MASTER's THESIS Space Radiation Analysis
Total Page:16
File Type:pdf, Size:1020Kb
2009:107 MASTER'S THESIS Space Radiation Analysis - Radiation Effects and Particle Interaction outside Earth Magnetosphere using GRAS and GEANT4 Lisandro Martinez Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2009:107 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/107--SE Space Radiation Analysis: Radiation Effects and Particle Interaction outside Earth Magnetosphere using GRAS and GEANT4 Master’s Thesis For the degree of Master of Science in Space Science and Technology Lisandro M. Martinez Luleå University of Technology Cranfield University June 2009 Supervisor: Johnny Ejemalm Luleå University of Technology June 12, 2009 MASTER’S THESIS ABSTRACT Detailed analyses of galactic cosmic rays (GCR), solar proton events (SPE), and solar fluence effects have been conducted using SPENVIS and CREME96 data files for particle flux outside the Earth’s magnetosphere. The simulation was conducted using GRAS, a European Space Agency (ESA) software based on GEANT4. Dose, dose equivalent and equivalent dose have been calculated as well as secondary particle effects and GCR energy spectrum. The results are based on geometrical models created to represent the International Space Station (ISS) structure and the TransHab structure. The physics models used are included in GEANT4 and validation was conducted to validate the data. The Bertini cascade model was used to simulate the hadronic reactions as well as the GRAS standard electromagnetic package to simulate the electromagnetic effects. The calculated total dose effects, equivalent dose and dose equivalent indicate the risk and effects that space radiation could have on the crew, large amounts of radiation are expected to be obtained by the crew according to the results. The shielding comparison between ISS and TransHab indicate that a tradeoff between the two will have to be made, since the first has a higher protective ratio compared to the TransHab; on the other hand the second one is more flexible and could eventually become a larger structure. The GCRs effects upon the structure are found to be comparable to experimental data. i MASTER’S THESIS Acknowledgements The work presented in this thesis could not have been done without the help, support, and participation of many people as well as institutions. First, I would like to thank my advisor, Dr. Jennifer Kingston, for her constant support during the development of this thesis. Her interest in the subject as well as her good will was always reassuring during this work. I am grateful to the Space Master consortium for their support, not only during this work but also for the past year and a half of outstanding education, especially to the staff in Kiruna who have been very helpful. To the ErasmusMundus scholarship, that financed my dual MSc education. I would like to thank all the staff from Cranfield University, specially Dr. Steve Hobbs and Dr. Peter Roberts, who always found time for advice and guidance in the difficult area of space science. To my colleagues who by intellectual and personal support made this work possible. I want to mention the help and support from the developers of GRAS and GEANT4 projects, who always answered my questions, specially Giovanni Santin from ESA/ESTEC and John Allison from The University of Manchester I want to thank my family, my future wife, and my friends who always supported me during this gratifying and challenging time. ii MASTER’S THESIS Table of Contents Abstract...................................................................................................................................i Acknowledgements................................................................................................................ii Table of Figures......................................................................................................................v Table of Tables ..................................................................................................................... vii List of Acronyms ................................................................................................................. viii 1. INTRODUCTION ............................................................................................................................ 1 1.1. OBJECTIVES ............................................................................................................................................. 2 1.2. TRAJECTORIES........................................................................................................................................... 2 1.3. Propulsion…………………………………………………………… .…………………………………………………………. 5 1.4. Constrains…………………………………………………………………………………………………………………..……. 8 1.5. Mars Transit Vehicle ………………………………………………………………………………………………………….9 1.6. Physiological Risks ...............................................................................................................10 1.6.1. Artificial Gravity ............................................................................................................10 1.6.2. Radiation .......................................................................................................................11 2. SPACE PHYSICS AND RADIATION................................................................................................. 14 2.1. Space Radiation .................................................................................................................................. 14 2.1.1. The Sun and the Solar Wind .........................................................................................14 2.1.2. Galactic Cosmic Rays .....................................................................................................17 2.1.3. Solar Proton Events ......................................................................................................18 2.2. Radioactivity and Radiation Protection ..............................................................................19 2.2.1. Charged Particles ..........................................................................................................20 2.2.2. X and γ Radiation ..........................................................................................................20 2.2.3. Neutron .........................................................................................................................20 2.3. Energy Absorption ...............................................................................................................20 2.4. Radiation Effects .................................................................................................................22 2.4.1. Deterministic ................................................................................................................22 2.4.2. Stochastic Effects ..........................................................................................................23 3. GEOMETRy AND SOFTWARE DEVELOPMENT ................................................................25 3.1. GEANT4 ...............................................................................................................................25 3.2. GRAS ....................................................................................................................................28 3.3. Geometry ...........................................................................................................................30 3.3.1. ISS Model ......................................................................................................................31 3.3.2. TransHab .......................................................................................................................32 4. SOFTWARE VALIDATION ...............................................................................................37 iii MASTER’S THESIS 4.1. Stopping Power ...................................................................................................................37 4.2. Total Dose ...........................................................................................................................43 4.3. Hadrons, Electromagnetic and Ion Validation ....................................................................44 4.4. Astronaut Phantom Test ....................................................................................................44 4.5. Validation Results ................................................................................................................46 5. SIMULATION OF THE INTERPLANETARY RADIATION ENVIRONMENT ............................48 5.1. Data Normalization .............................................................................................................48 5.2. Computational Parameters ................................................................................................51 5.3. Average Total Dose ..............................................................................................................52 5.4. GCR Particle Fluence and Energy Spectra ...........................................................................57 5.5. Equivalent Dose ...................................................................................................................61 6. CONCLUSION ................................................................................................................63 7. RECOMMENDATIONS....................................................................................................66