Exkursionsbericht Namibia
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Reduced Visitation to the Buzz-Pollinated Cyanella Hyacinthoides In
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.17.440253; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Reduced visitation to the buzz-pollinated Cyanella hyacinthoides in 2 the presence of other pollen sources in the hyperdiverse Cape 3 Floristic Region 4 5 Jurene E. Kemp1 6 Francismeire J. Telles2 7 Mario Vallejo-Marin1 8 1Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA. United Kingdom 9 2Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade 10 Federal de Uberlândia, Campus Umuarama, Bloco 2D, Sala 26, Uberlândia, MG, Brazil. 11 Abstract 12 Many plant species have floral morphologies that restrict access to floral resources, such as pollen or 13 nectar, and only a subset of floral visitors can perform the complex handling behaviours required to 14 extract restricted resources. Due to the time and energy required to extract resources from 15 morphologically complex flowers, these plant species potentially compete for pollinators with co- 16 flowering plants that have more easily accessible resources. A widespread floral mechanism 17 restricting access to pollen is the presence of tubular anthers that open through small pores or slits 18 (poricidal anthers). Some bees have evolved the capacity to remove pollen from poricidal anthers 19 using vibrations, giving rise to the phenomenon of buzz-pollination. These bee vibrations that are 20 produced for pollen extraction are presumably energetically costly, and to date, few studies have 21 investigated whether buzz-pollinated flowers may be at a disadvantage when competing for 22 pollinators’ attention with plant species that present unrestricted pollen resources. -
A Systematic Study of Berkheya and Allies (Compositae)
A systematic study of Berkheya and allies (Compositae) A thesis submitted in the fulfilment of the requirements for the degree of Master of Science of Rhodes University by Ntombifikile Phaliso April 2013 Supervisor: Prof. N.P. Barker (Botany Department, Rhodes University) Co-supervisor: Dr. Robert McKenzie (Botany Department, Rhodes University) Table of contents: Title ……………………………………………………………………………..I Acknowledgements…………………………………………………………...III Declaration……………………………………………………………………IV Abstract…………………………………………………………………………1 Chapter 1: General Introduction……………………………………………..3 Chapter 2: The molecular phylogeny of Berkheya and allies……………...12 Aims………………………………………………………………………………………….12 2.1: Molecular (DNA-based) systematic……………………………………………………..12 2.2: Methods and Materials…………………………………………………………………..18 2.1.1: Sampling…………………………………………………………………………..18 2.1.2: DNA extraction, amplification and sequencing…………………………………..18 2.1.3: Sequence alignment……………………………………………………………..19 2.1.4: Phylogenetic Analyses …………………………………………………………...21 2.3: Results…………………………………………………………………………………..22 2.3.1: ITS data set………………………………………………………………………..22 2.3.2: psbA-trnH data set………………………………………………………………..23 2.3.3: Combined data set………………………………………………………………...24 2.4: Discussion……………………………………………………………………………….28 2.4.1: Phylogenetic relationships within the Berkheya clade……………………………28 2.4.2: Insights from the psbA-trnH & combined data set phylogenies………………….37 2.4.3: Taxonomic implications: paraphyly of Berkheya………………………………...39 2.4.4: Taxonomic Implications: Correspondence with -
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld. -
Sand Mine Near Robertson, Western Cape Province
SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this -
Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia -
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
Insights from Microsporogenesis in Asparagales
EVOLUTION & DEVELOPMENT 9:5, 460–471 (2007) Constraints and selection: insights from microsporogenesis in Asparagales Laurent Penet,a,1,Ã Michel Laurin,b Pierre-Henri Gouyon,a,c and Sophie Nadota aLaboratoire Ecologie, Syste´matique et Evolution, Batiment 360, Universite´ Paris-Sud, 91405 Orsay Ce´dex, France bUMR CNRS 7179, Universite´ Paris 6FPierre & Marie Curie, 2 place Jussieu, Case 7077, 75005 Paris, France cMuse´um National d’Histoire Naturelle, De´partement de Syste´matique et Evolution Botanique, 12 rue Buffon, 75005 Paris CP 39, France ÃAuthor for correspondence (email: [email protected]) 1Current address: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth & Ruskin, Pittsburgh, PA 15260, USA. SUMMARY Developmental constraints have been proposed different characteristics of microsporogenesis, only cell to interfere with natural selection in limiting the available wall formation appeared as constrained. We show that set of potential adaptations. Whereas this concept has constraints may also result from biases in the correlated long been debated on theoretical grounds, it has been occurrence of developmental steps (e.g., lack of successive investigated empirically only in a few studies. In this article, cytokinesis when wall formation is centripetal). We document we evaluate the importance of developmental constraints such biases and their potential outcomes, notably the during microsporogenesis (male meiosis in plants), with an establishment of intermediate stages, which allow emphasis on phylogenetic patterns in Asparagales. Different development to bypass such constraints. These insights are developmental constraints were tested by character discussed with regard to potential selection on pollen reshuffling or by simulated distributions. Among the morphology. INTRODUCTION 1991) also hindered tests using the concept (Pigliucci and Kaplan 2000). -
A Nomenclator of Diplostephium (Asteraceae: Astereae): a List of Species with Their Synonyms and Distribution by Country
32 LUNDELLIA DECEMBER, 2011 A NOMENCLATOR OF DIPLOSTEPHIUM (ASTERACEAE: ASTEREAE): A LIST OF SPECIES WITH THEIR SYNONYMS AND DISTRIBUTION BY COUNTRY Oscar M. Vargas Integrative Biology and Plant Resources Center, 1 University Station CO930, The University of Texas, Austin, Texas 78712 U.S.A Author for correspondence ([email protected]) Abstract: Since the description of Diplostephium by Kunth in 1820, more than 200 Diplostephium taxa have been described. In the absence of a recent revision of the genus, a nomenclator of Diplostephium is provided based on an extensive review of the taxonomic literature, herbarium material, and databases. Here, 111 species recognized in the literature are listed along with their reference citations, types, synonyms, subspecific divisions, and distributions by country. In addition, a list of doubtful names and Diplostephium names now considered to be associated with other taxa is provided. Resumen: Desde la descripcio´n del genero Diplostephium por Kunth en 1820, mas de 200 nombres han sido publicados bajo Diplostephium. En ausencia de un estudio taxono´mico actualizado, se presenta una lista de nombres de Diplostephium basada en una revisio´n extensiva de la literaura taxono´mica, material de herbario y bases de datos. En este estudio se listan las 111 especies reconocidas hasta ahora, incluyendo informacio´n acerca de la publicacio´n de la especie, tipos, sino´nimos, divisio´n subgene´rica y distribuciones por paı´s. Adicionalmente se provee una lista de nombres dudosos y nombres de Diplostephium que se consideran estar asociados con otros taxones. Keywords: Asteraceae, Astereae, Diplostephium, nomenclator. Diplostephium is a genus of small trees, (ROSMARINIFOLIA,FLORIBUNDA,DENTICU- shrubs, and sub-shrubs that range from LATA,RUPESTRIA, and LAVANDULIFOLIA 5 Costa Rica to northern Chile. -
A Molecular Phylogeny of the Genus Scadoxus Raf. (Amaryllidaceae)
Fireball lilies of Africa: a molecular phylogeny of the genus Scadoxus Raf. (Amaryllidaceae) Kine Hals Bødker Master of Science Thesis Natural History Museum, University of Oslo Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo June 15th 2020 © Kine Hals Bødker 2020 Fireball lilies of Africa: a molecular phylogeny of the genus Scadoxus Raf. (Amaryllidaceae) Kine Hals Bødker http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo II Illustration: Aasne Aarhus, 1976. III IV Acknowledgements It has been an exciting journey working with the most beautiful plant genus of this world. There are many people I would like to thank for being a part of this journey. First and foremost, I want to thank my wonderful supervisors for all their help and support over the past two years. I could not have had a better team. My main supervisor, Charlotte - for your enthusiasm, knowledge, support and the most amazing field trips. In the 1970’s, before I was even born, Inger (and colleagues) worked with Scadoxus, which set the stage for this master thesis. I would like to thank Inger for being my additional supervisor and ultimately giving me this opportunity, and helping me understand more of Scadoxus morphology. Anne – for helping with the analyses, and especially for the incredibly helpful checking of spelling, grammatical errors and also helping me discourse my occasionally overwhelming results. Prof. Clemence Zimudzi and Dr. Tesfaye Awas – for fantastic field work experiences in Zimbabwe and Ethiopia, respectively. I would also like to thank the little kids in Ethiopia who helped us find Scadoxus specimens in places we never would have found without them. -
Medicinal Ethnobotany of the Kamiesberg, Namaqualand, Northern Cape Province, South Africa
Medicinal ethnobotany of the Kamiesberg, Namaqualand, Northern Cape Province, South Africa by JANNEKE MARGARETHA NORTJE DISSERTATION submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: PROF B.-E. VAN WYK NOVEMBER 2011 UNIVERSITY OF JOHANNESBURG FACULTY OF SCIENCE DECLARATION ON SUBMISSION OF COPIES FOR EXAMINATION DECLARATION BY STUDENT STUDENT NUMBER: 201048933 ID NUMBER: 8710140052081 I, Mrs Janneke Margaretha Nortje hereby declare that this thesis submitted for the MSc degree in the department Botany and Plant biotechnology, for the ethnobotanical field of study at the University of Johannesburg, apart from the help recognised, is my own work and has not been formerly submitted to another university for a degree. APPROVED TITLE: Medicinal ethnobotany of the Kamiesberg, Namaqualand, South Africa POSTAL ADDRESS: TELEPHONE NUMBER: Breyerlaan 1399 HOME: 0129931921 Waverley CELL: 0827612925 Pretoria E-MAIL: [email protected] POSTAL CODE: 0186 SIGNATURE DATE 2 DECLARATION BY SUPERVISOR Approval for submission of examination copies is hereby granted to the abovementioned student. The title is as officially approved. An article ready for publishing has been submitted / has not been submitted. Satisfactory arrangements have been made. SIGNATURE OF SUPERVISOR DATE FOR OFFICE USE Registration and title are in order: FACULTY OFFICER DATE 3 ABSTRACT Scientific relevance: Qualitative and quantitative data is presented that give a new perspective on the traditional medicinal plants of the Khoisan (Khoe-San), one of the most ancient of human cultures. The data is not only of considerable historical and cultural value, but allows for fascinating comparative studies relating to new species records, novel use records and the spatial distribution of traditional medicinal plant use knowledge within the Cape Floristic Region. -
Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in -
Haworthia ×Subattenuata 'Kinjoh' by Mr Shinnosuke Matsuzawa and Published in the Catalogue of Yokohama-Ueki 1925
Haworthia ×subattenuata ‘Kinjoh’ Contents Some Observations on Roots. Harry Mays, UK. ................................................................................................. 2-5 Aloe mossurilensis Ellert, sp. nov. Anthon Ellert, USA ........................................................................................ 6 Cultivar publication dates ........................................................................................................................................ 6 Haworthia ×subattenuata ‘Kinjoh’. Mays-Hayashi, Japan ............................................................... Front cover,6 Bruce Bayer’s Haworthia. Update 5 ........................................................................................................................ 7 White Widows and their Common-Law Hubbies. Steven A. Hammer, USA .................................................. 8-9 Rick Nowakowski - Natures Curiosity Shop. ....................................................................................................... 10 Repertorium Plantarum Succulentarum (The Rep), offer David Hunt, UK ..................................................... 10 Two Japanese Cultivars Distributed by Rick Nowakowski. ................................................................................ 11 ×Gasteraloe ‘Green Ice’. David Cumming ........................................................................................ Back cover,11 Index of plant names Volume 9 (2009) ............................................................................................................