ISS Transhab

Total Page:16

File Type:pdf, Size:1020Kb

ISS Transhab University of Houston SPACE ARCHITECTURE Case Study: TransHab Inflatable Habitat Kriss J. Kennedy Space Architect September 28, 2016 1 TransHAB Inflatable Prototype Module Space Architecture 2 NASA TransHab Concept • TransHab was a light weight inflatable habitation module for space applications • Original 1997 concept for light weight habitat module for human mission transit to Mars • Proposed to the International Space Station (ISS) Program as a replacement for a Hab Module 3 TransHab (Inflatable Space Habitat) DESIGNED 1997 4 Transportation Constraints Inflated TransHab TransHab Launch Package Robotic Arm Removal & Installation on ISS 5 Node 1 U.S. LAB Node 3 Nadir ISS TransHAB TransHAB on the ISS 6 ISS TransHAB Level 4: Pressurized Tunnel ISS TransHAB Functions • Private Crew Quarters • Galley & Dining Level 3: Crew • Meeting area for entire ISS crew Health Care • Health Care & Exercise • Hygiene • Stowage Level 2: Crew Quarters & • Crew Accommodations Mechanical Room • Environmental Control & Life Support System (ECLSS) • Communications Level 1: Galley & • Command, Control & Data Handling Wardroom • Protection during Solar Particle Events 7 ISS TransHab Architecture Hatch Door Inflatable Shell Level 4: Pressurized Central Structural Tunnel Core 20” Window (2) Ergometer Level 3: Crew Health Treadmill Care Inflatable Outfitting Compression Ring Integrated Water Level 2: Crew Quarters Tank and Mechanical Room Soft Stowage Array Level 1: Galley and Wardroom Wardroom Table 8 Level 1 zenith Leave Floor Open for Return Air to Mech Integrated Floor Strut into Rm. Above Fabric Floor Above SOFT STOWAGE LEVEL 1 ISS RACK HAND GALLEY WASH UTILITY UTILITY CHASE 'A' CHASE 'B' 62" PASS THRU aft ISS RACK PASS THRU ISS RACK ABOVE forward REFRIG/ ABOVE REFRIG/ FREEZER FREEZER #1 #2 ISS RACK GALLEY WARDROOM window nadir 9 Galley / Wardroom Area zenith Leave Floor Open for Return Air to Mech SOFT STOWAGE Integrated Floor Strut into Rm. Above Fabric Floor Above SYSTEM SOFT STOWAGE GALLEY AREA ISS RACK HAND GALLEY WASH WARDROOM UTILITY UTILITY TABLECHASE 'A' CHASE 'B' 62" PASS THRU aft ISS RACK PASS THRU ISS RACK ABOVE forward REFRIG/ REFRIG/ ABOVE REFRIG/ FREEZER KEY PLAN FREEZER FREEZER #1 #2 ISS RACK GALLEY WARDROOM AREA GALLEY RACK REFRIG/ FREEZER WARDROOM window GALLEY AREA nadir 10 Level 2 zenith Leave Floor & Clg. Open for Return Air to Mech Rm. Integrated Floor Strut into Fabric Flooring LEVEL 2 MECHANICAL ROOM AIR CQ #5 CQ #6 DUCT Door 42" aft forward CQ #4 PASSAGE TO CQ #1 PASS THRU GALLEY TO BELOW ISS RACK WATER Door TANK CQ #3 CQ #2 OPEN TO WARD- ROOM BELOW OPEN TO WARD- ROOM BELOW OPEN TO WARD- OPEN TO WARD- ROOM BELOW ROOM BELOW FLOOR STRUT INFLATABLE OUTFITTING nadir COMPRESSION RING 11 Private Crew Quarters Provides: (design for 0g) 11.0' • 6 Crew Quarters 3.35' m zenith UTILITY LINES • 81.25 ft3 of Volume: • 27% Larger than ISS Rack • ISS Rack Crew Quarter = 64 ft3 +/- (without bump out) CREW CREW • Private Space QUARTER QUARTER #5 #6 • Quiet Space • Sleep Area ATU Integrated into Door Panel • Personal Stowage Area CREW CREW aft QUARTER QUARTER forward • Radiation Protection #4 42" PASSAGE TO GALLEY #1 81.25cf Sleeping Restraint CREW CREW QUARTER QUARTER #3 #2 37" 4" (10 CM) I-BEAM LONGERONS nadir SHEAR PANEL W/ WATER TANK Crew Personal Unit: Entertainment & Work Substation Unit: Light Weight Frame and Fabric That Packages Into a Box. Typical Crew Quarter 12 ECLSS Equipment Area zenith Leave Floor & Clg. Open for Return Air to Mech Rm. SOUND ABSORBENT & Integrated Floor Strut into Fabric Flooring FIRE RETARDANT FABRIC CEILING MECHANICAL ROOM AIR CQ #5 CQ #6 SHELL DUCT Door INNER WALL ECLSS aft 42" PASSAGEEQUIP. TO forward CQ #4 CQ #1 PASS THRU GALLEY TO BELOW KEY PLAN ISS RACK WATER Door TANK CQ #3 CQ #2 OPEN TO WARD- ROOM BELOW OPEN TO WARD- ROOM BELOW SOUND ABSORBENT & FIRE RETARDANT OPEN TO WARD- OPEFABRICN TO WAR D -FLOORING ROOM BELOW ROOM BELOW MECHANICAL ROOM FLOOR STRUT INFLATABLE OUTFITTING nadir COMPRESSION RING 13 Level 3 zenith LEVEL 3 Leave Floor Open for Return Air to Mech Rm. Private Integrated Floor Strut Medical into Fabric Flooring Movable Area Movable Partition Partition SOFT SOFT STOWAGE STOWAGE ISS RACK CHeCS #1 UTILITY CHASE 'A' UTILITY CHASE 'B' Movable Partition PASS THRU aft ISS Rack PASSAGE TO TO BELOW forward Full Body CREW QUAR- TERS Changing Cleanser Area ISS RACK Movable Partition ISS RACK CHeCS #2 ERGOMETER TREADMILL EXERCISE AREA window nadir 14 Crew Health Care Area zenith Leave Floor Open for Return Air to MechLevel Rm. 4: Pressurized Tunnel to ISS Private Integrated Floor Strut Medical into Fabric Flooring Movable Area Movable Partition Partition SOFT SOFT STOWAGE STOWAGE ISS RACK CHeCS #1 UTILITY CHASE 'A' UTILITY CHASE 'B' Movable Partition KEY PLAN PASS THRU aft ISS Rack PASSAGE TO TO BELOW forward Full Body CREW QUAR- TERS Soft Changing Cleanser CHeCS Area ISS RACK Stowage Movable Partition System ISS RACK CHeCS #2 EXERCISE AREA Treadmill Sound Absorbent & ERGOMETER Fire Retardant Fabric TREADMILL Flooring Ergometer EXERCISE AREA window nadir 15 TransHab Specs PASSIVE CBM • Overall Length = 10.5 m MM/OD Protection • 7.67' OA Deployed Width = ~8.3 m LEVEL 4 PRESSURIZED TUNNEL 2.338 m • Internal Diameter = 7.6 m TO ISS NODE 3 • Packaged volume = 342 m3 • Deployed volume = ~161 m3 8' • ConOps 2.438 m • Packaged around Hard Core • During Launch-goes to vacuum except Tunnel 34.51' • Removed from Cargo Bay & Berthed to ISS10.519 m 7' 2.134 m • Slowly inflated with warmed air. Equalize & stabilize. • Crew unpack and assembly. • Checkout and verify operational 8' 2.438 m SHELL Vol = 11631 ft3 (329.37 m3) TUNNEL Vol = 446 ft3 (12.63 m3) AIR INFLATION SYSTEM Total Vol = 12077 ft3 (342.0 m3) & TANKS UNPRESSURIZED TUNNEL 2.74x larger an ISS Lab/Hab Module 7' 2.134 m 11' 3.353 m 7' 2.134 m Vol. (4414 ft3, or 125 m3) 25' 7.62 m 27'-2" 8.28 m 16 Structural Overview 17 General Structural Configuration Multi-Layer Inflatable Shell • Multi-Layer Insulation Blankets • Micrometeoroid / orbital debris Protection • Optimized Restraint Layer • Redundant Bladder With Protective Layer Central Structural Core • 2 Tunnels • Composite Core With Integral Water Tank • Repositionable Composite Isogrid shelves • Floor Struts With Fabric Flooring 18 Structural Hard Core 19 Deployed Internal Structure Overview Inflatable Compression Ring Composite Longerons Composite Deployable Beams Fabric Tension Floors Composite Shear Panels / Shelves Inflatable Stiffeners 20 Subsystems Packaged in Core Life Support Area for Packaged Systems Consumables and Outfitting Systems Longerons Avionics Packages Core Panel Shelves Core Panel Shelves (Sheer Panels-Stiffeners) 21 Multi-Functional Layered Inflatable Pressure Shell 2 Windows External Structural Internal Thermal Restraint Layer: Scuff Kevlar or Vectran Blanket Barrier MOD Redundant Shielding Bladders 22 Inflatable Restraint Layer “basket weave” manufacturing approach. Manually labor intensive and many opportunities for human error. 23 Packaging & Folding 24 Notional Shell Structural Interface Due to export control and patent license agreements NASA can not share the details. Inflatable Shell Assembly and Integration • Load Frame for restraint layer straps interface, Clevis Pins • Bladder Attach Ring • Bladders (redundancy) Bonded to Ring • Bladder Peel Guard Ring • Scuff Layer Interface 25 Notional Window Detail Due to export control and patent license agreements NASA can not share the details. Window Assembly and Integration • Bladder Ring • Load Frame for restraint layer straps interface • Exterior cover • Interior cover • Scratch pane • Pressure panes • MMOD debris pane 26 Goal 1: MMOD Test • Requirement: HAB shall have a minimum of 0.9820 Probability of No Penetration (PNP) • Designed and Build MMOD Shield • Made test shots • Shot after Shot • Current shell configuration tested projectiles up to 1.7 cm diameter • Due to the large size of TransHab, the Shielding required to meet the PNP is larger than the standard modules. 27 MMOD Testing Scientific American Frontiers TV: Alan Alda 28 Full-Scale Testing Shell Dev. Unit-1 (30psid ) Shell Dev. Unit-2 (60psid ) Shell Dev. Unit-3 Full-scale Deployment in a Vacuum Environment 29 Full Scale Development Unit MMOD Layers Tunnel Fairing Restraint Layer Triple Redundant Core Structure Bladder Core Fairing Support Stands Tunnel Fairing and Support Spacer 30 TransHab Full Scale Shell Development Unit (SDU-3) First Inflation: November 17, 1998 31 TransHab Full Dia. Shell Development Unit (SDU-2) •Focused on Restraint Layer –Fabric to hard structure interface –Manufacturing Processes •Built Shell to test Restraint & Interface Stresses •Built Test Unit for Hydrostatic Test to S.F. = 4.0 – Full Diameter w/ Reduced Hgt. – Non-Flight like Core and Bladder – Pressurized w/ Water to Equivalent of 4X Operating Pressure and Held for 5 Minutes 32 Full Scale Shell Development Unit (SDU-3) Vacuum Test Demonstrated: • Folding of Shell • Packaging for Shuttle Payload Bay • Operation in a Vacuum • Deployment of Shell • Inflation of Module 33 SDU-3 Installation of MM/OD Gores 34 TransHab Full Scale Shell Development Unit (SDU-3) Vacuum Deployment Test: December 21, 1998 35 36 Summary • TransHab started out as a Mars Transit Habitat (Trans-Hab) tiger team concept in 1997. • So well liked, we were asked to redesign it as a Govt Furnished Equipment project for an ISS habitat. 1998 • Moved into Rapid design and testing to “proof feasibility.” 1999 • Developed engineering test units, tested 3 important high-risk areas people had concerns with for inflatables. Mitigated the risks. • Proof-of-Concept that inflatable structures could be used as an alternative for space habitats. • Revolutionized how the aerospace industry thinks about space habitats. • Demonstrated “human-centered” design and Human Systems Integration—space architecture. 37 38.
Recommended publications
  • Space Colonies & Lunar Bases
    Space Colonies & Why Build Colonies? Lunar Bases ! It isn’t so expensive – US military is many 100’s of billions $ a year ! Fewer casualties than war – 17 astronauts in 45 years of space Karen J. Meech, flight were lost Astronomer ! Humans have an “expansionist” spirit – Much more real estate! ! Valuable resources could be brought to Earth. Institute for Astronomy ! Enough solar energy to rid the world of oil dependency could be brought to Earth for less than the cost of the Iraq war ! Profitable: e.g. 1 Metallic NEO $20 trillion, 3He as a fuel . ! Maybe the time has not yet come, but someday we will need what space can provide Space Habitat Design Shielding – Radiation Protection Considerations ! Shielding characterization ! Aereal density, d [gm/cm2] ! Physiological Needs ! Total amount of material matters ! Shielding ! Type of material: secondary ! Ionizing radiation & particles 3 2 ! Meteoritic impact ! 1 Earth Atmosphere: 10 gm/cm ! Atmospheric containment ! ! = mass / volume ! What pressure needed? ! ! = mass / (area ! thickness) ! Psychological Needs ! What mix of gasses? ! ! = m/(ax) = d / x ! Environment stress ! Gravitational acceleration ! x = thickness = d / ! ! Isolation ! Why it is needed 3 ! Personal space ! How to do it Substance ! [gm/cm ] d / !" x [cm] x [m] ! Illumination / Energy 3 ! Entertainment Lead 8 10 /8 125 1.25 ! ! Aesthetics Food / Water Styrofoam 0.01 103/10-2 105 103 ! Space Requirements Water 1 103/1 103 10 Shielding Types – Active Shielding Types – Passive ! Enough matter between us & radiation ! Examples
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • History of Human Space Exploration and Habitat Design
    EVALUATION AND AUTOMATION OF SPACE HABITAT INTERIOR LAYOUTS A Dissertation Presented to The Academic Faculty by Matthew Simon In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Aerospace Engineering Georgia Institute of Technology May 2016 Copyright 2015 U.S. Government, as represented by the Administrator of the National Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, U.S.C. All other rights reserved i EVALUATION AND AUTOMATION OF HABITAT INTERIOR LAYOUTS Approved by: Dr. Alan W. Wilhite, Chairman Dr. Jesse Hester School of Aerospace Engineering Georgia Tech Research Institute Georgia Institute of Technology Georgia Institute of Technology Dr. Marianne R. Bobskill Dr. Brian German Space Mission Analysis Branch School of Aerospace Engineering NASA Langley Research Center Georgia Institute of Technology Dr. Daniel P. Schrage School of Aerospace Engineering Georgia Institute of Technology Date Approved: November 15, 2015 This document is dedicated to my family who provided constant support and encouragement throughout the many years of my education, and to Nate who taught me the meaning of life. 3 ACKNOWLEDGEMENTS I would like to acknowledge and thank the following persons for their advice and participation in the preparation of this thesis: Dr. Alan Wilhite Dr. Marianne Bobskill Larry Toups Dr. Robert Howard Kriss Kennedy Dr. Dale Arney iv TABLE OF CONTENTS ACKNOWLEDGEMENTS .....................................................................................................................
    [Show full text]
  • Lunar Programs
    LUNAR PROGRAMS NASA is leading a sustainable return to the Moon Aerospace is partnered with NASA to with commercial and international partners to return humans to the Moon in every expand human presence in space and gather phase and journey, including the: new knowledge and opportunities. In 2017, Space › Planning and supporting the Policy Directive-1 called for a renewed emphasis on first lifecycle review of the commercial and international partnerships, return Gateway Initiative of humans to the Moon for long-term exploration and utilization followed by human missions to Mars. › Design, systems engineering and Aerospace is partnered with NASA in this endeavor integration, and operational concepts and is involved in every phase and journey. of the EVA system Artist’s conception of a gateway habitat. Image credit: NASA Humans must return to the moon for long-term › Ground testing of the NEXTStep deep exploration and utilization of deep space, but lunar space habitat module prototypes exploration is more than a stepping stone to Mars missions. The phased plan includes › Design and test of the Orion sending missions to the moon and cislunar space for exploration and study, and the capsule avionics construction of the Deep Space Gateway, a space station intended to orbit the moon. Aerospace provides support to these missions in areas such as systems engineering and integration, program management, and various subsystem expertise. Current Lunar Programs GATEWAY INITIATIVE NASA’s Gateway is conceived to be an exploration and science outpost in orbit around the moon that will enable human crewed missions to both cislunar space and the moon’s surface, meet scientific discovery and exploration objectives, and demonstrate and prove enabling technologies through commercial and international partnerships.
    [Show full text]
  • The “Farm:” an Inflatable Centrifuge Biology Research Module on the International Space Station
    The “Farm:” An Inflatable Centrifuge Biology Research Module on the International Space Station M.Thangavelu1, L. Simurda2 As the sole manned laboratory in Low Earth Orbit, permanently operating in microgravity and largely unprotected by the Earth's atmosphere, the International Space Station serves as an unparalleled platform for studying the effects of low or zero-gravity and the space radiation environment on biological systems as well as developing, testing and certifying sturdy and reliable systems for long duration missions such as ambitious interplanetary expeditions planned for the future. Earth- bound research, automated research aboard satellites and short missions into low- altitude orbits cannot replicate long-term ISS experiments. Abandoning or de- orbiting the station, even in 2020, leaves the international scientific and engineering community bereft of a manned station in orbit and destroys any opportunity for conducting long-term microgravity and radiation experiments requiring human oversight in space. The United States should invest in extending the station's life by a minimum of 15 years from present by attaching an inflatable "Farm" centrifuge module to equip biologists, psychologists and engineers with the tools required to investigate these questions and more. At a time when humankind has only begun exploring the effects of the space environment on biological systems, it is essential that we not abandon the only empirical research facility in operation today and instead begin vigorously pursuing research in this area that is of vital importance to all humanity, not only in the basic and applied sciences but also in international collaboration. I. Introduction In June 2010, President Barack Obama announced a novel vision for NASA and proposed extending the life of the International Space Station (ISS) until at least 2020.
    [Show full text]
  • Natural Design Habitat on the Moon Lunar Zen Garden
    NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) Natural Design Habitat on the Moon Irene Lia Schlacht Lunar Zen Garden Ayako Ono 9th ILEWG International Conference on Exploration and Utilization of the Moon (ICEUM9-ILC2007) 22-26 October, 2007, Sorrento, Italy NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) From the research group: Extreme - Design www.Extreme-Design.eu Ma.Des. Irene Schlacht [email protected] (Technische Universität Berlin) Ma. ArtAyako Ono [email protected] (Artist in Residence atSA) (SpaceLand) www.Extreme-Design.eu NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) CONTENT - Space Habitability - Natural Design - Variation and Variability - Lunar Zen Garden - Conclusion NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) Space Habitability NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) Space Habitability Space habitats are completely artificial ecosystems created to allow humans to survive in the outer space environment with a maximum of self- sufficiency. NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) Space Habitability The User Needs have to be considered 10 astronauts Evaluation 13 people working in the space habitat projects Need Not space stimuli quiet familiarity order privacy Interview of 23 subjects realized between 2005 -07 (Schlacht, Thales Alenia Space) NATURAL DESIGN HABITAT ON THE MOON (SCHLACHT) - LUNAR ZEN GARDEN (ONO) Space Habitability Difference of gravity, absence of natural terrestrial stimuli, isolation in a limited space, radiation, etc. modify psycho-physiological factors such as human biorhythm and sensory perception. Factors that have to be consider (Robinson et al.
    [Show full text]
  • Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee
    National Aeronautics and Space Administration Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee Jason Crusan | Advanced Exploration Systems Director | NASA Headquarters 2 Human Exploration of Mars Is Hard Common Capability Needs Identified from Multiple Studies Days Reliable In-Space 800-1,100 44 min Transportation Total me crew is Maximum two- away from Earth – way communicaon for orbit missions all in 2me delay – 300 KW Micro-g and Radia2on Autonomous Opera2ons Total connuous transportaon power 130 t Heavy-LiA Mass 20-30 t Long Surface Stay Multiple Ability to 500 Days Launches per land large mission payloads Surface Operations Dust Toxicity and 100 km 11.2 km/s Long Range Explora2on Earth Entry Speed 20 t Oxygen produced for ascent to orbit - ISRU 3 The Habitation Development Challenge HABITATATION CAPABILITY Days 800-1,100 Habitation Systems – Total me crew is AES/ISS/STMD away from Earth – • Environmental Control & Life Support for orbit missions all in • Autonomous Systems Micro-g and Radia2on Integrated • EVA testing on ISS • Fire Safety • Radiation Protection Habitation Systems - Crew Health – HRP Long Surface Stay • Human Research 500 Days • Human Performance • Exercise PROVING GROUND Validation in cislunar space • Nutrition Habitation Capability– NextSTEP BAA / Int. Partners • Studies and ground prototypes of pressurized volumes 4 Specific Habitation Systems Objectives TODAY FUTURE Habitation The systems, tools, and protec:ons that allow Systems Elements humans to live and work
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Workstation Designs for a Cis-Lunar Deep Space Habitat
    Workstation Designs for a Cis-lunar Deep Space Habitat A. Scott Howe, PhD1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 Using the International Standard Payload Rack (ISPR) system, a suite of workstations required for deep space missions have been proposed to fill out habitation functions in an International Space Station (ISS) derived Cis-lunar Deep Space Habitat. This paper introduces the functional layout of the Cis-lunar habitat design, and describes conceptual designs for modular deployable work surfaces, General Maintenance Workstation (GMWS), In-Space Manufacturing Workstation (ISMW), Intra-Vehicular Activity Telerobotics Work Station (IVA-TRWS), and Galley / Wardroom. Nomenclature AES = NASA Advanced Exploration Systems project ATHLETE = All-Terrain Hex-Limbed Extra-Terrestrial Explorer robotic mobility system CTB = Cargo Transfer Bag D-RATS = NASA Desert Research and Technology Studies DSH = Deep Space Habitat EAM = Exploration Augmentation Module EXPRESS = EXpedite the PRocessing of Experiments for Space Station GMWS = General Maintenance Work Station HDU = Habitat Demonstration Unit HERA = Human Exploration Research Analog ISMW = In-Space Manufacturing Work Station ISPR = International Standard Payload Rack ISIS = International Subrack Interface Standard ISS = International Space Station IVA = Intravehicular Activity MPCV = Multi-Purpose Crew Vehicle MPLM = Multi-Purpose Logistics Module PLSS = Personal Life Support System RAF = Random Access Frames TRWS = Telerobotics
    [Show full text]
  • (NTPS): a Key Space Asset for Human Exploration and Commercial Missions to the Moon
    NASA/TM—2014-218105 AIAA–2013–5465 The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon Stanley K. Borowski Glenn Research Center, Cleveland, Ohio David R. McCurdy Vantage Partners, LLC, Brook Park, Ohio Laura M. Burke Glenn Research Center, Cleveland, Ohio October 2014 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • Deployable Modular Frame for Inflatable Space Habitats
    70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,B3,8-GTS.2,4,x48931 DMF: Deployable Modular Frame for Inflatable Space Habitats Vittorio Netti1, * 1University of Houston, [email protected] *Corresponding author Abstract Inflatable Space Modules for space exploration are now a reality. In 2016, Bigelow Aerospace tested the first inflatable module Bigelow Expandable Activity Module (BEAM) on the International Space Station (ISS), achieving success. This technology has higher volume limits than other launchers, substantially changing the previous concepts of construction and life in space. Nevertheless, inflatable modules technology lacks a reliable and functional platform to efficiently use all this space. Due to its limited dimension, the International Standard Payload Rack (ISPR), currently used on ISS, is not suitable for this purpose. The project aims at developing a new standard for payload rack in the inflatable space modules: the Deployable Modular Frame (DMF). The DMF expands itself radially from the center of the module, starting from four structural pylons. It creates a solid infrastructure allowing for the configuration of a variety of spaces, including storage space, laboratories, workstations and living quarters. The DMF consists of two main parts: the Deployable Frame (DF) and the Modular Rack (MR). Once the frame is deployed, it provides four linear slots suitable to install the modular racks. The rack is the basic element that allows for the storage of equipment inside the frame. Once they are installed, the racks can slide on the frame’s rails, dynamically changing the space inside the module.
    [Show full text]