Towards Sustainable Crop Pollination Services Measures at Field, Farm and Landscape Scales

Total Page:16

File Type:pdf, Size:1020Kb

Towards Sustainable Crop Pollination Services Measures at Field, Farm and Landscape Scales EXTENSION OF KNOWLEDGE BASE ADAPTIVE MANAGEMENT CAPACITY BUILDING MAINSTREAMING TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES B. Gemmill-Herren, N. Azzu, A. Bicksler, and A. Guidotti [eds.] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2020 Required citation: FAO. 2020. Towards sustainable crop pollination services – Measures at field, farm and landscape scales. Rome. https://doi.org/10.4060/ca8965en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132578-0 © FAO, 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original [Language] edition shall be the authoritative edition.” Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will be conducted in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL). Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user. Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected]. Requests for commercial use should be submitted via: www.fao.org/contact-us/ licence-request. Queries regarding rights and licensing should be submitted to: [email protected]. Cover and back cover photographs: © Pixabay Contents Preface ...................................................................................................................................................xi Acknowledgements .................................................................................................................................xiii Section 1 MEASURES AT FIELD SCALE Chapter 1. Measuring diversity in the field .................................................................................... 1 C. S. Sheffield and H. Ngo Chapter 2. Management of honey bee colonies for crop pollination .............................................15 A. Dag Chapter 3. Soil management for ground-nesting bees ..................................................................23 K. S. Ullmann, J. H. Cane, R. W. Thorp and N. M. Williams Chapter 4. Substrate management for cocoa pollinating midges ..................................................45 K. Frimpong-Anin and P. Kwapong Chapter 5. Innovative mud hive for rearing the indigenous honey bee, Apis cerana ....................51 J. P. Sharma, H. K. Sharma and J. K. Gupta Chapter 6. Encouraging cavity-nesting bees ..................................................................................59 C. S. Sheffield Chapter 7. Management of stingless bee colonies for crop pollination ........................................69 K. S. Aidoo Section 2 MEASURES AT FARM SCALE Chapter 8. Promoting non-crop flowering plants for specific insect pollinators ...........................81 M. A. K. Gillespie, S. Wratten and B. R. Waterhouse Chapter 9. Benefits of planning shade-tree cultivation to favour pollinators ...............................93 V. V. Belavadi Chapter 10. Agroforestry and cover cropping for pollinators .................................................105 E. Lee-Mäder, M. Vaughan and J. Goldenetz-Dollar Chapter 11. Conducting cost-benefit analysis for wild pollinator conservation on farmland ..... 127 M. A. K. Gillespie, B. Waterhouse and S. Wratten iii Section 3 MEASURES AT LANDSCAPE SCALE Chapter 12. Securing forage resources for indigenous managed honey bees – thoughts from South Africa ......................................................................................................... 137 T. Masehela, C. Poole and R. Veldtman Chapter 13. Conservation of natural and semi-natural habitat providing resources for pollinators .............................................................................................................................. 151 B. Gemmill-Herren, D. Martins, W. Kinuthia, C. Odhiambo and K. Devkota Chapter 14. Common approach for socio-economic valuation of pollinator-friendly practices ... 159 L. A. Garibaldi, N. Azzu, B. Viana, J. Hipólito, M. Dondo and D. S. Gómez Carella iv Figures Chapter 1 Figure 1. Crop structure of a) a lowbush blueberry field, with low plants evenly spread over the ground, b) a Haskap orchard, with the shrubs arranged in rows, and c) an apple orchard, consisting of trees arranged in rows ..........................................4 Figure 2. A typical yellow pan-trap used for collecting bees and other flying flower visitors ........6 Figure 3. A vane trap; a combination of a flight intercept and colour attractant ........................7 Figure 4. Trap-nests used for cavity-nesting aculeate Hymenoptera ..........................................9 Figure 5. A typical Malaise trap ........................................................................................ 10 Chapter 2 Figure 1. Truck loaded with beehives brought for almond pollination in California .................... 16 Figure 2. Populated frame with brood and honey ................................................................ 18 Figure 3. Beehives placed for nethouse avocado pollination ................................................. 20 Chapter 3 Figure 1. Life cycle of a ground-nesting solitary bee ........................................................... 24 Figure 2. Nest of the bee Tapinotaspi tucumana .................................................................. 25 Figure 3. Minimum and maximum nesting depth for 445 species of ground-nesting bees ............. 26 Figure 4. Some ground nesting bees nest in aggregations such as this one pictured below ........ 27 Figure 5. Soil texture associations for different bee families found in the United States of America ................................................................................... 28 Figure 6. Fires can burn and snag above-ground bee nesting habitat and can remove floral resources in the short term (6a). However, fires can also open up space for wildflower seed in the seed bank to germinate and provide abundant and diverse blooms (6b) .......................................................................................... 34 Figure 7. Abundant wildflowers can bloom and be used by ground nesting bees when grazing is managed properly ...................................................................... 36 Chapter 4 Figure 1. Asynchrony in peak population of midges and cocoa flowers .................................... 46 Figure 2. Heap of cocoa pod husks ................................................................................... 47 Figure 3. Mud trough filled with cocoa pod husks ................................................................ 47 Figure 4. Chunks of plantain/banana stems ........................................................................ 47 Figure 5. Open space filled with banana ............................................................................ 48 Figure 6. Plantain as a boundary crop ............................................................................... 49 v Chapter 5 Figure 1. Log hives .......................................................................................................
Recommended publications
  • UNIVERSITY of READING Delivering Biodiversity and Pollination Services on Farmland
    UNIVERSITY OF READING Delivering biodiversity and pollination services on farmland: a comparison of three wildlife- friendly farming schemes Thesis submitted for the degree of Doctor of Philosophy Centre for Agri-Environmental Research School of Agriculture, Policy and Development Chloe J. Hardman June 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Chloe Hardman i Abstract Gains in food production through agricultural intensification have come at an environmental cost, including reductions in habitat diversity, species diversity and some ecosystem services. Wildlife- friendly farming schemes aim to mitigate the negative impacts of agricultural intensification. In this study, we compared the effectiveness of three schemes using four matched triplets of farms in southern England. The schemes were: i) a baseline of Entry Level Stewardship (ELS: a flexible widespread government scheme, ii) organic agriculture and iii) Conservation Grade (CG: a prescriptive, non-organic, biodiversity-focused scheme). We examined how effective the schemes were in supporting habitat diversity, species diversity, floral resources, pollinators and pollination services. Farms in CG and organic schemes supported higher habitat diversity than farms only in ELS. Plant and butterfly species richness were significantly higher on organic farms and butterfly species richness was marginally higher on CG farms compared to farms in ELS. The species richness of plants, butterflies, solitary bees and birds in winter was significantly correlated with local habitat diversity. Organic farms supported more evenly distributed floral resources and higher nectar densities compared to farms in CG or ELS. Compared to maximum estimates of pollen demand from six bee species, only organic farms supplied sufficient pollen in late summer.
    [Show full text]
  • Male and Female Bees Show Large Differences in Floral Preference
    bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Male and female bees show large differences in floral preference 2 3 Michael Roswell [email protected] 4 Graduate program in ecology and evolution, Rutgers University 5 14 College Farm Road, New Brunswick, NJ 08904 6 7 Jonathan Dushoff 8 Department of biology, McMaster University 9 1280 Main St. West, Hamilton, Ontario ON L8S 4K1 10 11 Rachael Winfree 12 Department of ecology, evolution, and natural resources, Rutgers University 13 14 College Farm Road, New Brunswick, NJ 08904 1 bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 1. Intraspecific variation in foraging niche can drive food web dynamics and 17 ecosystem processes. Field studies and theoretical analysis of plant-pollinator 18 interaction networks typically focus on the partitioning of the floral community 19 between pollinator species, with little attention paid to intraspecific variation 20 among plants or foraging bees. In other systems, male and female animals 21 exhibit different, cascading, impacts on interaction partners.
    [Show full text]
  • Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites
    JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 92(4), 2019, pp. 649-654 SHORT COMMUNICATION Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites Casey M. Delphia1*, Justin B. Runyon2, and Kevin M. O’Neill3 ABSTRACT: In 2017, we found 17 dead females of Megachile frigida Smith in clear plastic bags of com- posted bark mulch in a residential yard in Bozeman, Montana, USA. Females apparently entered bags via small ventilation holes, then became trapped and died. To investigate whether this is a common source of mortality, we deployed unmodified bags of mulch and those fitted with cardboard tubes (as potential nest sites) at three nearby sites in 2018. We found two dead M. frigida females and five completed leaf cells in one of these bags of mulch fitted with cardboard tubes; two male M. frigida emerged from these leaf cells. In 2018, we also discovered three dead female M. frigida and three dead females of a second leafcutter bee species, Megachile gemula Cresson, in clear bags of another type of bark mulch. Both mulches emitted nearly identical blends of volatile organic compounds, suggesting their odors could attract females searching for nesting sites. These findings suggest that more research is needed to determine how common and wide- spread this is for Megachile species that nest in rotting wood and if there are simple solutions to this problem. KEYWORDS: Leafcutter bees, solitary bees, cavity-nesting bees, Apoidea, wild bees, pollinators, Megachile frigida, Megachile gemula The leafcutter bees Megachile frigida Smith, 1853 and Megachile gemula Cresson, 1878 (Megachilidae) are widespread in North America (Mitchell 1960; Michener, 2007; Sheffield et al., 2011).
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Journal of Melittology No
    Journal of Melitology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 80, pp. 1–11 22 September 2018 Michener Centenary: Memories Michael S. Engel1,2 & Victor H. Gonzalez3 Abstract. In celebration of the centenary of Charles D. Michener’s birth, the Journal of Melitology ofers a sampling of memories from colleagues and former students. INTRODUCTION Today marks the 100th anniversary of the birth of Charles D. Michener (Fig. 1), eas- ily the world’s greatest melitologist of any generation. Mich, as he was known to all, was a remarkable scientist and humanitarian, and his benefcent infuence was granted to anyone who encountered him, as well as to many who he never met in person. His scholarly work was extensive and encompassed virtually every subject regarding bees, as well as many other intellectual endeavors. Nonethless, Mich’s greatest contribution could not be scored by any academic metric. His greatest legacy resides in the numer- ous students he mentored and colleagues he encouraged, and the many kindnesses he distributed over the course of his long life. The present contribution is not meant to be a panegyric or biography, and ac- counts of Mich’s life and scholarly work have been published elsewhere in recent years (Banaszak, 2016; Breed, 2016; Engel, 2015, 2016a, 2016b, 2017; West-Eberhard & Engel, 2017). Instead, we ofer here a selection of memories contributed by colleagues and former students of Mich, refecting the multivarious ways in which he graced their lives. They are presented in alphabetical order by author and with only subtle editing where necessary.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Seasonal and Spatial Patterns of Mortality and Sex Ratio in the Alfalfa
    Seasonal and spatial patterns of mortality and sex ratio in the alfalfa leafcutting bee, Megachile rotundata (F.) by Ruth Pettinga ONeil A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Ruth Pettinga ONeil (2004) Abstract: Nests from five seed alfalfa sites of the alfalfa leafcutting bee Megachile rotundata (F.) were monitored over the duration of the nesting season in 2000 and 2001, from early July through late August. Cells containing progeny of known age and known position within the nest were subsequently analyzed for five commonly encountered categories of pre-diapause mortality in this species. Chalkbrood and pollen ball had the strongest seasonal relationships of mortality factors studied. Chalkbrood incidence was highest in early-produced cells. Pollen ball was higher in late-season cells. Chalkbrood, parasitism by the chalcid Pteromalus venustus, and death of older larvae and prepupae , due to unknown source(s) exhibited the strongest cell-position relationships. Both chalkbrood and parasitoid incidence were highest in the inner portions of nests. The “unknown” category of mortality was highest in outer portions of nests. Sex ratio was determined for a subset of progeny reared to adulthood. The ratio of females to males is highest in cells in inner nest positions. Sex ratio is female-biased very early in the nesting season, when all cells being provisioned are the inner cells of nests, due to the strong positional effect on sex ratio. SEASONAL AND SPATIAL PATTERNS OF MORTALITY AND SEX RATIO IN THE ALFALFA LEAFCUTTING BEE, Megachile rotundata (F.) by .
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Nitrogen Content in Riparian Arthropods Is Most Dependent on Allometry and Order
    Wiesenborn: Nitrogen Contents in Riparian Arthropods 71 NITROGEN CONTENT IN RIPARIAN ARTHROPODS IS MOST DEPENDENT ON ALLOMETRY AND ORDER WILLIAM D. WIESENBORN U.S. Bureau of Reclamation, Lower Colorado Regional Office, P.O. Box 61470, Boulder City, NV 89006 ABSTRACT I investigated the contributions of body mass, order, family, and trophic level to nitrogen (N) content in riparian spiders and insects collected near the Colorado River in western Arizona. Most variation (97.2%) in N mass among arthropods was associated with the allometric effects of body mass. Nitrogen mass increased exponentially as body dry-mass increased. Significant variation (20.7%) in N mass adjusted for body mass was explained by arthropod order. Ad- justed N mass was highest in Orthoptera, Hymenoptera, Araneae, and Odonata and lowest in Coleoptera. Classifying arthropods by family compared with order did not explain signifi- cantly more variation (22.1%) in N content. Herbivore, predator, and detritivore trophic-levels across orders explained little variation (4.3%) in N mass adjusted for body mass. Within or- ders, N content differed only among trophic levels of Diptera. Adjusted N mass was highest in predaceous flies, intermediate in detritivorous flies, and lowest in phytophagous flies. Nitro- gen content in riparian spiders and insects is most dependent on allometry and order and least dependent on trophic level. I suggest the effects of allometry and order are due to exoskeleton thickness and composition. Foraging by vertebrate predators, such as insectivorous birds, may be affected by variation in N content among riparian arthropods. Key Words: nutrients, spiders, insects, trophic level, exoskeleton, cuticle RESUMEN Se investiguo las contribuciones de la masa de cuerpo, orden, familia y el nivel trófico al con- tenido de nitógeno (N) en arañas e insectos riparianos (que viven en la orilla del rio u otro cuerpo de agua) recolectadaos cerca del Rio Colorado en el oeste del estado de Arizona.
    [Show full text]
  • WRA Species Report
    Designation = Evaluate WRA Score = 2 Family: Ericaceae Taxon: Vaccinium virgatum Synonym: Vaccinium amoenum Aiton Common Name: Rabbit-eye blueberry Vaccinium ashei J. M. Reade Southern black blueberry Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 ? 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable
    [Show full text]
  • Nest Architecture, Life Cycle, and Natural
    Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a montane forest William de O. Sabino, Yasmine Antonini To cite this version: William de O. Sabino, Yasmine Antonini. Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a mon- tane forest. Apidologie, Springer Verlag, 2017, 48 (4), pp.450-460. 10.1007/s13592-016-0488-9. hal- 01681897 HAL Id: hal-01681897 https://hal.archives-ouvertes.fr/hal-01681897 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:450–460 Original article * INRA, DIB and Springer-Verlag France, 2017 DOI: 10.1007/s13592-016-0488-9 Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis ) maculata (Hymenoptera: Megachilidae) in a montane forest 1,2 1 William De O. SABINO , Yasmine A NTONINI 1Laboratório de Biodiversidade—Instituto de Ciências Exatas
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]