ............................. 59 Abbreviations ........................ xx Valgus deformity ..................... 60 Varus deformity ......................63 Chapter 1 Yergason's sign ...................... 65 Musculoskeletal Signs .... Anterior drawer test ...... ........2 Chapter 2 Apley's grind test ......................3 Respiratory Signs ........................71 Apley's scratch test ..................... 4 Apparent leg length inequality (functional Accessory muscle breathing ........................... 73 leg length) ......................... 5 Agonal respiration ......................................... 74 Apprehension test (crank test) .............6 Apneustic breathing (also apneusis) ................ 75 Apprehension-relocation test (Fowler's Apnoea ........................................................ 76 agn) .............................7 Asterixis ........................................................78 Bouchard's and Heberden's nodes ..........8 Asymmetrical chest expansion
    [Show full text]
  • Instructor's Guide
    Course Outline pg.1 Heat-Related Illnesses A Risk Easy to Battle Training Hazard Area: Extreme Temperatures Training Topic: Heat-related illnesses: recognition, prevention and treatment Target Industries: Construction and general industries Goal: To train students to recognize, prevent and treat heat-related illnesses resulting in fewer illnesses and deaths from working in extreme heat Learning Objectives: Students will learn: 1) the signs and symptoms of heat stroke, heat exhaustion, heat cramps, hyponatremia and dehydration; 2) how to prevent heat-related illnesses when working in extreme heat indoors or outdoors; 3) how to treat heat-related illnesses; 4) employers and managers – how to develop and implement a heat acclimatization plan and reduce their employees’ risks of developing heat-related illnesses Languages: English and Spanish Course Materials: Table 1 in the Appendix Course Deliver Methods: Informal tabletop flip chart, formal PowerPoint presentations, short videos, worksheets, handouts and game. Can be taught in three separate sections: Recognition, prevention and treatment. Environment: Can be taught indoors or outdoors utilizing different course materials Evaluation Materials: Pre and post assessments, class examinations and class evaluations Class Length: 20 – 60 minutes or longer depending on materials and method used Handouts: Three handouts: NOAA’s National Weather Service Heat Index Chart, NOAA’s National Weather Service Heat Index Chart for Low Humidity and Are You Hydrated? – urine color chart. Promotional Material: Two 8 x 10 flyers in English and Spanish to promote the training classes. Workplace Posters: 1) Three 11 x 17 posters that can also be printed 8 x 10 Topics: Reminding workers to cool down frequently to avoid heat-related illnesses, reminding workers to prevent heat-related illnesses and reminding workers to stay hydrated to prevent heat-related illnesses.
    [Show full text]
  • Cochran Undersea Technology
    Cochran Undersea Technology www.DiveCochran.com Technical Publication ©2013 7Apr13 Task Loading While scuba diving, the diver wants to focus on his Mission whether it be cruising a reef, photographing fish, cave diving, disarming a mine, or just diving with a buddy for the fun of it. The diver doesn’t need or want to be distracted or concerned by equipment tasks that could be easily avoided. Cochran dive computers have the lowest task loading of any unit on the market today. This is one reason why Cochran is the only dive computer used by NATO, the US Navy, and other international militaries. Cochran’s goal is to allow Cochran dive computer owners to maximize their diving experience. Toward this goal, Cochran has addressed the following issues: No Buttons – no Worries Regardless of how well a product is designed, having pushbuttons is always less reliable than not having pushbuttons. Pushbuttons can be troublesome when wearing gloves. Trying to press a pushbutton or combination of pushbuttons while carrying a camera and taking a picture is at best, challenging. Cochran dive computers are fully automatic and have no pushbuttons. If desired to change any settings in a Cochran dive computer while on the surface, the diver uses the three permanent stainless contacts on the side or bottom of the unit. Batteries Cochran dive computers have the longest battery life. By checking for battery warnings just before a dive, the diver can be assured that when he starts a dive there is sufficient battery power to complete it. Constantly checking the battery while in a dive is not necessary with a Cochran dive computer.
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Hanging, Strangulation and Other Forms of Asphyxiation
    Hanging, Strangulation and Other Forms of Asphyxiation Steven Campman, M.D. Chief Deputy Medical Examiner San Diego County 16 October 2018 Overview • Terms • Other forms of asphyxiation • Neck Compression –Hanging –Strangulation Asphyxia • The physical and chemical state caused by the interference with normal respiration. • A condition that interferes with cells ability to receive or use oxygen. General Effects • Decrease and cessation of breathing • Leads to bradycardia and eventually asystole • Slowing, then flattening of the EEG Many Terms • Gag: to obstruct the mouth • Choke: to compress or otherwise obstruct the airway • Strangle: asphyxia by external compression of the throat •Throttle: same as strangle; especially manual strangulation • Garrote: strangle; especially ligature strangulation •Burking: chest compression and smothering. Many Terms • Suffocate: (broad term) a layperson’s synonym for asphyxiation, sometimes used to mean smother. • Choke –a layperson’s term for strangulation –A medical term for internal blocking of the airway Classification of Asphyxia Neck Airway Mechanical Exclusion Compression Obstruction Asphyxia of Oxygen Airway Obstruction •Smothering •Gagging •Choking (laryngeal blockage, aspiration, food bolus) Suicide Kit Choking Internal obstruction of airway • Mouth: gag • Larynx or trachea: obstruction by foreign body, “café coronary,” anaphylaxis, laryngospasm, epiglottitis • Tracheobronchial tree: aspiration, drowning FOOD BOLUS Anaphylaxis from Wasp Stings Mechanical Asphyxia Ability to breath is compromised
    [Show full text]