Galaxy Evolution Explorer Launch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Iowa Instruments in Space
University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar. -
Cosmic Origins Newsletter, September 2016, Vol. 5, No. 2
National Aeronautics and Space Administration Cosmic Origins Newsletter September 2016 Volume 5 Number 2 Summer 2016 Cosmic Origins Program Inside this Issue Update Summer 2016 Cosmic Origins Program Update ............................1 Mansoor Ahmed, COR Program Manager Hubble Reveals Stellar Fireworks in ‘Skyrocket’ Galaxy ................2 Message from the Astrophysics Division Director .........................2 Susan Neff, COR Program Chief Scientist Light Echoes Give Clues to Protoplanetary Disk ............................3 Far-IR Surveyor Study Status .............................................................5 Welcome to the September 2016 Cosmic Origins (COR) newslet- LUVOIR Study Status .........................................................................5 ter. In this issue, we provide updates on several activities relevant to Strategic Astrophysics Technology (SAT) Selections the COR Program objectives. Some of these activities are not under for ROSES-2015 ...................................................................................6 the direct purview of the program, but are relevant to COR goals, Technology Solicitations to Enable Astrophysics Discoveries ......6 therefore we try to keep you informed about their progress. Cosmic Origins Suborbital Program: Balloon Program – BETTII ................................................................7 In January 2016, Paul Hertz (Director, NASA Astrophysics) News from SOFIA ...............................................................................8 presented his -
Chandra-Hetgs Characterization of an Outflowing Wind in the Accreting Millisecond Pulsar Igr J17591−2342
Draft version February 27, 2019 Typeset using LATEX twocolumn style in AASTeX61 CHANDRA-HETGS CHARACTERIZATION OF AN OUTFLOWING WIND IN THE ACCRETING MILLISECOND PULSAR IGR J17591−2342 Michael A. Nowak,1 Adamantia Paizis,2 Gaurava Kumar Jaisawal,3 Jer´ ome^ Chenevez,3 Sylvain Chaty,4 Francis Fortin,4 Jer´ ome^ Rodriguez,4 andJ orn¨ Wilms5 1Physics Dept., CB 1105, Washington University, One Brookings Drive, St. Louis, MO 63130-4899 2Istituto Nazionale di Astrofisica, INAF-IASF, Via Alfonso Corti 12, I-20133 Milano, Italy 3National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby, Denmark 4AIM, CEA, CNRS, Universit´eParis-Saclay, Universit´eParis-Diderot, Sorbonne Paris Cit´e,F-91191 Gif sur Yvette, France 5Dr. Karl Remeis-Observatory & ECAP, University of Erlangen-Nuremberg, Sternwartstr. 7, 96049 Bamberg, Germany (Received 2019 January; Accepted 2019 February) Submitted to ApJ ABSTRACT IGR J17591−2342 is an accreting millisecond X-ray pulsar discovered in 2018 August in scans of the Galactic bulge and center by the INTEGRAL X-ray and gamma-ray observatory. It exhibited an unusual outburst profile with multiple peaks in the X-ray, as observed by several X-ray satellites over three months. Here we present observations of this source performed in the X-ray/gamma-ray and near infrared domains, and focus on a simultaneous observation performed with the Chandra-High Energy Transmission Gratings Spectrometer (HETGS) and the Neutron Star Interior Composition Explorer (NICER). HETGS provides high resolution spectra of the Si-edge region, which yield clues as to the source's distance and reveal evidence (at 99.999% significance) of an outflow with a velocity of 2 800 km s−1. -
Final Release from the Extended Baryon
Draft version August 19, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE SIXTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: FINAL RELEASE FROM THE EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY, AND FIRST RELEASE FROM APOGEE-2S V´ıctor Silva Aguirre1, Romina Ahumada2, Carlos Allende Prieto3,4, Andres´ Almeida5, Friedrich Anders6,7, Scott F. Anderson8, Brett H. Andrews9, Borja Anguiano10, Riccardo Arcodia11, Marie Aubert12, Santiago Avila13,14, Vladimir Avila-Reese15, Christophe Balland16, Kat Barger17, Sarbani Basu18, Julian Bautista19, Rachael L. Beaton20, Timothy C. Beers21, Chad F. Bender22, Mariangela Bernardi23, Matthew Bershady24,25, Florian Beutler19, Dmitry Bizyaev26, Michael R. Blanton27,Med´ eric´ Boquien28, Jura Borissova29,30, Jo Bovy31,32, W.N. Brandt33,34,35, Jonathan Brinkmann26, Joel R. Brownstein36, Kevin Bundy37, Martin Bureau38, Adam Burgasser39, Mariana Cano-D´ıaz15, Raffaella Capasso40,41,42, Ricardo Carrera43, Solene` Chabanier44, Brian Cherinka45, Cristina Chiappini6, Peter Doohyun Choi46, Haeun Chung47, Nicolas Clerc48, Damien Coffey11, Julia M. Comerford49, Johan Comparat11, Luiz da Costa50,51, Marie-Claude Cousinou12, Kevin Covey52, Jeffrey D. Crane20, Katia Cunha51,22, Gabriele da Silva Ilha53,50, Yu Sophia Dai54, Sanna B. Damsted55, Danny Horta Darrington56, James W. Davidson Jr.10, Kyle Dawson36, Nikhil De57,17, Axel de la Macorra58, Nathan De Lee59, Alice Deconto Machado53,50, Sylvain de la Torre60, Flavia Dell'Agli3,4, Helion´ du Mas des Bourboux36, Aleksandar M. Diamond-Stanic61, Sean Dillon62,63, John Donor17, Niv Drory64, Chris Duckworth65, Tom Dwelly11, Garrett Ebelke10, Arthur Davis Eigenbrot24, Yvonne P. Elsworth66, Mike Eracleous33,34, Ghazaleh Erfanianfar11, Stephanie Escoffier12, Xiaohui Fan22, Emily Farr8, Jose´ G. Fernandez-Trincado´ 67,68, Diane Feuillet69, Alexis Finoguenov55, Patricia Fofie62,70, Amelia Fraser-McKelvie71, Peter M. -
The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery, -
Spherex: New NASA MIDEX All-Sky 1-5 Um Spectral Survey
SPHEREx: New NASA MIDEX All-Sky 1-5 um Spectral Survey Designed to Explore ▪ The Origin of the Universe ▪ The Origin and History of Galaxies ▪ The Origin of Water in Planetary Systems ▪ PI Jamie Bock, CalTech The First All-Sky Near-IR Spectral Survey A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies Low-Risk Implementation ▪ 2022 NASA MIDEX Launch ▪ Single Observing Mode ▪ Large Design Margins Co-I Carey Lisse, SES/SRE ▪ No Moving Optics NASA SBAG Jun 25, 2019 Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. New MIDEX SPHEREx (2022-2025): All-Sky 0.8 – 5.0 µm Spectral Legacy Archives Medium- High- Accuracy Accuracy Detected Spectra Spectra Clusters > 1 billion > 100 million 10 million 25,000 All-Sky surveys demonstrate high Galaxies scientiFic returns with a lasting Main data legacy used across astronomy Sequence Brown Spectra Dust-forming Dwarfs Cataclysms For example: > 100 million 10,000 > 400 > 1,000 COBE J IRAS J Stars GALEX Asteroid WMAP & Comet Galactic Quasars Quasars z >7 Spectra Line Maps Planck > 1.5 million 1 – 300? > 100,000 PAH, HI, H2 WISE J Other More than 400,000 total citations! SPHEREx Data Products & Tools: A spectrum (0.8 to 5 micron) for every 6″ pixel on the sky Planned Data Releases Survey Data Date (Launch +) Associated Products Survey 1 1 – 8 mo S1 spectral images Survey 2 8 – 14 mo S1/2 spectral images Early release catalog Survey 3 14 – 20 mo S1/2/3 spectral images Survey 4 20 – 26 mo S1/2/3/4 spectral images Final Release -
The Future of X-Rayastronomy
The Future of X-rayAstronomy Keith Arnaud [email protected] High Energy Astrophysics Science Archive Research Center University of Maryland College Park and NASA’s Goddard Space Flight Center Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry How do we get a new X-ray astronomy experiment? A group of scientists and engineers makes a proposal to a national (or international) space agency. This will include a science case and a description of the technology to be used (which should generally be in a mature state). In principal you can make an unsolicited proposal but in practice space agencies have proposal rounds in the same way that individual missions have observing proposal rounds. NASA : Small Explorer (SMEX) and Medium Explorer (MIDEX): every ~2 years alternating Small and Medium, three selected for study for one year from which one is selected for launch. RXTE, GALEX, NuSTAR, Swift, IXPE Arcus, a high resolution X-ray spectroscopy mission was a finalist in the latest MIDEX round but was not selected. Missions of Opportunity (MO): every ~2 years includes balloon programs, ISS instruments and contributions to foreign missions. Suzaku, Hitomi, NICER, XRISM Large missions such as HST, Chandra, JWST are not selected by such proposals but are decided as national priorities through the Astronomy Decadal process. Every ten years a survey is run by the National Academy of Sciences to decide on priorities for both land-based and space-based astronomy. 1960: HST; 1970: VLA; 1980: VLBA; 1990: Chandra and SIRTF; 2000: JWST and ALMA; 2010 WFIRST and LSST. -
ROSAT All-Sky Survey
ROSAT All-Sky Survey S. R. Kulkarni July 22, 2020{July 27, 2020 The Russian-German mission, Spektr-R¨ongtenGamma (SRG) is on the verge of revolution- izing X-ray astronomy. One of the instruments, eROSITA, will be undertaking an imaging survey of the X-ray sky. Each six-month the entire sky will be covered to a sensitivity which is ten times better than the previous such survey (ROSAT). After eight semesters SRG will undertake pointed observations. I provide a condensed history so that a young student can appreciate the importance of SRG/eROSITA. The first all sky survey was undertaken by the Uhuru (aka SAS-1; 1970) satellite. This was followed up by HEAO-1 (aka HEAO-A; 1977) surveys. These surveys detected 339 and 843 sources in the 2{10 keV band. For those interested in arcana, 1 Uhuru count/s is 1:7 × 10−11 erg cm−2 s−1 in the 2{6 keV band. The next major mission was HEAO-2 (aka Einstein; launched in 1978). This was a game changer since, unlike the past missions which used essentially collimators or shadow cam- eras, the centerpiece of Einstein was a true imaging telescope. Furthermore the mission carried an amazing complement of imagers and spectrometers in the focal plane. The mission coincided with my graduate school (1978-1983). R¨ontgensatellit (ROSAT) was a German mission to undertake an X-ray imaging survey of the entire sky { the first such survey. Launched in 1990 it lasted for eight years. It carried two Positional Sensitive Proportional Counter (PSPC; 0.1{2.4 keV), a High Resolution Imager (HRI) and the Wide Field Camera (WFC; 60{300 A).˚ The PSPC, with a field-of- view of 2 degrees, was the primary work horse for the X-ray sky survey and was > 100 more sensitive than the pioneering Uhuru and HEAO-A1 surveys. -
MASTER's THESIS Space Radiation Analysis
2009:107 MASTER'S THESIS Space Radiation Analysis - Radiation Effects and Particle Interaction outside Earth Magnetosphere using GRAS and GEANT4 Lisandro Martinez Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2009:107 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/107--SE Space Radiation Analysis: Radiation Effects and Particle Interaction outside Earth Magnetosphere using GRAS and GEANT4 Master’s Thesis For the degree of Master of Science in Space Science and Technology Lisandro M. Martinez Luleå University of Technology Cranfield University June 2009 Supervisor: Johnny Ejemalm Luleå University of Technology June 12, 2009 MASTER’S THESIS ABSTRACT Detailed analyses of galactic cosmic rays (GCR), solar proton events (SPE), and solar fluence effects have been conducted using SPENVIS and CREME96 data files for particle flux outside the Earth’s magnetosphere. The simulation was conducted using GRAS, a European Space Agency (ESA) software based on GEANT4. Dose, dose equivalent and equivalent dose have been calculated as well as secondary particle effects and GCR energy spectrum. The results are based on geometrical models created to represent the International Space Station (ISS) structure and the TransHab structure. The physics models used are included in GEANT4 and validation was conducted to validate the data. The Bertini cascade model was used to simulate the hadronic reactions as well as the GRAS standard electromagnetic package to simulate the electromagnetic effects. The calculated total dose effects, equivalent dose and dose equivalent indicate the risk and effects that space radiation could have on the crew, large amounts of radiation are expected to be obtained by the crew according to the results. -
Arxiv:2009.09047V1 [Astro-Ph.GA] 18 Sep 2020 Theoretical Review, See Zhang 2018)
DRAFT VERSION SEPTEMBER 22, 2020 Typeset using LATEX twocolumn style in AASTeX63 A 60 kpc Galactic Wind Cone in NGC 3079 EDMUND J. HODGES-KLUCK,1 MIHOKO YUKITA,1, 2 RYAN TANNER,1, 3 ANDREW F. PTAK,1 JOEL N. BREGMAN,4 AND JIANG-TAO LI4 1Code 662, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA 3Universities Space Research Association, 7178 Columbia Gateway Dr, Columbia, MD 21046 4Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA ABSTRACT Galactic winds are associated with intense star formation and AGNs. Depending on their formation mecha- nism and velocity they may remove a significant fraction of gas from their host galaxies, thus suppressing star formation, enriching the intergalactic medium, and shaping the circumgalactic gas. However, the long-term evolution of these winds remains mostly unknown. We report the detection of a wind from NGC 3079 to at least 60 kpc from the galaxy. We detect the wind in FUV line emission to 60 kpc (as inferred from the broad FUV filter in GALEX) and in X-rays to at least 30 kpc. The morphology, luminosities, temperatures, and densities indicate that the emission comes from shocked material, and the O/Fe ratio implies that the X-ray emitting gas is enriched by Type II supernovae. If so, the speed inferred from simple shock models is about 500 km s−1, which is sufficient to escape the galaxy. However, the inferred kinetic energy in the wind from visible components is substantially smaller than canonical hot superwind models. -
GALEX: Galaxy Evolution Explorer
GALEX: Galaxy Evolution Explorer Barry F. Madore Carnegie Observatories, Pasadena CA 91101 Abstract. We review recent scientific results from the Galaxy Evolution Explorer with special emphasis on star formation in nearby resolved galaxies. INTRODUCTION The Satellite The Galaxy Evolution Explorer (GALEX) is a NASA Small Explorer class mission. It consists of a 50 cm-diameter, modified Ritchey-Chrétien telescope with four operating modes: Far-UV (FUV) and Near-UV (NUV) imaging, and FUV and NUV spectroscopy. Æ The telescope has a 3-m focal length and has Al-MgF2 coatings. The field of view is 1.2 circular. An optics wheel can position a CaF2 imaging window, a CaF2 transmission grism, or a fully opaque mask in the beam. Spectroscopic observations are obtained at multiple grism-sky dispersion angles, so as to mitigate spectral overlap effects. The FUV (1528Å: 1344-1786Å) and NUV (2271Å: 1771-2831Å) imagers can be operated one at a time or simultaneously using a dichroic beam splitter. The detector system encorporates sealed-tube microchannel-plate detectors. The FUV detector is preceded by a blue-edge filter that blocks the night-side airglow lines of OI1304, 1356, and Lyα. The NUV detector is preceded by a red blocking filter/fold mirror, which produces a sharper long-wavelength cutoff than the detector CsTe photocathode and thereby reduces both zodiacal light background and optical contamination. The peak quantum efficiency of the detector is 12% (FUV) and 8% (NUV). The detectors are linear up to a local (stellar) count-rate of 100 (FUV), 400 (NUV) cps, which corresponds to mAB 14 15. -
ESA Space Weather STUDY Alcatel Consortium
ESA Space Weather STUDY Alcatel Consortium SPACE Weather Parameters WP 2100 Version V2.2 1 Aout 2001 C. Lathuillere, J. Lilensten, M. Menvielle With the contributions of T. Amari, A. Aylward, D. Boscher, P. Cargill and S.M. Radicella 1 2 1 INTRODUCTION........................................................................................................................................ 5 2 THE MODELS............................................................................................................................................. 6 2.1 THE SUN 6 2.1.1 Reconstruction and study of the active region static structures 7 2.1.2 Evolution of the magnetic configurations 9 2.2 THE INTERPLANETARY MEDIUM 11 2.3 THE MAGNETOSPHERE 13 2.3.1 Global magnetosphere modelling 14 2.3.2 Specific models 16 2.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 20 2.4.1 Empirical and semi-empirical Models 21 2.4.2 Physics-based models 23 2.4.3 Ionospheric profilers 23 2.4.4 Convection electric field and auroral precipitation models 25 2.4.5 EUV/UV models for aeronomy 26 2.5 METEOROIDS AND SPACE DEBRIS 27 2.5.1 Space debris models 27 2.5.2 Meteoroids models 29 3 THE PARAMETERS ................................................................................................................................ 31 3.1 THE SUN 35 3.2 THE INTERPLANETARY MEDIUM 35 3.3 THE MAGNETOSPHERE 35 3.3.1 The radiation belts 36 3.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 36 4 THE OBSERVATIONS ...........................................................................................................................