The Business of Space Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robenschain GSFC July 2012
Goddard Space Flight Center NASA Goddard Space Flight Center • NASA’s first Space Flight Center (established 1959) • We TRANSFORM Human Understanding of Earth and Space • Largest Collection of Scientists & Engineers in the U.S. • Nearly 300 successful missions including the World’s First Weather Satellite and the Hubble Space Telescope • 2006 Nobel Prize in Physics [Big Bang/Cosmic Background] • Hubble Supported 2011 Nobel Prize in Physics • WMAP Team Awarded 2012 Gruber Prize for Cosmology 2 Our Facilities • GSFC Greenbelt, Maryland • GSFC Wallops Flight Facility, Virginia • IV&V Facility, West Virginia • Goddard Institute for Space Studies, New York Wallops Flight Facility • Ground Stations at White Sands Complex, New Mexico White Sands Complex Greenbelt Goddard Institute for Independent Verification and Space Studies Validation Facility 3 Our Lines of Business Cross Cutting Earth Science Technology and Capabilities Suborbital Platforms Astrophysics Planetary & Lunar Human Exploration Science & Operations Communications && Navigation GSFC’s Contributions to a Diverse Mission Portfolio QuikSCAT dinW dinW Voyager O-E1 O-E1 teoSer teoSer SBRE SBRE ACRIMSAT RHESSI TSOM TSOM TMMR TMMR Geotail OOHS OOHS aquA aquA ICESat DETMI DETMI SAMPEX Landsat 7 TRACE THEMIS TOPEX CALIPSO Tarer Tarer ECA ECA GRACE SORCE Cluster SOEP SOEP ODS ODS GEAMI GEAMI MIA MIA aruA aruA TSFA TSFA SGOE SGOE oPlar oPlar MGP MGP SMM SMM Solar-B XEBI XEBI PPN PPN Aquarius CloudSat TDRSS LMCD LMCD Osiris-Rex (Sample Return) PSBR PSBR PAMW PAMW TWINS Cassini (Instrument) -
Lockheed Martin Space Systems Company NASA SBIR Overview
Lockheed Martin Space Systems Company NASA SBIR Overview and Engagement Craig Owens Program Manager, SBIR Lockheed Martin Aeronautics Space Systems Company Portfolio Special Strategic & Missile Defense Civil Space Programs NASA Human Adv Programs Strategic Missiles Missile Defense Planetary Weather & Exploration Exploration Environment Military Space Mission Solutions Protected Narrowband Navigation Weather Early Space End-to-End Geospatial Comms Comms Warning Protection Mission Systems Technologies Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments LM SBIR Team Mission 1. Collaborate with small businesses to get advanced technology to our customers 2. Build strategic, long term relationships with small businesses by leveraging Gov’t SBIR/STTR R&D funding 3. Understand what small business technologies are potentially coming to the market 4. Align discriminating small business technologies to LM programs and future opportunities to reduce cost and win new business 5. Complement our small business supply chain and support the Gov’t initiative to leverage small businesses © 2016 Lockheed Martin Corporation, All Rights Reserved LM SBIR Engagement • Strong engagement in the SBIR/STTR Program – Seeking technology maturation supporting program needs – 5-10 year outlook – TRL 6 needed for potential LM investment – Expect small businesses to be informed on LM • Benefits to LM – Innovation & Affordability – Strategic partnerships – Complements LM investments – Help drive innovation into next generation systems © 2016 Lockheed Martin Corporation, All Rights Reserved LMSSC Endorsement Process • LM SME’s assess all concepts • Leadership aware of engagements • Process allows for relationship building © 2016 Lockheed Martin Corporation, All Rights Reserved 5 6. -
Lockheed Martin Space Advanced Programs
Lockheed Martin Space Advanced Programs Requirements in NASA Science Missions © 2019 Lockheed Martin. All Rights Reserved Performance and Operational Measurement Requirements Emitted radiance Detect photons; Convert to e- Calibrate Data Science Data Quantized Photons Electrons Science Data Radiances § Orbit § Wavelength band § Detection § Science question § Signal photons § Integration time § Navigation analysis § Background scene § Quantum efficiency § Radiometric calibration § Field of View § Dark current § Resolution § Read noise § Solar intrusion Mission Requirements Performance Requirements • Duration • Environment • Electrical • Mechanical Iterate • Reliability • Operational • Thermal • Structural Evolve Requirements Constraints Resource Requirements • Spacecraft • Mass • Thermal interface • Power • Data rate • Launch vehicle • Size • Alignment Concept Design 2 Example Requirements Tree Implementing NASA Level 1s Institution/NASA Center Level 1 Reqts Program Level 2 Launch Environmental Mission Assurance Mission Reqts Doc Project Vehicle IRD Reqts Requirements (MAR) Flight System Level 3 Mission Ops & Element- Payload Spacecraft Flight to Ground Payload Reqts to SC ICDs Ground Developed, Requirements Doc ICD System Reqts Project Approved Payload/ Level 4 Spacecraft Ground Instrument Testbeds Element-Controlled Subsystems Subsystems Subsystems 3 Mars Atmosphere and Volatile EvolutioN (MAVEN) v Objective: Characterize Mars’ atmospheric escape v PI: Dr. Bruce Jakosky, CU LASP v Implementing Institution: NASA Goddard Space Flight Center v Spacecraft and Mission Ops: Lockheed Martin v Instruments: UCB SSL, CU/LASP, NASA GSFC, CNES v Mars relay: Jet Propulsion Laboratory v Launched November 18th 2013 v MOI September 22nd 2014 v Currently in third mission extension Image Credit: NASA/B. Ingalls 5 Science Missions Across the Solar System 6 © 2019 Lockheed Martin. All Rights Reserved. -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S
5 Years Later Shades of Blue Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S. 2014) Heritage High School (Class of 2008) A LITTLE ABOUT ME › Born June 11th 1990 in Englewood CO › K-12 (Littleton Public Schools) – Runyon Elementary – Powell Middle School – Heritage High School › Clubs and Activities – Littleton Rotary/Interact Club – Destination Imagination – Club Inline Hockey – Varsity Lacrosse – Yearbook (Sports Editor) – National Honor Society MR. WARREN › Math teacher at Heritage H.S. – Advanced Algebra and Calculus › Key Lessons – “Use your imagination” – “Be creative” – “Think outside the box” › I chose to major in aerospace engineering my senior year THE LAST FIVE YEARS › University of Colorado at Boulder › Bachelors in Aerospace Engineering Sciences (ASEN) in May 2013 › Masters in ASEN/Structures and Materials in May 2014 • Clubs and Activities • Student Leadership Council • Student Success Center • Men’s Club Lacrosse • Zeta Beta Tau Fraternity WHAT IS ENGINEERING? SCIENCE IS THE WHAT/WHY ENGINEERING IS THE HOW Karman vortex sheet: repeating swirling vortices Boundary layer injection: injecting fluid into the caused by unsteady separation of flow of a fluid airstream to create turbulence such that more lift around blunt bodies. is generated along the wing. More lift means less fuel. Less fuel means more efficient airplanes. AEROSPACE ENGINEERING IS A BROAD FIELD AERONAUTICS ASTRODYNAMICS LAUNCH VEHICLES • Aircraft technologies • Spacecraft • Space Shuttle • Military and civilian technologies -
Doing Business with Wallops Flight Facility
National Aeronautics and Space Administration Doing Business with NASA’s Wallops Flight Facility NASA’s Wallops Flight Facility (WFF) in Virginia provides agile, low-cost flight and launch range ser- vices to meet government and commercial sector needs for accessing flight regimes worldwide from the Earth’s surface to the moon and beyond. As a multi-user facility with operational launch range, spaceport, and airfield assets, Wallops is well-positioned to meet ongoing and emerging needs in the science, aerospace, defense, and commercial industries. WALLOPS RANGE The Wallops Range supports many of the mission activities around WFF and abroad. Project managers utlize the support of range services to provide a broad array of technical and instrumentation services, such as radar, optical tracking, telemetry, meteorological, command and control, surveillance and recovery, financial analysis and engineering services to support scientific research and technology development. WALLOPS MOBILE ASSETS Wallops has semi-permanent downrange instrumentation as well as mobile instrumentation to include radar, telemetry, command/control, and data systems that can be transported to offsite and remote locations. Campaigns have been conducted from the semi-permanent locations in Bermuda and North Carolina, as well as from the Arctic and Antarctic regions, South America, Africa, Europe, Australia and even at sea, with our mobile systems. WFF personnel have extensive experience in planning and conducting downrange support and mobile campaigns, developing equipment and systems to support these operations. Downrange and mobile systems include the following: C-band radar, meteorology, optical tracking, orbital tracking, flight termination, telemetry, timing, surveillance, and recovery. Keith Thompson, Wallops Advanced Projects Office | 757-824-1680 www.nasa.gov/wallops MID-ATLANTIC REGIONAL SPACEPORT Virginia’s Mid-Atlantic Regional Spaceport at Wallops supports two launch facilities, one medium-lift liquid-fueled pad and a medium-lift solid propellant pad. -
The Making of the Chandra X-Ray Observatory: the Project Scientist’S Perspective
SPECIAL FEATURE: PERSPECTIVE The making of the Chandra X-Ray Observatory: The project scientist’s perspective Martin C. Weisskopf1 National Aeronautics and Space Administration/Marshall Space Flight Center, Huntsville, AL 35805 Edited by Harvey D. Tananbaum, Smithsonian Astrophysical Observatory, Cambridge, MA, and approved January 22, 2010 (received for review December 16, 2009) The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. historical perspective | x-ray astronomy t is sobering for me to realize that there arescientistswhoareworkingwithdata Ifrom this truly great observatory who were not even born when the founda- tion for what is now the Chandra X-Ray Observatory was laid. Thus, it may surprise many to know that the beginning was suc- cinctly and accurately outlined in a research proposal that Riccardo Giacconi and col- leagues wrote in 1963, a mere 9 months after he and his team’s discovery of the first ex- trasolar x-ray source Scorpius X-1. As im- portant, the data from this rocket flight also indicated the presence of the “diffuse x-ray background.” Fig. 1 illustrates the showpiece of this insightful proposal. It shows a ≈1-m diameter, 10-m focal length, grazing-incidence x-ray telescope. The telescope was of sufficient area and angular resolution to determine the nature of the unresolved x-ray background. We all owe Riccardo an enormous debt of gratitude for his insight, leadership, and, in my case (and I suspect for many others), inspiration. -
Statement of Policy on Waiving Ground Safety Regulations At
Commercial Space Transportation 800 Independence Ave., SW. Washington, DC 20591 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 415, 417, 431, and 435 Statement of Policy on Waiving Ground Safety Regulations at Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Policy Statement SUMMARY: This action establishes the FAA’s policy applicable to waivers of FAA ground safety requirements for licensed commercial launch and reentry activities at certain Federal ranges. The Federal ranges that currently meet the criteria for application of this policy are: Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. DATES: The policy described herein will be effective 3 November 2020. FOR FURTHER INFORMATION CONTACT: For additional information concerning this action, contact Executive Director, Office of Operational Safety, via letter: 800 Independence Ave SW, Washington, DC 20591; via email: [email protected]; via phone: 202-267-7793. SUPPLEMENTARY INFORMATION: The Commercial Space Launch Act of 1984, as amended and codified at 51 U.S.C. §§ 50901-50923, authorizes the Department of Transportation, and the FAA through delegation, to oversee, license, and regulate commercial launch and reentry activities, and the operation of launch and reentry sites as carried out by U.S. citizens or within the United States. Section 50905(b)(3) allows the Secretary to waive a requirement, including the requirement to obtain a license, for an individual applicant if the Secretary decides that the waiver is in the public interest and will not jeopardize the public health and safety, safety of property, and national security and foreign policy interests of the United States.1 This policy statement provides public notice of the FAA’s approach to evaluating waiver applications under 51 U.S.C. -
2008 STELLAR AWARD NOMINEES - MIDDLE Rotary National Award for Space Achievement
2008 STELLAR AWARD NOMINEES - MIDDLE Rotary National Award for Space Achievement Tech. Sgt. Jesse A. Arbour of the USAF, 45th Space Wing, and provide information to ensure the safety of extravehicular 45th Launch Support Squadron - Successful launch site crewmembers from this hazard. integration leadership on the first Wideband SATCOM launch and formulation of new mission assurance processes for the J. Derek Hassmann of NASA Johnson Space Center - 45th Launch Support Squadron, resulting in selection as the Exceptional professionalism, outstanding leadership and lead for future Wideband SATCOM spacecraft missions. technical expertise in the preparation and execution of complex International Space Station assembly mission operations. Dan R. Bell of The Boeing Company - Outstanding leadership of the orbiter thermal protection system technical community Michael T. Henry of ATK Launch Systems - Visionary including leadership of the On-orbit Debris Assessment Team leadership in creating an exceptionally strong safety and mission during each mission. assurance team of proactive, collaborative problem solvers that continues to lead innovation and improvements for shuttle, Ares, Roger E. Berenson of Pratt & Whitney Rocketdyne - and next-generation launch vehicles. Outstanding leadership in the development of the RS-68A engine system and major contributions to the development of Lara E. Kearney of NASA Johnson Space Center - Visionary multiple rocket engine systems. leadership and management expertise in establishing the EVA systems project for -
The Most Dangerous Ieos in STEREO
EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges. -
New Publication: Commission A1 Annual Report 2016
IAU Commission A1 - Astrometry Anthony Brown, Norbert Zacharias, Yoshiyuki Yamada, Jean Souchay, Alexandre Humberto Andrei, Dafydd Evans, Stephen Unwin Annual Report 2016 Gaia mission The first release of Gaia data (Gaia DR1, Gaia Collaboration et al 2016) took place on September 14 2016. This first Gaia catalogue consists of 1.1 billion sources to magnitude 20.7 for which positions are provided with typical uncertainties of 10 milliarcsec. For a subset of about 2 million sources from the Hipparcos and Tycho-2 catalogues proper motions and parallaxes are provided with a typical uncertainty of 1 milliarcsec/yr and 0.3 milliarcsec, respectively. Gaia DR1 represents a large step forward in the densification of the astrometric reference frame in the optical at faint magnitudes, and has consequently already been employed as the reference positional catalogue for several other large surveys (see below). The radio positions of around 2000 ICRF2 sources were compared to the optical positions from Gaia (Mignard et al 2016). No systematic differences larger than a few tenths of amilliarcsec were found. For most sources the true offsets are likely to be less than 1 mas. This is a very encouraging result in connection with the efforts to develop multi-wavelength realizations of the ICRS. The optical tracking of the position of Gaia on the sky was continued throughout 2016 by the GBOT (Ground Based Optical Tracking). The aim is to get an optimized position of the satellite with respect to the surrounding stars. The observations are made with the help of CCD frames taken at the focus of T1-2m class telescopes located at various places in the world. -
Article Satellite and 5G
Satellites and 5G by Bernardo Schneiderman atellite communication will play a significant role Another goal of 5G is to support the expansion of devices in 5G and beyond as a complementary solution for comprising the Internet of Things (IoT)more devices will be Subiquitous coverage, broadcast/multicast provi- able to transmit data without causing performance issues. sion, aeronautical & maritime communications, emer- gency/disaster recovery, and remote rural area coverage. Driverless cars and autonomous vehicles are a related technological category that stand to benefit from 5G, as There are several use cases where standard terrestrial the demand for an interconnected transportation system coverage is either not present or possible, making satel- rises. Maintaining fast software downloads such as GPS lite systems uniquely mapping routes will positioned to provide be critical for a sys- a solution to bridge tem of connected cars. this gap. By 2020- 2025 there will be DriveNSR’s re- more than 100 High port entitled “5G via Throughput Satel- satellite: Impacts, De- lite (HTS) systems mand and Revenue using Geostation- potential to 2029,” ary (GEO) orbits forecasts deep 5G im- but also mega-con- pact in the satellite stellations of Low ecosystem with close Earth Orbit (LEO) to 10 million active satellites, deliver- units by 2029. Beyond ing Terabit per sec- Image courtesy of ESA the obvious use cas- ond (Tbps) of capacity across the world. es, like Cellular Back- haul and Trunking, a wide spectrum of applications New cost-effective system architectures as Starlink will experience accelerated demand from 5G, includ- (SpaceX), LightSpeed (Telesat), Oneweb, O3B (SES) ing IoT, Private 5G for Corporate Networks, Mo- systems should be considered as a major impact in the bility or even more conservative users like Gov/Mil.