The Enhancement of Wild Bees (Hymenoptera: Apoidea) For
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Journal of Melittology No
Journal of Melitology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 80, pp. 1–11 22 September 2018 Michener Centenary: Memories Michael S. Engel1,2 & Victor H. Gonzalez3 Abstract. In celebration of the centenary of Charles D. Michener’s birth, the Journal of Melitology ofers a sampling of memories from colleagues and former students. INTRODUCTION Today marks the 100th anniversary of the birth of Charles D. Michener (Fig. 1), eas- ily the world’s greatest melitologist of any generation. Mich, as he was known to all, was a remarkable scientist and humanitarian, and his benefcent infuence was granted to anyone who encountered him, as well as to many who he never met in person. His scholarly work was extensive and encompassed virtually every subject regarding bees, as well as many other intellectual endeavors. Nonethless, Mich’s greatest contribution could not be scored by any academic metric. His greatest legacy resides in the numer- ous students he mentored and colleagues he encouraged, and the many kindnesses he distributed over the course of his long life. The present contribution is not meant to be a panegyric or biography, and ac- counts of Mich’s life and scholarly work have been published elsewhere in recent years (Banaszak, 2016; Breed, 2016; Engel, 2015, 2016a, 2016b, 2017; West-Eberhard & Engel, 2017). Instead, we ofer here a selection of memories contributed by colleagues and former students of Mich, refecting the multivarious ways in which he graced their lives. They are presented in alphabetical order by author and with only subtle editing where necessary. -
Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School. -
Solidago Newsletter of The
Solidago Newsletter of the Founded in 1997. Finger Lakes Native Plant Society Logo art of Tall Goldenrod, Solidago altissima, by Nat Cleavitt, 2006. Volume 14, No. 2 July 2013 Editorial Skippers in Slippers! by Robert Dirig HE FIRST WILD ORCHIDS I EVER SAW were Pink M Lady-slippers (Cypripedium acaule), which my family cherished in the Catskills. Later, my father showed me the Larger Yellow Lady-slipper (C. parviflorum, var. pubescens) along the Delaware River. But nowhere in that region did we find the other species that is pictured in all the guides — the great Showy Lady-slipper (C. reginae) that often grows in knee-high clumps, has leaves on its stems, and two or more gorgeous pink-and-white blooms per plant. I was in my thirties before I finally beheld this iconic wildflower near Ithaca, N.Y. More years passed, while I learned about its seepy fen habitats, with underlying marl that provided the damp limy situations required by this spectacular orchid. In the early 1980s, I started to compile yearly records of butterfly nectaring, a field habit that continues to the present. In all that time I have never observed a butterfly feeding at any kind of lady-slipper; the closest I came was finding a male Long Dash (Polites mystic) resting on a Showy’s flower at dusk (28 June edges of a beaver meadow, or on acidickind of 2000). Then on 21 June 2005, I noticed a dead male Hobomok Skipper (Poanes hobomok) trapped inside the lip of a Showy Lady-slipper at Cornell’s Eames Memorial Preserve, and within an hour found another at McLean Bogs Preserve. -
Impact De La Densité De Cerfs De Virginie Sur Les Communautés D'insectes De L'île D'anticosti
PIERRE-MARC BROUSSEAU IMPACT DE LA DENSITÉ DE CERFS DE VIRGINIE SUR LES COMMUNAUTÉS D'INSECTES DE L'ÎLE D'ANTICOSTI Mémoire présenté à la Faculté des études supérieures de l’Université Laval dans le cadre du programme de maîtrise en biologie pour l’obtention du grade de maître ès sciences (M. Sc.) DÉPARTEMENT DE BIOLOGIE FACULTÉ DES SCIENCES ET GÉNIE UNIVERSITÉ LAVAL QUÉBEC 2011 © Pierre-Marc Brousseau, 2011 Résumé Les surabondances de cerfs peuvent nuire à la régénération forestière et modifier les communautés végétales et ainsi avoir un impact sur plusieurs groupes d'arthropodes. Dans cette étude, nous avons utilisé un dispositif répliqué avec trois densités contrôlées de cerfs de Virginie et une densité non contrôlée élevée sur l'île d'Anticosti. Nous y avons évalué l'impact des densités de cerfs sur les communautés de quatre groupes d'insectes représentant un gradient d'association avec les plantes, ainsi que sur les communautés d'arthropodes herbivores, pollinisateurs et prédateurs associées à trois espèces de plantes dont l'abondance varient avec la densité de cerfs. Les résultats montrent que les groupes d'arthropodes les plus directement associés aux plantes sont les plus affectés par le cerf. De plus, l'impact est plus fort si la plante à laquelle ils sont étroitement associés diminue en abondance avec la densité de cerfs. Les insectes ont également démontré une forte capacité de résilience. ii Abstract Deer overabundances can be detrimental to forest regeneration and can modify vegetal communities and consequently, have an indirect impact on many arthropod groups. In this study, we used a replicated exclosure system with three controlled white-tailed deer densities and an uncontrolled high deer density on Anticosti Island. -
Diversified Floral Resource Plantings Support Bee Communities After
www.nature.com/scientificreports Corrected: Publisher Correction OPEN Diversifed Floral Resource Plantings Support Bee Communities after Apple Bloom in Commercial Orchards Sarah Heller1,2,5,6, Neelendra K. Joshi1,2,3,6*, Timothy Leslie4, Edwin G. Rajotte2 & David J. Biddinger1,2* Natural habitats, comprised of various fowering plant species, provide food and nesting resources for pollinator species and other benefcial arthropods. Loss of such habitats in agricultural regions and in other human-modifed landscapes could be a factor in recent bee declines. Artifcially established foral plantings may ofset these losses. A multi-year, season-long feld study was conducted to examine how wildfower plantings near commercial apple orchards infuenced bee communities. We examined bee abundance, species richness, diversity, and species assemblages in both the foral plantings and adjoining apple orchards. We also examined bee community subsets, such as known tree fruit pollinators, rare pollinator species, and bees collected during apple bloom. During this study, a total of 138 species of bees were collected, which included 100 species in the foral plantings and 116 species in the apple orchards. Abundance of rare bee species was not signifcantly diferent between apple orchards and the foral plantings. During apple bloom, the known tree fruit pollinators were more frequently captured in the orchards than the foral plantings. However, after apple bloom, the abundance of known tree fruit pollinating bees increased signifcantly in the foral plantings, indicating potential for foral plantings to provide additional food and nesting resources when apple fowers are not available. Insect pollinators are essential in nearly all terrestrial ecosystems, and the ecosystem services they provide are vital to both wild plant communities and agricultural crop production. -
Sources and Frequency of Brood Loss in Solitary Bees
Apidologie Original Article * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2019 DOI: 10.1007/s13592-019-00663-2 Sources and frequency of brood loss in solitary bees 1 2 Robert L. MINCKLEY , Bryan N. DANFORTH 1Department of Biology, University of Rochester, Rochester, NY 14620, USA 2Department of Entomology, Cornell University, Ithaca, NY 14853, USA Received4February2019– Revised 17 April 2019 – Accepted 4 June 2019 Abstract – We surveyed the literature for reports of parasites, predators, and other associates of the brood found in the nests of solitary bees. Studies were included in this survey if they reported the contents of all the bee brood cells that they examined. The natural enemies of solitary bees represented in the studies included here were taxonomically diverse. Although a few studies report high loss of solitary bee brood to a species-rich set of natural enemies, most studies report losses of less than 20% to few natural enemies. Brood parasitic bees are the greatest source of mortality for immatures of pollen-collecting solitary bees followed by meloid beetles (Meloidae), beeflies (Bombyliidae), and clerid beetles (Cleridae). Most groups, however, are reported from only a few host species and attack a low proportion of brood cells. Mortality due to unknown causes is also common. The suite of natural enemies that attack ground- and cavity-nesting solitary bees is very different. The cavity-nesting species have higher reported mortality due to unknown causes perhaps related to how nests are manipulated and handled by researchers. brood parasite / predator / cavity-nesting bees / ground-nesting bees / meta-analysis 1. -
Land Uses That Support Wild Bee (Hymenoptera: Apoidea: Anthophila) Communities Within an Agricultural Matrix
Land uses that support wild bee (Hymenoptera: Apoidea: Anthophila) communities within an agricultural matrix A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Elaine Celeste Evans IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Marla Spivak December 2016 © Elaine Evans 2016 Acknowledgements Many people helped me successfully complete this project. Many years ago, my advisor, mentor, hero, and friend, Marla Spivak, saw potential in me and helped me to become an effective scientist and educator working to create a more bee-friendly world. I have benefitted immensely from her guidance and support. The Bee Lab team, both those that helped me directly in the field, and those that advised along the way through analysis and writing, have provided a dreamy workplace: Joel Gardner, Matt Smart, Renata Borba, Katie Lee, Gary Reuter, Becky Masterman, Judy Wu, Ian Lane, Morgan Carr- Markell. My committee helped guide me along the way and steer me in the right direction: Dan Cariveau (gold star for much advice on analysis), Diane Larson, Ralph Holzenthal, and Karen Oberauser. Cooperation with Chip Eullis and Jordan Neau at the USGS enabled detailed land use analysis. The bee taxonomists who helped me with bee identification were essential for the success of this project: Jason Gibbs, John Ascher, Sam Droege, Mike Arduser, and Karen Wright. My friends and family eased my burden with their enthusiasm for me to follow my passion and their understanding of my monomania. My husband Paul Metzger and my son August supported me in uncountable ways. -
Response of Cypripedium and Goodyera to Disturbance in the Thunder Bay Area
Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2018 Response of Cypripedium and Goodyera to disturbance in the Thunder Bay area Davis, Danielle http://knowledgecommons.lakeheadu.ca/handle/2453/4426 Downloaded from Lakehead University, KnowledgeCommons 5(63216(2)&<35,3(',80$1'*22'<(5$72',6785%$1&(,1 7+(7+81'(5%$<$5($ E\ 'DQLHOOH'DYLV )$&8/7<2)1$785$/5(6285&(60$1$*(0(17 /$.(+($'81,9(56,7< 7+81'(5%$<217$5,2 0D\ RESPONSE OF CYPRIPEDIUM AND GOODYERA TO DISTURBANCE IN THE THUNDER BAY AREA by Danielle Davis An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University May 2018 Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and research and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: Date: iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. -
Common Pollinators of British Columbia – a Visual Identification
COMMON POLLINATORS OF BRITISH COLUMBIA A Visual Identification Guide Created by Border Free Bees and the Environmental Youth Alliance 1 · Navigation Honey Bee Bumble Bee Other Bees Hover Fly Butterfly Wasp Navigation 2 Introduction 3 Insight Citizen Science 3 Basic Insect Anatomy Pollinator Categories 4 Honey Bee 8 Bumble Bee 12 Other Bees 20 Hover Fly 24 Butterfly 28 Wasp 31 Complimentary Resources 32 Acknowledgments 33 Field Notes Introduction This visual guide was created to help as a field guide to use in comparing educate the public on how to identify closely similar species. Rather, treat common pollinators in British Columbia. this guide as a visual aid to direct your Bees are by far the most representative skills towards different families of group, and critically important bees and general characteristics you to providing pollination service to may be able to see while outdoors. terrestrial ecosystems and agricultural The guide breaks pollinators down landscapes. They effectively transfer into 6 categories: Honey Bees, Bumble pollen with feather-like hairs on their Bees, Other Bees, Wasps, Hover Flies and bodies capturing pollen grains. It is Butterflies. With a basic understanding estimated that there are around 500 of the characteristics that differentiate species of bees in British Columbia. these types of pollinators you can This guide serves as an introduction to participate in pollinator citizen science the common groups of pollinators that programs with ease. you may observe, and does not stand Basic Insect Anatomy Antenna Proboscis (tongue) Compound Eye Insight is a mobile app created by Border Free Bees that Thorax makes it easy for citizens to record pollinator observations Forewing using their smart phones. -
FORTY YEARS of CHANGE in SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus
University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Summer 7-15-2019 FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Biology Commons Recommended Citation Cumberland, Catherine. "FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES." (2019). https://digitalrepository.unm.edu/biol_etds/321 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Catherine Cumberland Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Kenneth Whitney, Ph.D., Chairperson Scott Collins, Ph.D. Paula Klientjes-Neff, Ph.D. Diane Marshall, Ph.D. Kelly Miller, Ph.D. i FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology, Sonoma State University 2005 B.A., Environmental Studies, Sonoma State University 2005 M.S., Ecology, Colorado State University 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BIOLOGY The University of New Mexico Albuquerque, New Mexico July, 2019 ii FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology B.A., Environmental Studies M.S., Ecology Ph.D., Biology ABSTRACT Changes in a regional bee assemblage were investigated by repeating a 1970s study from the U.S. -
An Inventory of Native Bees (Hymenoptera: Apiformes)
An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey. -
Zootaxa, a Review of the Cleptoparasitic Bee Genus Triepeolus
ZOOTAXA 1710 A review of the cleptoparasitic bee genus Triepeolus (Hymenoptera: Apidae).—Part I MOLLY G. RIGHTMYER Magnolia Press Auckland, New Zealand MOLLY G. RIGHTMYER A review of the cleptoparasitic bee genus Triepeolus (Hymenoptera: Apidae).—Part I (Zootaxa 1710) 170 pp.; 30 cm. 22 Feb. 2008 ISBN 978-1-86977-191-1 (paperback) ISBN 978-1-86977-192-8 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1710 © 2008 Magnolia Press RIGHTMYER Zootaxa 1710: 1–170 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A review of the cleptoparasitic bee genus Triepeolus (Hymenoptera: Apidae).— Part I MOLLY G. RIGHTMYER Department of Entomology, MRC 188, P. O. Box 37012, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012 USA [email protected] Table of contents Abstract . .5 Introduction . .6 Materials and methods . .7 Morphology . .9 Key to the females of North and Central America .