Chemistry 212 the Preparation of Common Alum from Scrap Aluminum

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry 212 the Preparation of Common Alum from Scrap Aluminum Chemistry 212 The Preparation of Common Alum from Scrap Aluminum LEARNING OBJECTIVES • To demonstrate the principle of recycling by conversion of waste materials into valuable pure substances. • To provide experience in filtration methods and in melting point determinations. BACKGROUND @ In this experiment, you will prepare a common alum, KAl(SO4)2 12H2O (potassium aluminum sulfate dodecahydrate), from an aluminum beverage can. Alums can be described as a class of compounds that 2- 3+ 3+ 3+ contain the sulfate ion, SO4 , a trivalent (3+) cation such as Al , Cr , Fe , and a monovalent (1+) cation + + + such as K ,Na , and NH4 . Alums have many purposes, as shown in the table below. The alum that you @ will prepare forms white crystals similar to fine salt. The “ 12H2O” indicates that 12 molecules of water are present in the crystals for each KAl(SO4)2 formula unit. Aluminum is the most abundant metal in the earth's crust (8.3% by weight) and is the third most abundant element after oxygen (45.5%) and silicon (25.7%). Pure aluminum is a silvery-white metal and has many desirable physical and chemical properties: it is light-weight, non-toxic, corrosion-resistant, nonmagnetic, and malleable. Aluminum is commonly combined with other metals such as copper, manganese, silicon, magnesium, and zinc, which produces alloys with high mechanical and tensile strength. You are probably familiar with many uses of aluminum and its alloys. The first post-lab question asks you to list some examples. When metallic aluminum comes into contact with aqueous solutions of strong bases like potassium hydroxide, KOH, it reacts to form hydrogen gas (FLAMMABLE!) and a salt containing both aluminum and potassium ions. ÷ 2 Al (s) + 2 KOH (aq) + 6 H2O (l) 2 K[Al(OH)4] (aq) + 3 H2 (g) This salt, K[Al(OH)4], is soluble in solutions of strong acids, such as sulfuric acid, H2SO4, and reacts to form aluminum hydroxide, Al(OH)3, and potassium sulfate, K2SO4. 1 ÷ 2 K[Al(OH)4] (aq) + H2SO4 (aq) 2 Al(OH)3 (s) + K2SO4 (aq) + 2 H2O (l) Excess sulfuric acid is required to dissolve the Al(OH)3, and to form aluminum sulfate, Al2 (SO4)3. ÷ 2 Al(OH)3 (s) + 3 H2SO4 (aq) Al2 (SO4)3 (aq) + 6 H2O (l) As this solution is cooled, the aluminum and potassium sulfate salts crystallize out of the solution as the alum. The equation below shows only the ions and the water involved in the crystallization process. + 3+ 2- ÷ @ K (aq) + Al (aq) + 2 SO4 (aq) + 12 H2O (l) KAl(SO4)2 12H2O (s) You will determine both the percent yield and the melting point of your alum crystals. Please see The Determination of Melting Point at the end of this lab procedure. Type of Alum (common name) Formula Uses @ Ammonium aluminum sulfate NH4Al(SO4)2 12H2O Pickling cucumbers dodecahydrate (ammonium alum) @ Ammonium ferric sulfate dodecahydrate NH4Fe(SO4)2 12H2O Mordant in dyeing and (ferric alum) printing textiles @ Potassium aluminum sulfate dodecahydrate KAl(SO4)2 12H2O Water purification, sewage (alum or potassium alum) treatment, and fire extinguishers @ Potassium chromium(III) sulfate KCr(SO4)2 12H2O Tanning leather and dodecahydrate (chrome alum) waterproofing fabrics @ Sodium aluminum sulfate dodecahydrate NaAl(SO4)2 12H2O Baking powders: hydrolysis of (sodium alum) Al3+ releases H+ in water to - react with the HCO3 in baking soda to produce CO2, causing the dough to rise. SAFETY PRECAUTIONS CAUTION!! Excess care must be used in handling potassium hydroxide (KOH) and sulfuric acid (H2SO4). KOH is corrosive and will dissolve clothing and skin! Sulfuric acid will also burn and dissolve clothing. Wash your hands thoroughly after using either of these solutions! EXPERIMENTAL PROCEDURE 1. A piece of scrap aluminum will be provided. Use steel wool to remove as much paint as possible. The inside of the can is protected with a plastic coating and you should remove 2 this also. Weigh the cleaned strip of aluminum to the nearest 0.001 grams. 2. Cut the Al sample into small squares and place the squares in a clean 100-mL or 150-mL beaker. Perform the following either in the hood or close to the bench-top hood!! Carefully add 20 mL of 4 M potassium hydroxide, KOH. Bubbles of hydrogen gas should evolve. Place your beaker on a hot plate (close by the bench-hood-screen) to speed up the reaction. When hydrogen bubbles are no longer formed, the reaction is complete. This should take 10-15 minutes. Remove the beaker from the hot plate and allow it to cool at your bench. 3. The resulting grayish mixture should be filtered to remove unwanted impurities. If the solution is still warm, cool it by placing the beaker in an ice bath. Set up a 250-mL filter flask and Gooch filter crucible or Büchner funnel as demonstrated. Don't forget to clamp the filter flask to some kind of support. Filter the solution slowly. Rinse the beaker two times with small portions (<5 mL) of distilled water, pouring each rinse through the filter. Transfer the clear colorless filtrate to a clean 250-mL beaker. 4. To the cool solution, slowly and carefully, with stirring, add 15 mL of 6 M sulfuric acid. White lumps of Al(OH)3 should form in the solution. Again working by the bench-hood, heat and stir the mixture to dissolve the white lumps. Excess sulfuric acid may be added dropwise, but no more than 30 mL total, in order to totally dissolve the Al(OH)3, and give a clear solution. 5. Cool the clear solution in an ice bath for at least 20 minutes. Crystals of alum should fall to the bottom of the beaker. If no crystals form, scratch the bottom of the beaker with your stirring rod. If that fails, add a "seed" crystal of alum to facilitate crystallization. 6. While the solution is cooling, reassemble the filtration apparatus. Be sure to weigh the filter paper at this point. Slowly filter the solution containing the crystals. Rinse the beaker once with 5 mL of cool distilled water and once with 5 mL of isopropyl (rubbing) alcohol, pouring each rinse through the filter. Allow the aspirator to pull air through the crystals until they appear dry, at least 5 minutes. Remove the filter from the flask. More crystals may form in the filtered solution (filtrate). If you have time, filter these crystals as just described, and add these to the first crystal crop. 7. Remove the damp crystals and filter paper from the filter and place them into a weighed beaker. Place the beaker containing your crystals in your locker until next week. After drying, weigh the filter and crystals, and determine the mass of the alum produced. Calculate the percent yield. 8. Determine the melting point of the alum crystals using the following procedure. Carefully, push the open end of a capillary tube into your crystals, forcing some of the solid into the tube. Turn the tube over and tap it gently to move the crystals to the sealed 3 end of the tube. Repeat this process until you have about 5 mm of solid in the capillary tube. Carefully, insert the tube into the melting point apparatus. The apparatus will be HOT if others have been using it! Note the temperatures at which the alum first appears to melt (i.e., when liquid first becomes visible) and at which it is completely melted (all liquid). Discard the capillary tube in the glass bin. 9. Obtain the literature value for the melting point of alum. Compare your experimental melting point to the literature value. Calculate the percent error. DETERMINATION OF MELTING POINT (SUPPLEMENTARY EXPERIMENTAL PROCEDURE) 1. The melting point of a pure substance is a characteristic property for a given substance. That is, under the same laboratory conditions, a given substance will always have the same melting point. Characteristic physical properties (such as the melting point or boiling point of a pure substance) are of immense help in the identification of unknown substances. Such properties are routinely reported in scientific papers when new substances are isolated or synthesized, and are compiled in tables in the various handbooks of chemical data that are available in science libraries. When an unknown substance is isolated from a chemical system, its melting point may be measured (along with certain other characteristic properties) and then compared with tabulated data. If the experimentally determined physical properties of the unknown match those found in the literature, you can typically assume that you have identified the unknown substance. 2. When a pure solid substance melts during heating, the melting usually occurs quickly at one specific, characteristic temperature. For certain substances, especially more complicated organic substances or biological substances that tend to decompose slightly when heated, the melting may occur over a span of a few degrees, called the melting range. Melting ranges are also commonly observed if the substance being determined is not completely pure. The presence of an impurity will broaden the melting point of the major component and will also lower the temperature at which melting begins. Melting points of solid substances are routinely reported in the scientific literature and are tabulated in handbooks for use in identification of unknown substances. Melting point determinations are very common and will be used as an aid in the identification of solid products and as an indication of their purity. 4 THE PREPARATION OF COMMON ALUM FROM SCRAP ALUMINUM Name _________________________________ Lab Instructor ___________________________ Section/Day_____________________________ Date __________________________________ DATA & RESULTS Alum Preparation Mass of aluminum sample ________________________________ Mass of filter paper (second time) ________________________________ Mass of beaker ________________________________ Mass of beaker, filter paper & alum crystals ________________________________ Mass of alum crystals ________________________________ Theoretical Yield of alum (based on Al) ________________________________ Percent Yield ________________________________ Melting Point Determination Temperature at which melting begins ________________________________ Temperature at which melting ends ________________________________ Literature value for the melting point of alum ________________________________ Please show calculations below.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Pvc Piping Systems for Commercial and Industrial Applications
    PVC PIPING SYSTEMS FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS Plastic Pipe and Fittings Association © 2012 Plastic Pipe and Fittings Association (PPFA) Acknowledgments We would like to thank the following contributors to the Design Guide: The PVC and Thermoplastic Industrial Piping Systems (TIPS) Product Line Committees and member companies of the Plastic Pipe and Fittings Association (PPFA). In particular the following PPFA companies and individuals ably assisted in reviewing the text and tables and provided valuable comments which added greatly in producing a better and more accurate source document: Chuck Bush – Oatey Company Mike Cudahy – PPFA Staff Patrick Fedor – IPEX Bill Morris – Charlotte Pipe & Foundry Jack Roach – Mueller Industries Bill Weaver – Harvel Plastics Larry Workman – LASCO Fittings All text, tables and photos were prepared and or edited by David A. Chasis of Chasis Consulting, Inc. Using the Design Guide The Design Guide was created to assist engineers, installers, end-users, engineering students and building code officials in learning more of the dos and don’ts of PVC piping systems. The Design Guide is comprised of ten sections including: Introduction Features and Benefits Engineering Design Joining Methods Installation Testing and Repair Applications Building Codes, Standards, and Sample Specifications PVC Piping and the Environment Other Plastic Piping Systems In addition, in the back of the guide is the most complete appendix and glossary of PVC piping systems ever assembled. Other PPFA Educational Materials The PPFA offers a wide range of other educational materials developed to assist the engineering and construction industry to become more proficient in the use of the preferred piping system...plastics! On-site seminars, Webinars, CD-based seminars, workbooks, online tutorials and product and technical literature are available.
    [Show full text]
  • STAC-V : Chemical Resistance List Max Temperature
    S TA C Industrial Coatings STAC-V : Chemical Resistance List Max Temperature Chemical Formula Alias Concentration V1 V2 Note Acetaldehyde CH3-CH=O Acetic aldehyde 100 % n.r. n.r. Aldehyde Ethanal Ethyl aldehyde Acetic acid CH3-CO-OH Acetic acid glacial 010 % 90 100 0 Ethanoic acid Ethylic acid Glacial acetic acid Methane carboxylic acid Vinegar acid Vinegar Hac 015 % 90 100 0 025 % 90 100 0 040 % 80 90 050 % 70 80 075 % 60 65 080 % 45 45 085 % 45 45 100 % n.r. 25 Acetic acid : nitric acid : CH3-CO-OH : HNO3 : Cr2O3 Ethylic acid : salpeterzuur : 03:05:03 65 80 chromic oxide chromium oxide Acetic acid : sulfuric acid CH3-CO-OH : H2SO4 Ethylic acid : dihydrogen sulfate 20:10 100 100 Acetic anhydride CH3-CO-O-CO-CH3 Acetyl acetate 100 % n.r. n.r. Acetanhydride Acetic oxide Acetyl ether Acetyl oxide Acetone CH3-CO-CH3 Propanone 005 % 80 80 Propan-2-one Dimethyl ketone β-Ketopropane[ Propanone 2-Propanone Dimethyl formaldehyde Pyroacetic spirit (archaic) 010 % 80 80 100 % n.r. n.r. Acetone : MEK : MiBK CH3-CO-CH3 : CH3-CO-CH2- Acetone : methylethyl ketone : 02:02:02 n.r. 40 CH3 : CH3-CO-CH2-CH2-CH3 methylisobutyl ketone Acetonitrile CH3-CN Cyanomethane all n.r. n.r. Ethanenitrile Ethyl nitrile Methanecarbonitrile Methyl cyanid Acetyl chloride CH3-CO-Cl Acetic chloride 100 % n.r. n.r. Ethanoyl chloride Acetylacetone CH3-CO-CH2-CO-CH3 Pentane-2,4-dione 020 % 40 50 2,4-Pentanedione 2,4-Dioxopentane 2,4-Pentadione acetyl-2-Propanone Acac Acetoacetone Diacetylmethane 100 % n.r.
    [Show full text]
  • Whole Foods Market Unacceptable Ingredients for Food (As of March 15, 2019)
    Whole Foods Market Unacceptable Ingredients for Food (as of March 15, 2019) 2,4,5-trihydroxybutyrophenone (THBP) benzoyl peroxide acesulfame-K benzyl alcohol acetoin (synthetic) beta-cyclodextrin acetone peroxides BHA (butylated hydroxyanisole) acetylated esters of mono- and diglycerides BHT (butylated hydroxytoluene) activated charcoal bleached flour advantame bromated flour aluminum ammonium sulfate brominated vegetable oil aluminum potassium sulfate burnt alum aluminum starch octenylsuccinate butylparaben aluminum sulfate caffeine (extended release) ammonium alum calcium benzoate ammonium chloride calcium bromate ammonium saccharin calcium disodium EDTA ammonium sulfate calcium peroxide apricot kernel/extract calcium propionate artificial sweeteners calcium saccharin aspartame calcium sorbate azo dyes calcium stearoyl-2-lactylate azodicarbonamide canthaxanthin bacillus subtilis DE111 caprocaprylobehenin bacteriophage preparation carmine bentonite CBD/cannabidiol benzoates certified colors benzoic acid charcoal powder benzophenone Citrus Red No. 2 Page 1 of 4 cochineal foie gras DATEM gardenia blue diacetyl (synthetic) GMP dimethyl Silicone gold/gold leaf dimethylpolysiloxane heptylparaben dioctyl sodium sulfosuccinate (DSS) hexa-, hepta- and octa-esters of sucrose disodium 5'-ribonucleotides high-fructose corn syrup/HFCS disodium calcium EDTA hjijiki disodium dihydrogen EDTA hydrogenated oils disodium EDTA inosine monophosphate disodium guanylate insect Flour disodium inosinate iron oxide dodecyl gallate kava/kava kava EDTA lactic acid esters of monoglycerides erythrosine lactylated esters of mono- and diglycerides ethoxyquin ma huang ethyl acrylate (synthetic) methyl silicon ethyl vanillin (synthetic) methylparaben ethylene glycol microparticularized whey protein derived fat substitute ethylene oxide monoammonium glutamate eugenyl methyl ether (synthetic) monopotassium glutamate FD&C Blue No. 1 monosodium glutamate FD&C Blue No. 2 myrcene (synthetic) FD&C Colors natamycin (okay in cheese-rind wax) FD&C Green No.
    [Show full text]
  • Chemical Resistance Table Chemical Resistance
    CHEMICAL RESISTANCE TABLE CHEMICAL RESISTANCE CHEMICAL RESISTANCE TABLE The following abbreviations are used for concentrations in some cases where a specific numeric value is not given. The following table gives qualitative information as to the resis- VL — aqueous solution, percentage of mass less tance of PVDF (polyvinylidene fluoride), PP (polypropylene), and than 10% HDPE (high density polypropylene) to specific chemicals under various conditions. The values given correspond to the most L—aqueous solution, percentage of mass higher accurate information available from raw materials suppliers of than 10% the specific resins, based upon testing results and other rele- GL — aqueous solution, saturated at 68° F (20° C) vant literature. TR — minimum technically pure concentration It should be emphasized that this data has been compiled H—commercially available concentration for initial consultation purposes. The information is in no way intended to replace testing based on actual conditions. Also, The following footnotes are used in the body of the table: the user should contact a competent corrosion expert (certified 1. Penetration of HCI possible by NACE or with sufficient experience in these materials) to 2. Oxidizing verify any recommendation or to interpret the tables. Further- 3. Penetration of HF possible more, any special or unusual factors, including the length of time or level of stress in the system, should be taken into con- 4. Medium might cause stress cracking sideration. In all circumstances, the Engineering Department 5. Penetration of HBr possible of Asahi/America, Inc. should be consulted to review and verify E final recommendations. The following symbols are used in the table: ––––––––––– RESISTANT SYMBOL Precautionary Note: On the basis of the data, little or no effect on the Mixed use applications in recirculating domestic hot material has been evident within the given range may contain copper components of pressure and temperature limits.
    [Show full text]
  • Handbook of Chemistry and Physics Solubility
    Handbook Of Chemistry And Physics Solubility Thankless Jerri drabbles some complines and concluded his rector so recognizably! Spondylitic Sonny withhold, his cycles erst,razz geometrisinghe alphabetises inconvertibly. so near. Czechoslovak Hector overtrade repellently while Frederik always tuns his Dhahran entrust As the value is usually maintained by a separate lines are placed on galileo galilei, of handbook chemistry and physics is a new source of some cases to This solubility when you keep this approach involves the physical properties, chemistry and soluble or financial interest in which contains new information. Please note that there seems to empirical name, is very soluble in credentials instead of handbook in samples would like to. Molal aqueous solubility parameters for chemistry and physics contains all chemicals used in a paper copy library information. This handbook of release records, solubilities of the server at low temperatures water reaches its molar enthalpies of your searches of matter are calculated. Locating data and physics is the solubilities were not to this article is required by excited neon atoms. In chemistry are for the handbook of soluble. Finally i make sure you must always check the handbook. Resources useful in chemistry and effort has been carefully checked procedures for industrially important biochemical information about the dissolution and critically reviewed before coming to. Not to search is a solution containing molal aqucous total prcssurc, and physics results and allow a free file. Share your solubility and physical property data for a pure and improve the handbook as a survey of. Recall define denaturation in the. Registered users to. Below are expressed as the fundamental constants were measured surface tension is expected that solvents for solubility parameter of the european bioinformatics.
    [Show full text]
  • Synthesis of Alum from Aluminum
    Synthesis of Alum from Aluminum Taken from Central Oregon College Chemistry Manual OBJECTIVES: To carry out a series of reactions to transform a piece of aluminum foil into crystals of alum and to gain familiarity with using stoichiometry to determine the yield for the reaction. SAFETY AND DISPOSAL: Strong acids and bases are corrosive and should be handled with care. Immediately wipe up any spills and wash hands with plenty of soap and water. Work in the mini-hoods whenever possible to avoid breathing in fumes. All solutions can be disposed of down the sink with running water. The alum can be safely disposed of in the trash but has a number of uses and can be used for other laboratories, place alum crystals into the designated container. INTRODUCTION: Aluminum is a material that you may have had some experience with and paid little attention to, but has some very interesting characteristics. Here are some fun facts about aluminum metal: 1. Aluminum is the third most abundant element in the earth's crust. 2. The supply of aluminum ore is not inexhaustible. 3. The winning, or extraction of the metallic form an impure ionic source, of aluminum from aluminum ore is very costly from an energy point of view. 4. The above point explains why Napoleon III used aluminum dinnerware for his state dinners. Lesser guests were served on plates of gold or silver. 5. The process of obtaining pure metallic aluminum from aluminum oxide in a reasonably energy efficient manner, which made it possible for aluminum to be the inexpensive metal we know today, was developed in a home laboratory shortly after the chemist finished his undergraduate degree.
    [Show full text]
  • PSC Technical Advisory Panel Report.Pdf
    National Organic Standards Board Technical Advisory Panel Review compiled by University of California Sustainable Agriculture Research and Education Program (UC SAREP) for the USDA National Organic Program Potassium Sulfate for use in crop production Executive Summary1 The following petition is under consideration with respect to NOP regulations subpart G, governing the inclusion of substances on the National List of Allowed and Prohibited Substances: Petitioned: Addition of potassium sulfate to section 205.601(j), “Synthetic substances allowed for use in organic crop production as plant or soil amendments.” Potassium sulfate is a source of highly soluble potassium, and has the additional benefit of supplying sulfur. It is used in agricultural production systems where potassium is a limiting nutrient and also as a substitute for potassium chloride on chloride- sensitive crops. The NOP has no prior ruling on the use of the substance. The nature of the petitioned substance is highly debatable. Naturally occurring potassium sulfate is not subject to the TAP review process because “naturally-occurring” substances are implicitly allowed for use in organics. The intended sourcing of the petitioned form of potassium sulfate, however, brings into question the interpretive distinctions between a “synthetic” and a “non-synthetic” under organic law. According to the petitioner, the product “should not be treated differently than product produced from natural brines” since it is produced from naturally occurring minerals. The crux of the decision to grant the petition rests on how one chooses to interpret this equivalency claim. All TAP reviewers agreed that the petitioned substance should be considered synthetic. In general, the reviewers also agreed that it should be restricted as a soil adjuvant.
    [Show full text]
  • Crystal Growing Competitions a Guideline for New Organizers
    Crystal growing competitions a guideline for new organizers A major objective of the International Year of Crystallography is the establishment of a vibrant worldwide network of schools participating in crystal-growing experiments and taking part in national and regional competitions, to introduce students to the exciting, challenging and sometimes frustrating world of growing crystals. To celebrate this initiative, there will be a worldwide competition in 2014, open to all schoolchildren (whether involved in a national competition or not). The winners, will be those who most successfully convey their experiences to the panel of judges through videos, diaries, essays, soundscapes and other media. In this brochure we provide information to teachers and to schools or other organizations who want to join in this exciting venture. For newcomers, the easiest way will be to contact existing national competitions (we provide a list of current ones and an opportunity for new national initiatives to register their interest and involvement). We also provide some basic tips on how to get started with basic crystal-growing experiments. 2 1. Scenario for a successful competition For many years crystal growing competitions have been run successfully in a number of countries. With the help of the IUCr the organizers of these competitions want to share their experience with future organizers. The IYCr in 2014 provides perfect timing to start a new competition in your region or country. We present you with a scenario to do this and offer support in case of questions. Things to decide before... who can participate (age limit? different categories? regional or national) how to register material to crystallize (sponsoring? how delivered? safety) time period (depending on the school year) judging on single crystal quality only, or together with other items (poster, log book, ...) and who will do the judging? The ideal timeline Start your registration early enough, preferably done by the teacher with a electronic registration module.
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • Italian Type Minerals / Marco E
    THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.
    [Show full text]
  • Chemical Resistance Guide EPOXY REPAIR PASTE
    CHEMICAL RESISTANCE GUIDE PROLOGUE Many chemicals, dilutions and solutions that exist in an agricultural, pharmaceutical or industrial environments are alphabetically presented in the following chart. The chemical resistance characteristics has either been derived from laboratory testing (at standard conditions of 77 ±2 °F (25 ±1.1 °C) and 50% relative humidity, in-service/actual field experience or by rating the chemical according to known physical properties or characteristics. Service conditions may be complicated or complex due to a variety of effluent or chemical mixtures at undisclosed concentrations with temperature fluctuations and other unknown or unanticipated conditions at various dwell times that may exist episodically at the specific job site. Applying a test patch or patches prior to choosing & installing a system is always advisable. After the test patches are fully cured, expose them to the anticipated service conditions whether actual or simulated. Test patches will help determine the suitability of your product selection as to the specific service needs and may potentially establish any required cleaning, recoating and/or repair regimen. The system rates the product’s integrity and does not account for weathering resistance, staining or gloss loss. RATING SYSTEM & KEY A = Long term immersion - suggested for continuous exposure to this chemical - life expectancy may vary B = Short term immersion - suggested for exposure not to exceed 72 hours C = Long term splash & spill - suggested for exposure times < 8-10 hour work shift before removal D = Short term exposure splash spill - suggested for exposure times < 1 hour X = Not suggested for exposure to this chemical CHEMICAL EXPOSURE REAGENTS ADHESIVES TECHNOLOGY CORP.
    [Show full text]