Scandinavian Authors from This Period, Who, with the Exception of Levertin Who Died in 1906, Are Developing Themselves in Other Directions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
AFT Fathom Quick Start Guide
AFT Fathom™ Quick Start Guide Metric Units AFT Fathom Version 10 Incompressible Pipe Flow Modeling Dynamic solutions for a fluid world ™ CAUTION! AFT Fathom is a sophisticated pipe flow analysis program designed for qualified engineers with experience in pipe flow analysis and should not be used by untrained individuals. AFT Fathom is intended solely as an aide for pipe flow analysis engineers and not as a replacement for other design and analysis methods, including hand calculations and sound engineering judgment. All data generated by AFT Fathom should be independently verified with other engineering methods. AFT Fathom is designed to be used only by persons who possess a level of knowledge consistent with that obtained in an undergraduate engineering course in the analysis of pipe system fluid mechanics and are familiar with standard industry practice in pipe flow analysis. AFT Fathom is intended to be used only within the boundaries of its engineering assumptions. The user should consult the AFT Fathom Help System for a discussion of all engineering assumptions made by AFT Fathom. Information in this document is subject to change without notice. No part of this Quick Start Guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Applied Flow Technology. © 2018 Applied Flow Technology Corporation. All rights reserved. Printed in the United States of America. First Printing. “AFT Fathom”, “Applied Flow Technology”, “Dynamic solutions for a fluid world”, and the AFT logo are trademarks of Applied Flow Technology Corporation. Excel and Windows are trademarks of Microsoft Corporation. -
The History of Measurements
Helicobacter pylori Some Historical Units of Measurement History of Measurement • Objects were initially measured for convenience, to aid commerce and prevent fraud. • The Egyptians among other civilizations were the first to begin recording measurements around 3200 BC. • Early measurement units were based on body parts or common objects. Historical Units of Length and their equivalence chart ➢ Digit: the breadth of a finger (Egyptian) ➢ Barleycorn: the length of a barleycorn seed ➢ Inch: the width of a man’s thumb or 3 barleycorns ➢ Foot: the length of a man’s foot ➢ Cubit: elbow to fingertip length (Egyptian) ➢ Yard: nose to fingertip length ➢ Mile: 5000 pedes (feet, Roman) ➢ League: 7500 pedes Historical Units of Mass/Volume and their equivalence chart ➢ Grain: the weight of a grain of wheat or barleycorn ➢ Pound (libra): ~5000 grains (Roman) or ~7000 grains (English) ➢ Talent: 100 libra ➢ Stone: 14 pounds (English/British) ➢ Troy Ounce: 1/12 of a pound ➢ Carat: weight of a carob seed The Cubit The cubit is the measure from your elbow to the tip of your middle finger when your arm is extended. The cubit was the measurement used by the Egyptians to build the pyramids. The Palm The palm is the width of your four fingers when they are placed together. The Fathom The fathom is the measure from fingertip to fingertip when your arms are stretched sideways as far as they will go. The fathom was used by sailors to measure the depth of water so that boats would not run aground. The Hand-span The hand-span is the measure from the tip of your pinky to the tip of your thumb when your hand is stretched out. -
The History of Measurements
Helicobacter pylori Some Historical Units of Measurement Historical Units of Length ➢ Digit: the breadth of a finger (Egyptian) ➢ Barleycorn: the length of a barleycorn seed ➢ Inch: the width of a man’s thumb or 3 barleycorns ➢ Foot: the length of a man’s foot ➢ Cubit: elbow to fingertip length (Egyptian) ➢ Yard: nose to fingertip ➢ Mile: 5000 pedes (feet, Roman) ➢ League: 7500 pedes Historical Units of Mass/Volume ➢ Grain: the weight of a grain of wheat or barleycorn ➢ Pound (libra): ~5000 grains (Roman) or ~7000 grains (English) ➢ Talent: 100 libra ➢ Stone: 14 pounds (English/British) ➢ Troy Ounce: 1/12 of a pound ➢ Carat: weight of a carob seed The Cubit The cubit is the measure from your elbow to the tip of your middle finger when your arm is extended. The cubit was the measurement used by the Egyptians to build the pyramids. The Palm The palm is the width of your four fingers when they are placed together. The Fathom The fathom is the measure from fingertip to fingertip when your arms are stretched sideways as far as they will go. The fathom was used by sailors to measure the depth of water so that boats would not run aground. The Hand-span The hand-span is the measure from the tip of your pinky to the tip of your thumb when your hand is stretched out. Hand-span was used to measure the height of horses. People still describe horses as being so many hands high. The Pace The pace is the measure of distance from one step to another. -
Metric Doodle Notes
METRICS Cornell Doodle Notes Sampler TEACHER NOTES These Cornell Doodle Notes combine two effective note-taking strategies and can be used to introduce or review the metric system. The notes are organized by an Essential Question at the top, Topic Questions along the left column, details/pictures in the right column, and a Sum It Up page at the end for students to practice their skills. They begin with a section that shows why the Imperial system is quite silly (especially for science!). Then, they present that 10 is the ‘magic number’ of the Metric system, and proceed to explain the S.I. Units of mass, length, fluid volume, and time, the prefixes, a mnemonic device to remember the prefixes, and then to explain how to convert between metric units. Cornell Notes are a note-taking strategy in which topic questions are written in a narrow left-hand column and definitions, explanations, and diagrams are filled in in the right-hand column. At the bottom of Cornell Notes, there is typically a section included for reflection on the lesson’s main points. See the example to the right. Doodle Notes (or Sketch Notes) are another note- taking strategy for which pictures and graphics activate the visual pathways of the brain, which helps with retention of information when compared to standard note-taking. Your visual learners will really benefit from seeing and coloring in the pictures aside the main points of the notes! My architect husband drew the graphics for these notes. We hope your students like them! Doodle Notes is a registered trademark used with permission. -
SCIENTIFIC MEASUREMENTS © 2019, 2004, 1990 by David A
SCIENTIFIC MEASUREMENTS © 2019, 2004, 1990 by David A. Katz. All rights reserved. A BRIEF HISTORY OF MEASUREMENT Measurement was among one of the first intellectual achievements of early humans. People learned to measure centuries before they learned how to write and it was through measurement that people learned to count. People of the Peking and Neanderthal periods had implements constructed from materials individually determined to be the right length or weight for a particular purpose. A tool that worked well became the model and standard for another. (See Figure 1) To measure distance, they used their fingers, hands, arms, legs, etc... Measurement of weights were based on use of certain containers or what a person or beast could haul. Each unit was separate and unrelated since their ability to count was not developed. Figure 1. A stone ax and stones cut to the same size by comparison Since humans have ten fingers, we learned to count measurements from the Hittite by tens, and ways were soon found to relate units to Museum in Cappadocia, Turkey. each other. Some of the most well known of the early units of measurement were: inch - the width of the thumb. digit - the width of the middle finger (about 3/4 inch) palm - the width of four fingers (about 3 inches) span - the distance covered by the spread hand (about 9 inches) foot - the length of the foot. Later expressed as the length of 36 -barleycorns taken from the middle of the ear (about 12 inches). cubit - distance from the elbow to the tip of the middle finger (about 18 inches). -
Imperial Units
Imperial units From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the post-1824 measures used in the British Empire and countries in the British sphere of influence. For the units used in England before 1824, see English units. For the system of weight, see Avoirdupois. For United States customary units, see Customary units . Imperial units or the imperial system is a system of units, first defined in the British Weights and Measures Act of 1824, later refined (until 1959) and reduced. The system came into official use across the British Empire. By the late 20th century most nations of the former empire had officially adopted the metric system as their main system of measurement. The former Weights and Measures office in Seven Sisters, London. Contents [hide] • 1 Relation to other systems • 2 Units ○ 2.1 Length ○ 2.2 Area ○ 2.3 Volume 2.3.1 British apothecaries ' volume measures ○ 2.4 Mass • 3 Current use of imperial units ○ 3.1 United Kingdom ○ 3.2 Canada ○ 3.3 Australia ○ 3.4 Republic of Ireland ○ 3.5 Other countries • 4 See also • 5 References • 6 External links [edit] Relation to other systems The imperial system is one of many systems of English or foot-pound-second units, so named because of the base units of length, mass and time. Although most of the units are defined in more than one system, some subsidiary units were used to a much greater extent, or for different purposes, in one area rather than the other. The distinctions between these systems are often not drawn precisely. -
English Customary Weights and Measures
English Customary Weights and Measures Distance In all traditional measuring systems, short distance units are based on the dimensions of the human body. The inch represents the width of a thumb; in fact, in many languages, the word for "inch" is also the word for "thumb." The foot (12 inches) was originally the length of a human foot, although it has evolved to be longer than most people's feet. The yard (3 feet) seems to have gotten its start in England as the name of a 3-foot measuring stick, but it is also understood to be the distance from the tip of the nose to the end of the middle finger of the outstretched hand. Finally, if you stretch your arms out to the sides as far as possible, your total "arm span," from one fingertip to the other, is a fathom (6 feet). Historically, there are many other "natural units" of the same kind, including the digit (the width of a finger, 0.75 inch), the nail (length of the last two joints of the middle finger, 3 digits or 2.25 inches), the palm (width of the palm, 3 inches), the hand (4 inches), the shaftment (width of the hand and outstretched thumb, 2 palms or 6 inches), the span (width of the outstretched hand, from the tip of the thumb to the tip of the little finger, 3 palms or 9 inches), and the cubit (length of the forearm, 18 inches). In Anglo-Saxon England (before the Norman conquest of 1066), short distances seem to have been measured in several ways. -
The History of Measurements
Helicobacter pylori Measurement Measurement • the assignment of numbers to objects or events • a type of quantitative observation made with a measuring instrument • includes both a number and a unit • units of measurement are essentially arbitrary: people make them up and then agree to use them Measuring is an important part of everyday life! What can we measure? And how? • Length ✓ Ruler • Distance on land ✓ Measuring Chain/Tape • Depth of water ✓ Sonar (echo sounder) • Mass ✓ Weighing scale • Temperature ✓ Thermometer • Time ✓ Clock, timer • Light ✓ Photometer • Electric current ✓ Ammeter • Color ✓ Spectrometer How good is the measurement? • Accuracy is how close a measured value is to the actual (true) value. • Precision is how close the measured values are to each other (repeatability and reproducibility). ? ? ? ? • Bias is a built-in (systematic) error which makes all measurements wrong by a certain amount. History of Measurement • Objects were initially measured for convenience, to aid commerce and prevent fraud. • The Egyptians among other civilizations were the first to begin recording measurements around 3200 BC. • Early measurements were based on body parts or common objects. Problems with Early Measurement Units 1. People have different sized body parts, as well as there is a variety among common objects like grains... Grain, India Wheat Barleycorn 2. …so measurements are not accurate, especially when dealing with fractions and multiples… SOLUTION: Standard Measurement Systems! What is a System of Measurement? A system of measurement is a collection of units of measurement and rules relating them to each other. • Must have base units defined for all major quantities that need to be measured (example: a foot). -
The International System of Units (SI) - Conversion Factors For
NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v -
Friday, October 6, 2017 1 Writing Methods to Do Unit Conversions
INTRODUCTION TO COMPUTER SCIENCE I LAB 5: CONVERTING UNITS Friday, October 6, 2017 1 Writing methods to do unit conversions 1.1 The units The core of this lab assignment will be unit conversions—translating a measurement in one unit into some other unit. In particular, we will use a few different measurements of length, and a few of time. Here are the units we will use: • Measurements of length: Unit name Conversion meter (m) The canonical unit foot (ft) 0:3048 m 1 inch (in) 12 ft yard (yd) 3 ft smoot 1:7018 m 1 barleycorn 3 in • Measurements of time: Unit name Conversion second (s) The canonical unit minute (m) 60 s 1 jiffy 60 s 10 helek 3 s 1.2 Getting started Now that you have some units with which to work, it is time to start a new program for yourself. Specifically: 1. Create a directory for this project, change into it, and grab source code: $ mkdir lab5 $ cd lab5 $ wget -nv --trust-server-names https://goo.gl/MbFqMC 1 2. Open the new source code file in Emacs: $ emacs Converter.java & You will see, in this source code file, the beginnings of a program named Converter. It con- tains, for starters, two complete methods named convertInchToFoot and convertFootToInch. Given the conversion factor from one to the other, you should, as these methods show, easily be able also to use these to perform the inverse conversions. Your first task: For each of the conversions listed above, write a method to perform that conver- sion and its inverse (e.g., inches to feet and feet to inches). -
The History and Mathematics of Conversions
THE HISTORY AND MATHEMATICS OF CONVERSIONS BY JAMES D. NICKEL THE METRIC SYSTEM I f you live in the United States of America, you have to work with two systems of measure. These two sys- tems are called (1) British Imperial system of measure and (2) Metric system of measure. In the British sys- Item, with its long and storied history, there are many sub-systems where different bases are used. The pint- gallon system is base 8, the inches-foot system is base 12, the yard-foot system is base 3, the week-day system is base 7, the month-year system is base 12, the yard-mile system is base 1760, and the foot-mile system is base 5280. In contrast, the Metric system of measurement is, like most national currencies, decimalized (base 10). As we have already noted, it was developed in France in the late 18th century.1 Since the 1960s the International System of Units (SI) (Système International d'Unités in French, hence “SI”) has been the internationally recognized standard metric system. Metric units are widely used around the world for personal, commercial and scientific purposes. Of all the nations of the world (Date: early 21st century), only Liberia, Myanmar and the United States have not yet officially adopt- ed the Metric system. Metric units consist of a standard set of prefixes in multiples of 10 that may be used to derive larger and smaller units. Work- ing with these units is as easy as multiply- ing or dividing by 10 (or powers of 10). -
Appendix D2: Weights and Measures
Appendix D2: Weights and Measures The medieval Nordic systems of weights and measures varied considerably over space and time, and with respect to the object(s) being measured. One must distinguish between A) measures of capacity and volume (“rummål”), B) measures of 1) length and 2) surface/area (“jordmål”), and C) measures of weight. Some terms occurred in more than one category, for example tunna and fjärding, which might denote volume as well as area or length, depending on context. The units were generally parts of larger, hierarchically structured terminological systems. As examples of such connections, some terms have been included that are not found in the provincial laws (e.g. tunna, skippund and skálpund). On the other hand, it is virtually impossible, for reasons of space, to accommodate all local variations in a general survey. For this reason, only the more important regional differences are considered. A) With respect to capacity and volume, dry and liquid goods were measured differently. OSw measures of grain were sal(d)/soldh (145.8 litres in WSweden), usually divided into 6 skæppor, each containing c. 24.6 litres. Of the same size as the soldh was the tunna. Much used was the unit spander (ODan spand, ON spann) (c. 73 litres), divided into fiærþungar (‘fourths’) of 18.3 litres. In Denmark the main unit was tunna (ODan tønde), varying in size from 139 to 194 litres. Spand was 1/8 tønde, i.e. c. 17 litres as a measure of oats; usually spand was a measure of butter (1/16 tønde, i.e.