Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S

Total Page:16

File Type:pdf, Size:1020Kb

Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S Historical changes in northeastern US bee pollinators related to shared ecological traits Ignasi Bartomeusa,b,1, John S. Ascherc,d, Jason Gibbse, Bryan N. Danforthe, David L. Wagnerf, Shannon M. Hedtkee, and Rachael Winfreea,g aDepartment of Entomology, Rutgers University, New Brunswick, NJ 08901; bDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; cDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192; dDepartment of Biological Sciences, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 117546; eDepartment of Entomology, Cornell University, Ithaca, NY 14853; fDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043; and gDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 1, 2013 (received for review October 24, 2012) Pollinators such as bees are essential to the functioning of ter- characterized by particularly intensive land use and may not be restrial ecosystems. However, despite concerns about a global representative of changes in the status of bees in other parts of pollinator crisis, long-term data on the status of bee species are the world. Thus, the existence of a widespread crisis in pollinator limited. We present a long-term study of relative rates of change declines, as often portrayed in the media and elsewhere (4), rests for an entire regional bee fauna in the northeastern United States, on data of limited taxonomic or geographic scope. based on >30,000 museum records representing 438 species. Over Environmental change affects species differentially, creating a 140-y period, aggregate native species richness weakly de- “losers” that decline with increased human activity, but also creased, but richness declines were significant only for the genus “winners” that thrive in human-altered environments (14). Al- Bombus. Of 187 native species analyzed individually, only three though there are likely winners and losers among bees, the declined steeply, all of these in the genus Bombus. However, there identity of these species is largely unknown (6). In general, certain were large shifts in community composition, as indicated by 56% life-history traits are predicted to make species more vulnerable of species showing significant changes in relative abundance over (15), such as having a small niche breadth (e.g., a specialized diet; time. Traits associated with a declining relative abundance include 16). However, predictions for some other traits such as body size small dietary and phenological breadth and large body size. In have resulted in contrasting predictions (17, 18). In bees, addi- addition, species with lower latitudinal range boundaries are in- tional traits such as nest site location and brood parasitism or creasing in relative abundance, a finding that may represent a re- sociality also determine a species’ response to environmental sponse to climate change. We show that despite marked increases change (19–21). in human population density and large changes in anthropogenic Here we present a long-term study of relative rates of change land use, aggregate native species richness declines were modest for all 47 northeastern North American bee genera, comprising fi outside of the genus Bombus. At the same time, we nd that 438 species. To achieve a long-term (140-y) dataset, we data- certain ecological traits are associated with declines in relative based, identified, and filtered >30,000 bee specimens from major abundance. These results should help target conservation efforts collections of leading northeastern North American museums. focused on maintaining native bee abundance and diversity and therefore the important ecosystems services that they provide. Results and Discussion Changes in Species Richness. We first binned the 30,138 specimens bee declines | global change | pollination into 10 time periods, each containing a similar number of in- dependent records. For the non-Bombus species, we found that ollination is an essential ecosystem function because 87% of the number of rarefied bee species per time period has declined Pthe world’sangiospermspeciesarepollinatedbyanimals by 15%, but the trend is not significant (permutation test P = (1), including most of the leading global food crops (2). Bees 0.07; Fig. 1A and Fig. S1A). Modest richness declines are in (Hymenoptera: Apoidea: Anthophila) are regarded as the most accordance with the few field data available (22, 23). For important pollinators, both for their efficiency and their ubiquity Bombus, species richness declined by 30% over the 140-y period (3). However, despite concerns about pollinator declines and (permutation test P = 0.01; Fig. 1B and Fig. S1B). Our result a global pollinator crisis (4), long-term data on the status of bee confirms previous studies documenting North American declines populations are scarce (5). Thus, a recent US National Academy in Bombus species richness (7–9). Last, we identified 20 exotic of Sciences report concluded that “for most pollinator species, species (i.e., not native to the United States) in our study area the paucity of long-term data and the incomplete knowledge of (Table S1) and found that the number of exotic species collected fi even basic taxonomy and ecology make de nitive assessment of increased by a factor of 9 over time (permutation test P = 0.01; fi status exceedingly dif cult” (6). Fig. 1C). Heretofore, most studies reporting bee population declines A limitation of our study, and of previous published studies of have been focused on the bumble bee genus, Bombus. Some long-term trends in pollinators (13), is that sampling effort is Bombus species are declining sharply in North America (7–9) and elsewhere (10, 11), although others remain numerous (7) or are expanding their ranges (10). Furthermore, Bombus may not Author contributions: I.B., J.S.A., and R.W. designed research; I.B., J.S.A., J.G., and D.L.W. be representative of the world’s 442 other bee genera because performed research; B.N.D. and S.M.H. contributed new reagents/analytic tools; I.B. ana- they may have been impacted by recent pathogen introductions lyzed data; and I.B. and R.W. wrote the paper. from managed Bombus colonies (7). Much less is known about The authors declare no conflict of interest. the status of other genera, which account for >95% of the This article is a PNAS Direct Submission. ∼20,000 described species of bees worldwide (12). The only long- Data deposition: The data reported in this paper have been deposited in the DRYAD term analysis to date that included species other than Bombus repository, http://dx.doi.org/10.5061/dryad.0nj49. showed significant declines in estimated species richness in the 1To whom correspondence should be addressed. E-mail: [email protected]. United Kingdom and the Netherlands when comparing pre- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. versus post-1980 records (13). However, both study areas are 1073/pnas.1218503110/-/DCSupplemental. 4656–4660 | PNAS | March 19, 2013 | vol. 110 | no. 12 www.pnas.org/cgi/doi/10.1073/pnas.1218503110 A 240 species 220 Bombus 200 180 Bee photo Coelioxys sayi Number of non- 1981-2002 1913-1931 1872-1913 1931-1960 1965-1972 1972-1981 2002-2006 2006-2008 2008-2011 1960-1965 B 18 species 16 Bombus 14 12 Bee photo Number of Bombus citrinus 1906-1919 1919-1937 1899-1906 1963-1975 1986-2005 2005-2008 2008-2011 1877-1899 1937-1963 1975-1986 C 12 10 8 6 4 ECOLOGY 2 0 Bee photo Number of exotic species Anthidium manicatum 1872-1914 1965-1972 1972-1981 1981-2002 2002-2006 2006-2008 1914-1932 2008-2011 1932-1960 1960-1965 Fig. 1. Trends in species richness over time. Number of bee species (± SE) in a standard number of independent specimen records per time period. Dashed line indicates a nonsignificant trend and solid line a significant trend. (A) All native bee species excluding Bombus (rarefied to 1,000 specimens). (B)Genus Bombus (rarefied to 400 specimens). (C) Exotic bee species (rarefied to 1,000 specimens). unknown, particularly in the earlier time periods. Although the data show steep declines for this species in the southern part of rarefaction techniques we use partially correct for this, rarefied its range, recent records demonstrate persistence, especially in richness may reflect changes in species composition and domi- northern areas within the core of the species’ historic range. nance as well as changes in species richness; thus, our results Many other species with significant declining trends are common should be interpreted as combining these two metrics. For ex- and are still collected regularly, but nevertheless should be ample, one possible interpretation is that some species are be- monitored because such slow declines could be taken as an early coming more common over time whereas other species are warning signal of imperilment. Last, nine of the 87 rare species becoming less so. (defined as having 10 < n < 30 specimens; all of these species were excluded in our species-level analysis because of inadequate Changes in Composition. In a second, species-level analysis, only sample size) have not been recorded from the past 10 years three of 187 species, all in the genus Bombus, exhibited a rapid (these are listed in Table S1) (24). Furthermore, our failure to and recent population collapse [generalized linear model (GLM) detect particular species in the most recent period is conservative using presence-absence as response variable; P < 0.05]. Two of because the greatest collection effort took place during this pe- these species, Bombus affinis and Bombus pensylvanicus, have riod (Fig. 1). recently been identified as being of conservation concern based There are several important caveats to our species- and genus- on data independent of ours (7), whereas Bombus ashtoni, a so- level results, which stem from limitations of our dataset.
Recommended publications
  • A Comprehensive Guide to Insects of Britain & Ireland
    a comprehensive guide to insects of Britain & ireland To be launched Spring 2014. order your copy now and save over £7.50! Offer endS 31 March 2014 Special expected list price: £27.50 Pre-Publication special price: £19.95 offer you save: £7.50 A comprehensive guide to Insects of Britain & irelAnd by Paul D. Brock Special expected list price: £27.50 * Scientific Associate of the Pre-Publication special price: £19.95 Natural History Museum, offer you save: £7.50 London, and author of the acclaimed ‘Insects of the New Forest’ full colour photographs throughout, with fully comprehensive sections on all insect 2 Ants, bees and wasps Subfamily Andreninae Ants, bees and wasps 3 Andrena species form the majority of this large subfamily of small to large, mining (soil-nesting) bees; very few groups, including flies, bees and wasps nest communally. There are sometimes several species with similar appearance, thus care is needed in identification. Many have a single brood, but identification of others with two broods is so by seasonal variation. In a few species, giant males occur, with large heads and mandibles. metimes complicated species and a few Sphecodes species are cleptoparasites and parasitic flies are often seen around Colourful nests where it is fascinating to watch their behaviour. A selection of species in this popular genus is include Nomada widespread, some are very local. ISBN 978-1-874357-58-2 d; although Andrena angustior Body length: 8–11 mm. Small, distinguished by the long marginal area on 2nd tergite. Cleptoparasite probably Nomada fabriciana Flexibound, 195 × 135mm, around 500pp woodlands, meadows and sometimes heaths.
    [Show full text]
  • Hymenoptera; Andrenidae) Manuela Giovanetti, Eloisa Lasso
    Body size, loading capacity and rate of reproduction in the communal bee Andrena agilissima (Hymenoptera; Andrenidae) Manuela Giovanetti, Eloisa Lasso To cite this version: Manuela Giovanetti, Eloisa Lasso. Body size, loading capacity and rate of reproduction in the com- munal bee Andrena agilissima (Hymenoptera; Andrenidae). Apidologie, Springer Verlag, 2005, 36 (3), pp.439-447. hal-00892151 HAL Id: hal-00892151 https://hal.archives-ouvertes.fr/hal-00892151 Submitted on 1 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 36 (2005) 439–447 © INRA/DIB-AGIB/ EDP Sciences, 2005 439 DOI: 10.1051/apido:2005028 Original article Body size, loading capacity and rate of reproduction in the communal bee Andrena agilissima (Hymenoptera; Andrenidae)1 Manuela GIOVANETTIa*, Eloisa LASSOb** a Dip. Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy b Dep. Plant Biology, University of Illinois, 505 S. Goodwin Av., 265 Morrill Hall, Urbana, IL 61801, USA Received 12 February 2004 – revised 3 November 2004 – accepted 12 November 2004 Published online 9 August 2005 Abstract – In bees, body size may be particularly important in determining the loading capacity, and consequently the rate of reproduction.
    [Show full text]
  • Specialist Foragers in Forest Bee Communities Are Small, Social Or Emerge Early
    Received: 5 November 2018 | Accepted: 2 April 2019 DOI: 10.1111/1365-2656.13003 RESEARCH ARTICLE Specialist foragers in forest bee communities are small, social or emerge early Colleen Smith1,2 | Lucia Weinman1,2 | Jason Gibbs3 | Rachael Winfree2 1GraDuate Program in Ecology & Evolution, Rutgers University, New Abstract Brunswick, New Jersey 1. InDiviDual pollinators that specialize on one plant species within a foraging bout 2 Department of Ecology, Evolution, and transfer more conspecific and less heterospecific pollen, positively affecting plant Natural Resources, Rutgers University, New Brunswick, New Jersey reproDuction. However, we know much less about pollinator specialization at the 3Department of Entomology, University of scale of a foraging bout compared to specialization by pollinator species. Manitoba, Winnipeg, Manitoba, CanaDa 2. In this stuDy, we measured the Diversity of pollen carried by inDiviDual bees forag- Correspondence ing in forest plant communities in the miD-Atlantic United States. Colleen Smith Email: [email protected] 3. We found that inDiviDuals frequently carried low-Diversity pollen loaDs, suggest- ing that specialization at the scale of the foraging bout is common. InDiviDuals of Funding information Xerces Society for Invertebrate solitary bee species carried higher Diversity pollen loaDs than Did inDiviDuals of Conservation; Natural Resources social bee species; the latter have been better stuDied with respect to foraging Conservation Service; GarDen Club of America bout specialization, but account for a small minority of the worlD’s bee species. Bee boDy size was positively correlated with pollen load Diversity, and inDiviDuals HanDling EDitor: Julian Resasco of polylectic (but not oligolectic) species carried increasingly Diverse pollen loaDs as the season progresseD, likely reflecting an increase in the Diversity of flowers in bloom.
    [Show full text]
  • The Potential Conservation Value of Unmowed Powerline Strips for Native Bees
    BIOLOGICAL CONSERVATION Biological Conservation 124 (2005) 133–148 www.elsevier.com/locate/biocon The potential conservation value of unmowed powerline strips for native bees K.N. Russell a,*, H. Ikerd b, S. Droege c a Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, 79th Street, New York, NY 10024, USA b Bee Biology and Systematics Laboratory, Utah State University, 5310 Old Main Hill, Logan, UT 84322-5310, USA c USGS Patuxent Wildlife Research Center, 12100 Beech Forest, Laurel, MD 20708-4083, USA Received 17 February 2004 Abstract The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yel- lowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavity-nesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, non-grassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Etude Systematique Des Insectes
    République Algérienne démocratique et populaire Ministère de l’enseignement supérieur et de la recherche scientifique Université de Mohamed Kheider –BISKRA- Réf :………….. Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département des Sciences de la Nature et de la Vie Mémoire de Magistère en Biologie Spécialité : Biologie Animale Option : Arthropodologie ETUDE SYSTEMATIQUE DES INSECTES ANDRENIDAE (HYMENOPTERA : APOIDEA) DE LA REGION DE BISKRA. Présenté par : DJOUAMA Hana Membres de jury : Président : Mr. BELHAMRA Mohammed Maitre de conférences. Université de Biskra Rapporteur : Mr. LOUADI Kamel Professeur. Université Mentouri Constantine Examinateurs : Mlle. BERCHI Selima Professeur. Université Mentouri Constantine Mr. LAAMARI Malik Professeur. Université de Batna Soutenue le : 08 / 01 / 2011 Tout d’abord, je tiens à remercier mon directeur de mémoire Mr. le professeur Louadi Kamel qui m’a guidé durant toute la période de réalisation de ce travail et qui était généreux et compréhensif, Je remercie les membres de jury : Mr. Belhamra Mohamed, Maitre de Conférence à l’Université de Biskra, notre père spirituel, Mlle le professeur Berchi Selima de l’Université Mentouri Constantine et Mr le Professeur Lâammari Malik de l’Université de Batna qui ont aimablement accepté de faire partie de ce jury. Bien sûr, et sans doute je remercie, afin de réaliser ce modeste travail , mes parents pour leur soutien moral, pour leur présence, pour leur générosité, pour toute chose grande était-elle ou petite,…à vous Papa Abdesselem qui n’a rien garder pour m’aider et Maman Djouama Nouara, je vous offre ce petit cadeau. Comme je remercie l’e laboratoire de Biosystématique et Ecologie des Arthropodes de Constantine et son équipage ; Le Docteur Scheuchl Erwin du muséum d’Autriche pour qui a identifié et confirmé une partie des espèces d’Andrenidae.
    [Show full text]
  • Complementary Crops and Landscape Features Sustain Wild Bee Communities
    Complementary crops and landscape features sustain wild bee communities 1,3 2 1 1 KYLE T. M ARTINS, CECILE H. ALBERT, MARTIN J. L ECHOWICZ, AND ANDREW GONZALEZ 1Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal, Quebec H3A 1B1 Canada 2Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Technopole^ Arbois-Mediterranee Bat,^ Villemin – BP 80, F-13545 Aix-en-Provence Cedex 04, France Abstract. Wild bees, which are important for commercial pollination, depend on floral and nest- ing resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee spe- cies specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was high- est across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancil- lary nesting and floral resources throughout the spring and summer.
    [Show full text]
  • Diversified Floral Resource Plantings Support Bee Communities After
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN Diversifed Floral Resource Plantings Support Bee Communities after Apple Bloom in Commercial Orchards Sarah Heller1,2,5,6, Neelendra K. Joshi1,2,3,6*, Timothy Leslie4, Edwin G. Rajotte2 & David J. Biddinger1,2* Natural habitats, comprised of various fowering plant species, provide food and nesting resources for pollinator species and other benefcial arthropods. Loss of such habitats in agricultural regions and in other human-modifed landscapes could be a factor in recent bee declines. Artifcially established foral plantings may ofset these losses. A multi-year, season-long feld study was conducted to examine how wildfower plantings near commercial apple orchards infuenced bee communities. We examined bee abundance, species richness, diversity, and species assemblages in both the foral plantings and adjoining apple orchards. We also examined bee community subsets, such as known tree fruit pollinators, rare pollinator species, and bees collected during apple bloom. During this study, a total of 138 species of bees were collected, which included 100 species in the foral plantings and 116 species in the apple orchards. Abundance of rare bee species was not signifcantly diferent between apple orchards and the foral plantings. During apple bloom, the known tree fruit pollinators were more frequently captured in the orchards than the foral plantings. However, after apple bloom, the abundance of known tree fruit pollinating bees increased signifcantly in the foral plantings, indicating potential for foral plantings to provide additional food and nesting resources when apple fowers are not available. Insect pollinators are essential in nearly all terrestrial ecosystems, and the ecosystem services they provide are vital to both wild plant communities and agricultural crop production.
    [Show full text]
  • Interactions of Wild Bees with Landscape, Farm Vegetation, and Flower Pollen
    WILD BEE SPECIES RICHNESS ON NORTH CENTRAL FLORIDA PRODUCE FARMS: INTERACTIONS OF WILD BEES WITH LANDSCAPE, FARM VEGETATION, AND FLOWER POLLEN By ROSALYN DENISE JOHNSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 © 2016 Rosalyn Denise Johnson To my family and friends who have supported me through this process ACKNOWLEDGMENTS To Rose and Robert, Rhonda and Joe, and Katherine and Matthew without whose encouragement and support I could not have done this. I am grateful to my co- advisors, Kathryn E. Sieving and H. Glenn Hall, and my committee, Rosalie L. Koenig, Emilio M. Bruna III, David M. Jarzen, and Mark E. Hostetler for the opportunity to contribute to the knowledge of wild bees with their expert guidance. I would also like to thank the farmers who allowed me to work on their land and my assistants Michael Commander, Amber Pcolka, Megan Rasmussen, Teresa Burlingame, Julie Perreau, Amanda Heh, Kristen McWilliams, Matthew Zwerling, Mandie Carr, Hope Woods, and Mike King for their hard work 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 ABSTRACT ..................................................................................................................
    [Show full text]
  • Hymenoptera: Apoidea) Habitat in Agroecosystems Morgan Mackert Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems Morgan Mackert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Mackert, Morgan, "Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems" (2019). Graduate Theses and Dissertations. 17255. https://lib.dr.iastate.edu/etd/17255 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems by Morgan Marie Mackert A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Mary A. Harris, Co-major Professor John D. Nason, Co-major Professor Robert W. Klaver The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Morgan Marie Mackert, 2019. All rights reserved ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iv ABSTRACT ....................................................................................................................... vi CHAPTER 1.
    [Show full text]
  • FORTY YEARS of CHANGE in SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Summer 7-15-2019 FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Biology Commons Recommended Citation Cumberland, Catherine. "FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES." (2019). https://digitalrepository.unm.edu/biol_etds/321 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Catherine Cumberland Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Kenneth Whitney, Ph.D., Chairperson Scott Collins, Ph.D. Paula Klientjes-Neff, Ph.D. Diane Marshall, Ph.D. Kelly Miller, Ph.D. i FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology, Sonoma State University 2005 B.A., Environmental Studies, Sonoma State University 2005 M.S., Ecology, Colorado State University 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BIOLOGY The University of New Mexico Albuquerque, New Mexico July, 2019 ii FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology B.A., Environmental Studies M.S., Ecology Ph.D., Biology ABSTRACT Changes in a regional bee assemblage were investigated by repeating a 1970s study from the U.S.
    [Show full text]